Biophysical Background

7
Biophysics Background Bioengineering 6460 Bioelectricity Biophysical Background Bioengineering 6460 Bioelectricity Biophysics Background The Basics • Materials – Conductor, capacitors Ohm’s Law and Circuits – Ohms law, IV curves, dynamic circuit analysis • Fields – Electric field, potential field Sources, Sinks, and Vector Calculus – Current monopoles, dipoles – Volume conductor fields – Div, grad, curl and all that

Transcript of Biophysical Background

Page 1: Biophysical Background

Biophysics Background Bioengineering 6460 Bioelectricity

Biophysical Background

Bioengineering 6460 BioelectricityBiophysics Background

The Basics

• Materials– Conductor, capacitors

• Ohm’s Law and Circuits– Ohms law, IV curves, dynamic circuit analysis

• Fields– Electric field, potential field

• Sources, Sinks, and Vector Calculus– Current monopoles, dipoles– Volume conductor fields– Div, grad, curl and all that

Page 2: Biophysical Background

V

Bioengineering 6460 BioelectricityBiophysics Background

Conductors & Resistors

• Conductors– Electrons free to move– Current flow in response to

electric field– In static state, no net charge

(E=0) • Resistors

– Electrons less free to move– Create potential differences– Depend on material properties

--

-------

---

- -E!0

E = 0

∆V = 0

Bioengineering 6460 BioelectricityBiophysics Background

Capacitance

+Q-Q

V

-

-

-+

+

+

- +• Dielectric– Charges not free to move, just shift– E!0 inside, opposes applied E– Result is reduce v and increased C

Does anything change when the plates move?

Q = CV

+++

--- +Q-Q

V

-

-

-+

+

+

- +?

Yes, V increases while Q and E are the same so C decreases.

Page 3: Biophysical Background

Bioengineering 6460 BioelectricityBiophysics Background

Membrane Equivalent Circuit

+

"

Cm

Em

Rm

Lipid Bilayer

Channel

Charged Polar Head

Bioengineering 6460 BioelectricityBiophysics Background

Current and Ohm’s Law

• Without potential difference there is no current!

• Without conductance, there is no current.

• Ohm’s law:– linear relationship between current and

voltage– not universal, especially not in living

systems x0

jx v(x)v(0)

L

I =1R

V = GV

Page 4: Biophysical Background

Bioengineering 6460 BioelectricityBiophysics Background

Current-Voltage (I-V) Curves

v

i

V

?? A

Bioengineering 6460 BioelectricityBiophysics Background

Equivalent circuits 1

v

i

g

g

2g3g

Page 5: Biophysical Background

Bioengineering 6460 BioelectricityBiophysics Background

Equivalent circuits 2

v

i

g

V1 V1

g

V2 V2

I1=(v+V1) g

v

I2=(v-V2) g

Driving force

Bioengineering 6460 BioelectricityBiophysics Background

I-V Curve Examples

V

I

K-current

Na-current

Rectifying current + Nernst potential

Rectifying current

Vrev Vrev

Positive Nernst potential

Page 6: Biophysical Background

Bioengineering 6460 BioelectricityBiophysics Background

Circuit Analysis

• Conservation of charge: currents sum at nodes• Conservation of energy: sum of voltages = 0

i1i2 i3

i1 + i2 + i3 = 0

v1

v2

v3

v4

v4 = v1+ v2+ v3

Bioengineering 6460 BioelectricityBiophysics Background

Voltage Divider

R1

R2

vB

v2

i=vB/(R1+R2)

i=v2/R2

v2=vB R2/(R1+R2)

Examples of voltage dividers in EP measurements?

Page 7: Biophysical Background

Bioengineering 6460 BioelectricityBiophysics Background

Electrical Profile of a Cell

Inside OutsideOutside

v

E

+ -

-

-

-

-

+

+

+

+

-

-

-

-

-

+

+

+

+

+