Benjamin Recht Department of Computer Sciences University...

30
Going off the grid Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Joint work with Badri Bhaskar Parikshit Shah Gonnguo Tang

Transcript of Benjamin Recht Department of Computer Sciences University...

  • Going off the gridBenjamin Recht

    Department of Computer SciencesUniversity of Wisconsin-Madison

    Joint work withBadri BhaskarParikshit ShahGonnguo Tang

  • We live in a continuous world...

    But we work with digital computers...

    What is the price of living on the grid?

  • DOA Estimation

    GPS Radar

    Sampling

    Ultrasound

    !"# $%%% &'()*+, '* %-%).$*. +*/ 0%,%12%/ 2'3$10 $* 1$)1($20 +*/ 0402%-05 6',7 "5 *'7 85 0%32%-9%) "#:"

    ;7 *(0 $1 ?@ABC

  • DOA Estimation

    GPS Radar

    Sampling

    Ultrasound

    !"# $%%% &'()*+, '* %-%).$*. +*/ 0%,%12%/ 2'3$10 $* 1$)1($20 +*/ 0402%-05 6',7 "5 *'7 85 0%32%-9%) "#:"

    ;7 *(0 $1 ?@ABC

  • DOA Estimation

    GPS Radar

    Sampling

    Ultrasound

    !"# $%%% &'()*+, '* %-%).$*. +*/ 0%,%12%/ 2'3$10 $* 1$)1($20 +*/ 0402%-05 6',7 "5 *'7 85 0%32%-9%) "#:"

    ;7 *(0 $1 ?@ABC

  • DOA Estimation

    GPS Radar

    Sampling

    Ultrasound

    !"# $%%% &'()*+, '* %-%).$*. +*/ 0%,%12%/ 2'3$10 $* 1$)1($20 +*/ 0402%-05 6',7 "5 *'7 85 0%32%-9%) "#:"

    ;7 *(0 $1 ?@ABC

  • DOA Estimation

    GPS Radar

    Sampling

    Ultrasound

    !"# $%%% &'()*+, '* %-%).$*. +*/ 0%,%12%/ 2'3$10 $* 1$)1($20 +*/ 0402%-05 6',7 "5 *'7 85 0%32%-9%) "#:"

    ;7 *(0 $1 ?@ABC

  • for some

    Observe a sparse combination of sinusoids

    Spectrum Estimation: find a combination of sinusoids agreeing with time series data• Classic techniques require sensitive frequency localization or

    knowledge of model order.

    • Can we leverage convex geometry for new algorithms for and analysis of spectrum estimation?

    xm =sX

    k=1

    ckei2⇡muk uk 2 [0, 1)

    Sparse combinations from the set

    A =

    8>>>>><

    >>>>>:

    2

    666664

    ei✓

    ei2⇡�+i✓

    ei4⇡�+i✓

    ...ei2⇡�n+i✓

    3

    777775:

    ✓ 2 [0, 2⇡) ,� 2 [0, 1)

    9>>>>>=

    >>>>>;

  • Linear Inverse Problems• Find me a solution of

    • Φ m x n, m

  • • 1-sparse vectors of Euclidean norm 1

    • Convex hull is the unit ball of the l1 norm

    1

    1

    -1

    -1

    Sparsity

  • minimize kxk1subject to �x = y

    x1

    x2

    Φx=y

  • • Search for best linear combination of fewest atoms• “rank” = fewest atoms needed to describe the model

    Parsimonious Models

    atomsmodel weights

    rank

  • Atomic Norm Minimization

    • Generalizes existing, powerful methods• Rigorous formula for developing new analysis

    algorithms• Tightest bounds on number of measurements

    needed for model recovery in all common models• One algorithm prototype for many data-mining

    applications

    minimize kzkAsubject to �z = yIDEA:

    Chandrasekaran, Recht, Parrilo, and Willsky 2010

  • Spectrum Estimation

    u?k 2 [0, 1)for some

    Observe a sparse combination of sinusoids

    A =

    8>>>><

    >>>>:

    2

    66664

    ei✓

    ei2⇡�+i✓

    ei4⇡�+i✓

    · · ·ei2⇡�n+i✓

    3

    77775:

    ✓ 2 [0, 2⇡) ,� 2 [0, 1)

    9>>>>=

    >>>>;

    Atomic Set

    Observe: (signal plus noise)

    Classical techniques (Prony, Matrix Pencil, MUSIC, ESPRIT, Cadzow), use the fact that noiseless moment matrices are low-rank:

    rX

    k=1

    �k

    2

    664

    1e�ki

    e2�ki

    e3�ki

    3

    775

    2

    664

    1e�ki

    e2�ki

    e3�ki

    3

    775

    =

    2

    664

    µ0 µ1 µ2 µ3µ̄1 µ0 µ1 µ2µ̄2 µ̄1 µ0 µ1µ̄3 µ̄2 µ̄1 µ0

    3

    775 ⌫ 0

    x

    ?m =

    sX

    k=1

    c

    ?ke

    i2⇡mu?k

    y = x? + !

  • Atomic Norm for Spectrum Estimation

    • How do we solve the optimization problem?• Can we approximate the true signal from partial and

    noisy measurements?• Can we estimate the frequencies from partial and

    noisy measurements?

    IDEA:minimize kzkAsubject to k�z � yk �

    Atomic Set:

    A =

    8>>>>><

    >>>>>:

    2

    666664

    ei✓

    ei2⇡�+i✓

    ei4⇡�+i✓

    ...ei2⇡�n+i✓

    3

    777775:

    ✓ 2 [0, 2⇡) ,� 2 [0, 1)

    9>>>>>=

    >>>>>;

  • • Convex hull is characterized by linear matrix inequalities (Toeplitz positive semidefinite)

    • Moment Curve of [t,t2,t3,t4,...],

    Which atomic norm for sinusoids?for somexm =

    sX

    k=1

    ckei2⇡muk uk 2 [0, 1)

    Assume are positive for simplicityck

    rX

    k=1

    ck

    2

    664

    1e

    i2⇡uk

    e

    i4⇡uk

    e

    i6⇡uk

    3

    775

    2

    664

    1e

    i2⇡uk

    e

    i4⇡uk

    e

    i6⇡uk

    3

    775

    =

    2

    664

    x0 x̄1 x̄2 x̄3

    x1 x0 x̄1 x̄2

    x2 x1 x0 x̄1

    x3 x2 x1 x0

    3

    775 ⌫ 0

    t 2 S1

    kxkA = inf⇢

    12 t+

    12w0 :

    t x

    x toep(w)

    �⌫ 0

  • A A [ {�A}

    conv(A [ {�A})conv(A)

  • cos(2⇡u1k)/2� cos(2⇡u2k)/2cos(2⇡u1k)/2 + cos(2⇡u2k)/2

    u2 = 0.1411u1 = 0.1413

  • Nearly optimal rates

    u?k 2 [0, 1)for some

    Observe a sparse combination of sinusoids

    Observe: (signal plus noise)

    minp 6=q

    d(up, uq) �4

    nAssume frequencies are far apart:

    x

    ?m =

    sX

    k=1

    c

    ?ke

    i2⇡mu?k

    1

    n

    kx̂� x?k22 C�

    2s log(n)

    n

    Error Rate:

    1

    n

    kx̂� x?k22 �C

    0�

    2s

    n

    No algorithm can do better than

    even if we knew all of the frequencies (uk*)

    1

    n

    kx̂� x?k22 �C

    0�

    2s

    n

    No algorithm can do better than

    even if we knew all of the frequencies (uk*)

    No algorithm can do better than

    even if the frequencies are well-separated

    E1

    n

    kx̂� x?k22�� C

    0�

    2s log(n/s)

    n

    y = x? + !

    x̂ = argminx

    12kx� yk

    22 + µkxkASolve:

  • • Frequencies generated at random with 1/n separation. Random phases, fading amplitudes.

    • Cadzow and MUSIC provided model order. AST and LASSO estimate noise power.

    P(�

    )

    �• Performance profile over all

    parameter values and settings• For algorithm s:Ps(�) =

    # {p 2 P : MSEs(p) �mins MSEs(p)}#(P)

    Lower is better Higher is better

    Mean Square Error Performance Profile

  • Extracting the decomposition

    • How do you extract the frequencies? Look at the dual norm:

    • Dual norm is the maximum modulus of a polynomial

    kvk⇤A = maxa2A

    ha, vi = maxu2[0,1)

    �����

    nX

    k=1

    vke2⇡iku

    �����

    At optimality, maximum modulus is attained at the support of the signal

  • Localization Guarantees

    Spurious Amplitudes

    Weighted Frequency Deviation

    Near region approximation

    10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    1

    0

    Frequency

    Dua

    l Pol

    ynom

    ial M

    agni

    tude

    True FrequencyEstimated Frequency

    0.16/n Spurious Frequency

    l:f̂l�F

    |ĉl| � C1��

    k2 (n)

    n

    ������cj �

    l:f̂l�Nj

    ĉl

    ������� C3�

    �k2 (n)

    n

    l:f̂l�Nj

    |ĉl|�

    fj�Td(fj , f̂l)

    �2� C2�

    �k2 (n)

    n

  • Frequency Localization

    20 40 60 80 1000

    0.2

    0.4

    0.6

    0.8

    1

    β

    Ps(β

    )

    AST

    MUSIC

    Cadzow

    100 200 300 400 5000

    0.2

    0.4

    0.6

    0.8

    1

    β

    Ps(β

    )

    AST

    MUSIC

    Cadzow

    5 10 15 200

    0.2

    0.4

    0.6

    0.8

    1

    β

    Ps(β

    )

    AST

    MUSIC

    Cadzow

    −10 −5 0 5 10 15 200

    20

    40

    60

    80

    100

    k = 32

    SNR (dB)

    m1

    AST

    MUSIC

    Cadzow

    −10 −5 0 5 10 15 200

    0.01

    0.02

    0.03

    0.04

    k = 32

    SNR (dB)

    m2

    AST

    MUSIC

    Cadzow

    −10 −5 0 5 10 15 200

    1

    2

    3

    4

    5

    k = 32

    SNR (dB)

    m3

    AST

    MUSIC

    Cadzow

    Spurious Amplitudes Weighted Frequency Deviation Near region approximation

    l:f̂l�F

    |ĉl| � C1��

    k2 (n)

    n

    ������cj �

    l:f̂l�Nj

    ĉl

    ������� C3�

    �k2 (n)

    n

    l:f̂l�Nj

    |ĉl|�

    fj�Td(fj , f̂l)

    �2� C2�

    �k2 (n)

    n

  • Incomplete Data/Random Sampling

    • Observe a random subset of samples

    • On the grid, Candes, Romberg & Tao (2004)

    • Off the grid, new, Compressed Sensing extended to the wide continuous domain

    • Recover the missing part by solving

    • Extract frequencies from the dual optimal solution

    T ⇢ {0, 1, . . . , n� 1}

    Full observation

    Random sampling

    minimize

    zkzkA

    subject to zT = xT .

    minimize

    zkzkA

    subject to zT = xT .

  • Exact Recovery (off the grid)Theorem: (Candès and Fernandez-Granda 2012) A line spectrum with minimum frequency separation " > 4/s can be recovered from the first 2s Fourier coefficients via atomic norm minimization.

    Theorem: (Tang, Bhaskar, Shah, and R. 2012) A line spectrum with minimum frequency separation " > 4/n can be recovered from most subsets of the first n Fourier coefficients of size at least O(s log(s) log(n)).

    • s random samples are better than s equispaced samples.• On a grid, this is just compressed sensing• Off the grid, this is new

    • No balancing of coherence as n grows.

    {

    "

    WANT {uk, ck}

    xm =

    sX

    k=1

    ck exp(2⇡imuk)

  • −0.50

    0.51

    −0.5

    0

    0.5

    0

    0.5

    1

    SDP

    −0.50

    0.51

    −0.5

    0

    0.5

    0

    0.5

    1

    BP:4x

    −0.50

    0.51

    −0.5

    0

    0.5

    0

    0.5

    1

    BP:64x

    100

    105

    0

    0.2

    0.4

    0.6

    0.8

    1

    β

    P(β

    )

    Performance Profile − Solution Accuracy

    SDP

    BP 4

    BP 16

    BP 64

    noiseless

  • GPS UltrasoundRadar

    astronomyimaging seismology

    x(t) =kX

    j=1

    cjg(t� ⌧j)ei2⇡fjtx(t) =kX

    j=1

    cjg(t� ⌧j⌧j⌧ )ei2⇡fjfjf t

    x̂(!) = dPSF(!)kX

    j=1

    cje�i2⇡!sj

  • Summary and Future Work• Unified approach for continuous problems in

    estimation.• Obviates incoherence and basis mismatch• New insight into bounds on estimation error and exact

    recovery through convex duality and algebraic geometry

    • State-of-the-art results in classic fields of spectrum estimation and system identification (ask me later!)

    `

    • Recovery of general sparse signal trains

    • Scaling atomic norm algorithms

    • More atomization in signal processing... (moments, PDEs, deep atoms)

  • AcknowledgementsWork developed with Venkat Chandrasekaran, Babak Hassibi (Caltech), Weiyu Xu (Iowa), Pablo A. Parrilo, Alan Willsky (MIT), Maryam Fazel (Washington) Badri Bhaskar, Rob Nowak, Nikhil Rao, Gongguo Tang (Wisconsin).

    http://pages.cs.wisc.edu/~brecht/publications.htmlFor all references, see:

    http://pages.cs.wisc.edu/~brechthttp://pages.cs.wisc.edu/~brecht

  • References

    • Atomic norm denoising with applications to line spectral estimation. Badri Narayan Bhaskar, Gongguo Tang, and Benjamin Recht. Submitted to IEEE Transactions on Signal Processing. 2012.

    • Compressed sensing off the grid. Gongguo Tang, Badri Bhaskar, Parikshit Shah, and Benjamin Recht. Submitted to IEEE Transactions on Information Theory. 2012.

    • Near Minimax Line Spectral Estimation. Gongguo Tang, Badri Narayan Bhaskar, and Benjamin Recht. Submitted to IEEE Transactions on Information Theory, 2013.

    • The convex geometry of inverse problems. Venkat Chandrasekaran, Benjamin Recht, Pablo Parrilo, and Alan Willsky. To Appear in Foundations on Computational Mathematics. 2012.

    • All references can be found at

    http://pages.cs.wisc.edu/~brecht/publications.html

    http://pages.cs.wisc.edu/~brechthttp://pages.cs.wisc.edu/~brecht