Basic Electrical Engineering_P. S. Dhogal

download Basic Electrical Engineering_P. S. Dhogal

of 98

Transcript of Basic Electrical Engineering_P. S. Dhogal

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    1/98

    Scilab Textbook Companion for

    Basic Electrical Engineering

    by P. S. Dhogal1

    Created byNishtha Rani

    B.TechElectrical Engineering

    UKTUCollege Teacher

    Vinesh SainiCross-Checked by

    Lavitha Pereira and Mukul Kulkarni

    January 28, 2014

    1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the Textbook Companion Projectsection at the website http://scilab.in

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    2/98

    Book Description

    Title: Basic Electrical Engineering

    Author: P. S. Dhogal

    Publisher: Tata McGraw-Hill Publishing, New Delhi

    Edition: 1

    Year: 2005

    ISBN: 0-07-45186-1

    1

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    3/98

    Scilab numbering policy used in this document and the relation to theabove book.

    Exa Example (Solved example)

    Eqn Equation (Particular equation of the above book)

    AP Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

    For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

    2

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    4/98

    Contents

    List of Scilab Codes 4

    3 electricity and its fundamental law 8

    4 Work power and energy 17

    5 effects of electric current 30

    6 magnetism and electromagnetism 33

    7 DC generators 35

    8 DC motors 50

    9 cells and batteries 64

    11 single phase AC circuits 74

    12 polyphase system 92

    3

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    5/98

    List of Scilab Codes

    Exa 3.1 resistance . . . . . . . . . . . . . . . . . . . . . . . . . 8Exa 3.2 voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 8Exa 3.3 specific resistance . . . . . . . . . . . . . . . . . . . . 9Exa 3.4 resistance . . . . . . . . . . . . . . . . . . . . . . . . . 9Exa 3.5.a total resistance . . . . . . . . . . . . . . . . . . . . . . 10Exa 3.5.b current flowing . . . . . . . . . . . . . . . . . . . . . . 10Exa 3.6 voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 11Exa 3.7 total resistance . . . . . . . . . . . . . . . . . . . . . . 11Exa 3.8 voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 12Exa 3.9 effective resistance and current . . . . . . . . . . . . . 12Exa 3.10 current . . . . . . . . . . . . . . . . . . . . . . . . . . 13Exa 3.11.a unknow resistance . . . . . . . . . . . . . . . . . . . . 14Exa 3.11.b potential drop . . . . . . . . . . . . . . . . . . . . . . 14

    Exa 3.11.c current . . . . . . . . . . . . . . . . . . . . . . . . . . 15Exa 3.11.d total resistance . . . . . . . . . . . . . . . . . . . . . . 16Exa 4.1.b power lost. . . . . . . . . . . . . . . . . . . . . . . . . 17Exa 4.1 resistance . . . . . . . . . . . . . . . . . . . . . . . . . 17Exa 4.2 resistance . . . . . . . . . . . . . . . . . . . . . . . . . 18Exa 4.3 resistance . . . . . . . . . . . . . . . . . . . . . . . . . 18Exa 4.4.a power taken in parallel case . . . . . . . . . . . . . . . 19Exa 4.4.b power taken in series case . . . . . . . . . . . . . . . . 19Exa 4.5.a total load . . . . . . . . . . . . . . . . . . . . . . . . . 20Exa 4.5.b current taken . . . . . . . . . . . . . . . . . . . . . . . 20Exa 4.6 total cots of electric energy and total charges of bill. . 21

    Exa 4.7 voltage current power and bill amount . . . . . . . . . 22Exa 4.8 current taken . . . . . . . . . . . . . . . . . . . . . . . 24Exa 4.9 amount of bills . . . . . . . . . . . . . . . . . . . . . . 24Exa 4.10.a total load of light and fans . . . . . . . . . . . . . . . 25

    4

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    6/98

    Exa 4.10.b total load current . . . . . . . . . . . . . . . . . . . . 26

    Exa 4.11 horsepower of the motor . . . . . . . . . . . . . . . . . 26Exa 4.12.a Bhp of the motor. . . . . . . . . . . . . . . . . . . . . 27Exa 4.12.b cost of the energy . . . . . . . . . . . . . . . . . . . . 28Exa 5.1 ECE of silver . . . . . . . . . . . . . . . . . . . . . . . 30Exa 5.2 thickness of coper . . . . . . . . . . . . . . . . . . . . 30Exa 5.3 resistance . . . . . . . . . . . . . . . . . . . . . . . . . 31Exa 5.4 potential difference. . . . . . . . . . . . . . . . . . . . 31Exa 6.1 field strength . . . . . . . . . . . . . . . . . . . . . . . 33Exa 6.2 force. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Exa 6.3 emf induced. . . . . . . . . . . . . . . . . . . . . . . . 34Exa 7.1.a emf induced. . . . . . . . . . . . . . . . . . . . . . . . 35

    Exa 7.1.b emf generated . . . . . . . . . . . . . . . . . . . . . . 35Exa 7.2.a total armature current . . . . . . . . . . . . . . . . . . 36Exa 7.2.b current per armature path. . . . . . . . . . . . . . . . 36Exa 7.2.c emf generated . . . . . . . . . . . . . . . . . . . . . . 37Exa 7.3.a terminal voltage . . . . . . . . . . . . . . . . . . . . . 38Exa 7.3.b emf generated . . . . . . . . . . . . . . . . . . . . . . 38Exa 7.4.a terminal voltage . . . . . . . . . . . . . . . . . . . . . 39Exa 7.4.b emf generated . . . . . . . . . . . . . . . . . . . . . . 39Exa 7.4.c copper losses . . . . . . . . . . . . . . . . . . . . . . . 40Exa 7.4.d Bhp metric of the primemover . . . . . . . . . . . . . 41

    Exa 7.4.e commercial efficiency. . . . . . . . . . . . . . . . . . . 42Exa 7.5.a total armature current . . . . . . . . . . . . . . . . . . 43Exa 7.5.b current . . . . . . . . . . . . . . . . . . . . . . . . . . 43Exa 7.5.c emf generated . . . . . . . . . . . . . . . . . . . . . . 44Exa 7.5.d power developed . . . . . . . . . . . . . . . . . . . . . 44Exa 7.5.e copper losses . . . . . . . . . . . . . . . . . . . . . . . 45Exa 7.5.f stray losses . . . . . . . . . . . . . . . . . . . . . . . . 46Exa 7.5.g.1 electrical efficiency . . . . . . . . . . . . . . . . . . . . 47Exa 7.5.g.2 commercial efficiency. . . . . . . . . . . . . . . . . . . 48Exa 7.5.g.3 mechanical efficiency . . . . . . . . . . . . . . . . . . . 48Exa 8.1 speed . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    Exa 8.2.a Bhp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Exa 8.2.b copper losses . . . . . . . . . . . . . . . . . . . . . . . 51Exa 8.2.c armature torque . . . . . . . . . . . . . . . . . . . . . 52Exa 8.2.d shaft torque. . . . . . . . . . . . . . . . . . . . . . . . 52Exa 8.2.e lost torque . . . . . . . . . . . . . . . . . . . . . . . . 53

    5

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    7/98

    Exa 8.2.f commercial efficiency. . . . . . . . . . . . . . . . . . . 54

    Exa 8.3 speed . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Exa 8.4.a stray losses . . . . . . . . . . . . . . . . . . . . . . . . 55Exa 8.4.b horsepower of the motor . . . . . . . . . . . . . . . . . 56Exa 8.4.c efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 57Exa 8.5.a back emf . . . . . . . . . . . . . . . . . . . . . . . . . 57Exa 8.5.b copper losses . . . . . . . . . . . . . . . . . . . . . . . 58Exa 8.5.c Bhp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Exa 8.5.d total torque . . . . . . . . . . . . . . . . . . . . . . . . 59Exa 8.5.e shaft torque. . . . . . . . . . . . . . . . . . . . . . . . 60Exa 8.5.f lost torque . . . . . . . . . . . . . . . . . . . . . . . . 60Exa 8.5.g commercial efficiency. . . . . . . . . . . . . . . . . . . 61

    Exa 8.6 current taken . . . . . . . . . . . . . . . . . . . . . . . 62Exa 8.7 speed . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Exa 9.1 value of current flowing . . . . . . . . . . . . . . . . . 64Exa 9.2 value of current flowing . . . . . . . . . . . . . . . . . 64Exa 9.3 value of current flowing . . . . . . . . . . . . . . . . . 65Exa 9.4.a internal resistance . . . . . . . . . . . . . . . . . . . . 65Exa 9.4.b value of current flowing . . . . . . . . . . . . . . . . . 66Exa 9.5 emf of each cell and its internal resistance . . . . . . . 66Exa 9.6 ampere hour capacity . . . . . . . . . . . . . . . . . . 67Exa 9.7.a ampere hour efficiency . . . . . . . . . . . . . . . . . . 67

    Exa 9.7.b watt hour efficiency . . . . . . . . . . . . . . . . . . . 68Exa 9.8.a initial charging current. . . . . . . . . . . . . . . . . . 68Exa 9.8.b final charging current . . . . . . . . . . . . . . . . . . 69Exa 9.9.a value and direction of current . . . . . . . . . . . . . . 69Exa 9.9.b total current . . . . . . . . . . . . . . . . . . . . . . . 70Exa 9.9.c power dissipated . . . . . . . . . . . . . . . . . . . . . 71Exa 9.10 direction of current and total resistance . . . . . . . . 72Exa 11.1 instantaneous emf . . . . . . . . . . . . . . . . . . . . 74Exa 11.2 rms value of alternating current. . . . . . . . . . . . . 74Exa 11.3 current drawn . . . . . . . . . . . . . . . . . . . . . . 75Exa 11.4 current . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    Exa 11.5.a value of current flowing . . . . . . . . . . . . . . . . . 76Exa 11.5.b value of current flowing . . . . . . . . . . . . . . . . . 76Exa 11.6.a value of current flowing . . . . . . . . . . . . . . . . . 77Exa 11.6.b value of current flowing . . . . . . . . . . . . . . . . . 77Exa 11.7.a inductive reactance. . . . . . . . . . . . . . . . . . . . 78

    6

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    8/98

    Exa 11.7.b impedance . . . . . . . . . . . . . . . . . . . . . . . . 78

    Exa 11.7.c current . . . . . . . . . . . . . . . . . . . . . . . . . . 79Exa 11.7.d angle of phase difference . . . . . . . . . . . . . . . . . 79Exa 11.8 inductance and phase angle . . . . . . . . . . . . . . . 80Exa 11.9 capacitance . . . . . . . . . . . . . . . . . . . . . . . . 81Exa 11.10.aimpedance . . . . . . . . . . . . . . . . . . . . . . . . 81Exa 11.10.bcurrent . . . . . . . . . . . . . . . . . . . . . . . . . . 82Exa 11.10.cphase angles . . . . . . . . . . . . . . . . . . . . . . . 82Exa 11.10.dvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . 83Exa 11.10.evoltage across the coil . . . . . . . . . . . . . . . . . . 83Exa 11.10.ftotal power taken . . . . . . . . . . . . . . . . . . . . 84Exa 11.11.atotal impedance . . . . . . . . . . . . . . . . . . . . . 85

    Exa 11.11.bcurrent taken . . . . . . . . . . . . . . . . . . . . . . . 85Exa 11.11.cpower factor . . . . . . . . . . . . . . . . . . . . . . . 86Exa 11.12.acurrent taken . . . . . . . . . . . . . . . . . . . . . . . 87Exa 11.12.bphase angle . . . . . . . . . . . . . . . . . . . . . . . . 88Exa 11.12.cseries equivalent arrangement of resistance and reactance 89Exa 12.1.a line current and phase current . . . . . . . . . . . . . 92Exa 12.1.b line current and phase current . . . . . . . . . . . . . 92Exa 12.2.a line current and total power . . . . . . . . . . . . . . . 93Exa 12.2.b line current and total power . . . . . . . . . . . . . . . 94Exa 12.3.a current in each phase of the motor . . . . . . . . . . . 94

    Exa 12.3.b current in each phase of the generator . . . . . . . . . 95Exa 12.4 reading . . . . . . . . . . . . . . . . . . . . . . . . . . 96Exa 12.5.a power factor when both readings are positive . . . . . 96Exa 12.5.b power factor . . . . . . . . . . . . . . . . . . . . . . . 97

    7

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    9/98

    Chapter 3

    electricity and its fundamental

    law

    Scilab code Exa 3.1 resistance

    1 / / Example 3 . 1 // r e s i s t a n c e2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 V = 2 3 0 ; // i n v o l t s7 I = 1 0 ; // i n A8 R = V / I ;

    9 disp (R , r e s i s t a n c e o f e l em e nt , R( ohm )= )

    Scilab code Exa 3.2 voltage

    1 / / Example 3 . 2 // v o l t a g e2 clc ;

    3 clear ;

    4 close ;

    8

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    10/98

    5 / / g i v e n d at a :

    6 R 1 = 0 . 5 ; // minimum v a lu e o f r e s i s t a n c e i n ohm7 R 2 = 2 0 ; // maximum v a l u e o f r e s i s t a n c e i n ohm8 I = 1 . 2 ; // c u r r e n t i n A9 V 1 = I * R 1 ;

    10 V 2 = I * R 2 ;

    11 disp ( V 1 , v o l t a g e d ro p i n I s t c as e , V1 (V) = )12 disp ( V 2 , v o l t a g e d ro p i n I I n d c a se , V2 (V) = )

    Scilab code Exa 3.3 specific resistance

    1 / / Example 3 . 3 // r e s i s t a n c e2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 L = 1 0 0 0 ; // l e n g th o f w ir e i n cm7 d = 0 . 1 4 ; // d i a me te r o f w ir e i n cm8 R 1 = 2 . 5 * 1 0 ^ 6 ; // r e s i s t a n c e i n mi croohm9 a = ( % p i * d ^ 2 ) / 4 ; // c r o s s s e c t i o n a re a

    10 p = ( R 1 * a ) / L ;11 disp (p , t h e s p e c i f i c r e s i s t a n c e , p ( m i cr oohmc m ) = )

    Scilab code Exa 3.4 resistance

    1 / / Example 3 . 4 // r e s i s t a n c e2 clc ;

    3 clear ;

    4 close ;5 / / g i v e n d at a :6 R t 1 = 5 4 . 3 ; // r e s i s t a n c e i n ohm7 a l f a = 0 . 0 0 4 3 ; // t he r e s i s t a n c e t em pe ra tu re o f

    c o e f i c i e n t i n p er d eg re e c e l c i u s

    9

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    11/98

    8 t 1 = 2 0 ; // t em pe ra tu re i n d e g r e e c e l c i u s

    9 t 2 = 4 0 ; // t em pe ra tu re i n d e g r e e c e l c i u s10 R t 2 = ( R t 1 * ( 1 + ( a l f a * t 2 ) ) ) / ( 1 + ( a l f a * t 1 ) ) ;11 disp ( R t 2 , r e s i s t a n c e a t 40 d e gr e e c e l s i u s , Rt2 ( ohm ) =

    )

    Scilab code Exa 3.5.a total resistance

    1 // Example 3 . 5 . a // r e s i s t a n c e

    2 clc ;3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 r 1 = 3 0 ; // r e s i s t a n c e i n ohm7 r 2 = 3 5 ; // r e s i s t a n c e i n ohm8 r 3 = 4 5 ; // r e s i s t a n c e i n ohm9 R = r 1 + r 2 + r 3 ;

    10 disp (R , t o t a l r e s i s t a n c e , R( ohm ) = )

    Scilab code Exa 3.5.b current flowing

    1 / / Example 3 . 5 . b / / c u r r e n t2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 r 1 = 3 0 ; // r e s i s t a n c e i n ohm7 r 2 = 3 5 ; // r e s i s t a n c e i n ohm

    8 r 3 = 4 5 ; // r e s i s t a n c e i n ohm9 R = r 1 + r 2 + r 3 ;

    10 V = 2 2 0 ;

    11 I = V / R ;

    12 disp (I , c u r r e n t , I (A) = )

    10

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    12/98

    Scilab code Exa 3.6 voltage

    1 / /Example 3 . 6 // v o l t a g e a t t he g e n e r a t i n g s t a t i o n2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 I = 7 5 ; // c u r r e n t i n A

    7 R = 0 . 1 5 ; // r e s i s t a n c e i n ohm8 v = 2 2 0 ; // v o l t a g e i n v o l t s9 V 1 = I * R ; // v o lt a g e dr op o f t he f e e d e r i n s e c t i o n AB

    10 V 2 = I * R ; // v o lt a g e dr op o f t he f e e d e r i n s e c t i o n CD11 V _ t o t a l = V 1 + V 2 ; // t o t a l v o l t a ge dr op i n t he l e a d and

    r e tu r n f e e d e r12 V = v + V _ t o t a l ;

    13 disp (V , v o l t ag e a t t he g e n e r a t i n g s t a ti o n , V( v ) = )

    Scilab code Exa 3.7 total resistance

    1 // Example 3 . 7 // t o t a l r e s i s t a n c e2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 r 1 = 6 ; // r e s i s t a n c e i n ohm7 r 2 = 1 0 ; // r e s i s t a n c e i n ohm8 r 3 = 1 5 ;

    // r e s i s t a n c e i n ohm9 r = ( 1 / r 1 ) + ( 1 / r 2 ) + ( 1 / r 3 ) ;10 R = 1 / r ;

    11 disp (R , e q u i v a l e n t r e s i s t a n c e , R( ohm ) = )

    11

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    13/98

    Scilab code Exa 3.8 voltage

    1 / / Example 3 . 8 // v o l t a g e2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 I = 5 ; // c u r r e n t i n A7 n = 2 ; // number o f r e s i s t a n c e i n p a r a l l e l o f s e c t i o n

    BC8 r 1 = 1 5 ; // r e s i s t a n c e i n ohm9 r 2 = 2 0 ; // r e s i s t a n c e i n ohm

    10 r 3 = 6 0 ; // r e s i s t a n c e i n ohm11 r 4 = 6 4 ; // r e s i s t a n c e i n ohm12 r 5 = 6 4 ; // r e s i s t a n c e i n ohm13 r 6 = 2 . 5 ; // r e s i s t a n c e i n ohm14 R 1 = r 4 / n ; // e q u i v a l e n t r e s i s t a n c e o f s e c t i o n BC15 R 2 = ( r 1 * r 2 * r 3 ) / ( ( r 1 * r 2 ) + ( r 2 * r 3 ) + ( r 3 * r 1 ) ) ; //

    e q u i v a l e n t r e s i s t a n c e o f s e c t i o n CD

    16 R = R 1 + R 2 + r 6 ; // e q ui v a l e n t r e s i s t a n c e o f s e c t i o n AD17 V = I * R ;

    18 disp (V , v o l t a g e , V( v ) = )

    Scilab code Exa 3.9 effective resistance and current

    1 / / Example 3 . 9 // r e s i s t a n c e and c u r r e nt2 clc ;

    3 clear ;4 close ;

    5 / / g i v e n d at a :6 V = 2 4 0 ; // v o l t a g e i n v o l t s7 r 1 = 2 ; // r e s i s t a n c e i n ohm

    12

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    14/98

    8 r 2 = 3 ; // r e s i s t a n c e i n ohm

    9 r 3 = 8 . 8 ; // r e s i s t a n c e i n ohm10 r 4 = 1 0 ; // r e s i s t a n c e i n ohm11 r 5 = 3 ; // r e s i s t a n c e i n ohm12 R 1 = ( r 1 * r 2 ) / ( r 1 + r 2 ) ; // e q u i v a l e n t r e s i s t a n c e o f

    p a r a l l e l br a nc h13 R 2 = R 1 + r 3 ; // e q ui v a l e n t r e s i s t a n c e o f s e c t i o n ABC14 R 3 = ( R 2 * r 4 ) / ( R 2 + r 4 ) ;

    15 R = R 3 + r 5 ; // t o t a l r e s i s t a n c e o f s e c t i o n AD16 I = V / R ;

    17 V 1 = I * r 5 ; // v o l t a ge dr op a c r o s s r 518 V 2 = V - V 1 ; // v o l t a g e dr op a c r o s s s e c t i o n ABC

    19 I 1 = V 2 / r 4 ; // c u r r e n t f l o w i n g t h r o ug h r 4 r e s i s t a n c e20 I 2 = I - I 1 ; // c ur r e nt i n r 3 r e s i s t a n c e21 V 3 = I 2 * r 3 ; // v o l t a ge dro p a c r o s s r 3 r e s i s t a n c e ,

    s e c t i o n ABC22 V 4 = V 2 - V 3 ; // v o l t a g e d ro p b et we en s e c t i o n AB23 I 3 = V 4 / r 1 ; // c u r r e n t f l o w i n g t h r o ug h r 1 r e s i s t a n c e24 I 4 = V 4 / r 2 ; // c u r r e nt f l o w i n g t h r o u g h r 2 r e s i s t a n c e25 disp ( I 3 , c u r r en t f l o w i n g t hr ou gh r 1 ( 2 ohms )

    r e s i s t a n c e , I 3 (A) = )26 disp ( I 4 , c u r r en t f l o w i n g t hr ou gh r 2 ( 3 ohms )

    r e s i s t a n c e , I 4 (A) = )

    27 disp (R , t o t a l r e s i s t a n c e , R( ohm ) = )28 disp ( V 1 , v o l t a g e d ro p a c r o s s r 5 ( 3 ohms ) r e s i s t a n c e ,

    V 1 ( V ) = )29 disp ( V 2 , v o l t a g e d ro p a c r o s s s e c t i o n ABC, V2 (V) = )30 disp ( V 3 , v o l t a g e dr op a c r o s s r 3 r e s i s t a n c e ( 8 . 8 ohms )

    , V 3 ( V ) = )31 disp ( V 4 , v o l t a g e d ro p b et we en s e c t i o n AB, V4 (V) = )

    Scilab code Exa 3.10 current

    1 / / Example 3 . 1 0 / / c u r r e n t2 clc ;

    13

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    15/98

    3 clear ;

    4 close ;5 / / g i v e n d at a :6 I = 4 4 ; // c u r r e n t i n A7 r 1 = 6 ; // r e s i s t a n c e i n ohm8 r 2 = 1 2 ; // r e s i s t a n c e i n ohm9 r 3 = 1 8 ; // r e s i s t a n c e i n ohmr1

    10 a = ( 1 / r 1 ) + ( 1 / r 2 ) + ( 1 / r 3 ) ;

    11 R = 1 / a ;

    12 V = I * R ;

    13 i 1 = V / r 1 ;

    14 i 2 = V / r 2 ;

    15 i 3 = V / r 3 ;16 disp ( i 1 , c u r r e n t i n 6 ohm r e s i s t a n c e , i 1 (A) = )17 disp ( i 2 , c u r r e n t i n 1 2 ohm r e s i s t a n c e , i 2 (A) = )18 disp ( i 3 , c u r r e n t i n 1 8 ohm r e s i s t a n c e , i 3 (A) = )

    Scilab code Exa 3.11.a unknow resistance

    1 // Example 3 . 1 1 .A // RESISTANCE

    2 clc ;3 clear ;

    4 close ;

    5 t = 1 5 ; //TOTAL CURRENT IN AMPERES6 i 1 = 2 ; //CURRENT THROUGH UNKNOWN RESISTANCE7 R 1 = 1 5 ; // i n ohms8 R 2 = 5 0 / 2 ; // i n ohms9 x = ( t - i 1 ) * ( ( R 1 * R 2 ) / ( R 1 + 2 * R 2 ) ) ; // unknown r e s i s t a n c e i n

    ohms)10 disp (x , unknown r e s i s t a n c e i n ohms )

    Scilab code Exa 3.11.b potential drop

    14

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    16/98

    1 / / Example 3 . 1 1 . B // p o t e n t i a l dr op a c r o s s t he

    c i r c u i t2 clc ;3 clear ;

    4 close ;

    5 t = 1 5 ; //TOTAL CURRENT IN AMPERES6 i 1 = 2 ; //CURRENT THROUGH UNKNOWN RESISTANCE7 R 1 = 1 5 ; // i n ohms8 R 2 = 5 0 / 2 ; // i n ohms9 x = ( t - i 1 ) * ( ( R 1 * R 2 ) / ( R 1 + 2 * R 2 ) ) ; // unknown r e s i s t a n c e i n

    ohms10 P D = i 1 * x ; // i n v o l t s

    11 disp ( P D , p o t e n t i a l dr op a c ro s s t h e c i r c u i t i n v o l t si s )

    Scilab code Exa 3.11.c current

    1 // Examp le 3 . 1 1 . C // CURRENT IN EACH RESISTANCE2 clc ;

    3 clear ;

    4 close ;5 t = 1 5 ; //TOTAL CURRENT IN AMPERES6 i 1 = 2 ; //CURRENT THROUGH UNKNOWN RESISTANCE7 R 1 = 1 5 ; // i n ohms8 R 2 = 5 0 / 2 ; // i n ohms9 x = ( t - i 1 ) * ( ( R 1 * R 2 ) / ( R 1 + 2 * R 2 ) ) ; // unknown r e s i s t a n c e i n

    ohms10 P D = i 1 * x ; // i n v o l t s11 i 5 = P D / ( 2* R 2 ) ; // c u r r e n t i n 5 ohms r e s i s t a n c e12 i 1 5 = P D / R 1 ; // c u r r e nt i n 15 ohms r e s i s t a n c e

    13 disp ( i 5 , c u r r e nt i n 5 ohms r e s i s t a n c e i n ampere )14 disp ( i 1 5 , c u r r e nt i n 15 ohms r e s i s t a n c e i n ampere )

    15

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    17/98

    Scilab code Exa 3.11.d total resistance

    1 // Example 3 . 1 1 . d // t o t a l r e s i s t a n c e2 clc ;

    3 clear ;

    4 close ;

    5 t = 1 5 ; //TOTAL CURRENT IN AMPERES6 i 1 = 2 ; //CURRENT THROUGH UNKNOWN RESISTANCE7 R 1 = 1 5 ; // i n ohms8 R 2 = 5 0 / 2 ; // i n ohms9 x = ( t - i 1 ) * ( ( R 1 * R 2 ) / ( R 1 + 2 * R 2 ) ) ; // unknown r e s i s t a n c e i n

    ohms

    10 P D = i 1 * x ; // i n v o l t s11 R X = ( ( 1 / R 1 ) + ( 1 / ( 2 * R 2 ) ) + ( 1 / x ) ) ; //12 R = 1 / R X ; //13 disp (R , t o t a l r e s i s t a n c e o f t h e c i r c u i t i n ohms )

    16

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    18/98

    Chapter 4

    Work power and energy

    Scilab code Exa 4.1.b power lost

    1 / / Example 4 . 1 . b / / p ow er l o s t2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 I = 1 1 ; // c u r r e n t i n A

    7 V 1 = 5 5 ; // v o l t a g e i n V8 V 2 = 2 2 0 ; // v o l t a g e i n V9 V = V 2 - V 1 ;

    10 R = V / I ;

    11 P = I ^ 2 * R ;

    12 disp (P , p o we r l o s t , P (W) = )

    Scilab code Exa 4.1 resistance

    1 // Example 4 . 1 . a // r e s i s t a n c e2 clc ;

    3 clear ;

    17

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    19/98

    4 close ;

    5 / / g i v e n d at a :6 I = 1 1 ; // c u r r e n t i n A7 V 1 = 5 5 ; // v o l t a g e i n V8 V 2 = 2 2 0 ; // v o l t a g e i n V9 V = V 2 - V 1 ;

    10 R = V / I ;

    11 disp (R , r e s i s t a n c e , R( ohm ) = )

    Scilab code Exa 4.2 resistance

    1 // Example 4 . 2 : r e s i s t a n c e o f e a c h c o i l2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 V = 3 0 0 ; // v o l t a g e i n v o l t s7 W = 3 6 0 ; // power l o s t i n one c o i l i n wat t8 I = 6 ; // c u r r e n t i n A9 R 1 = V / I ;

    10 R = V ^ 2 / W ;11 a = ( 1 / R 1 ) - ( 1 / R ) ;

    12 r 2 = 1 / a ;

    13 disp (R , r e s i s t a n c e o f 3 60W c o i l 1 ,R( ohm ) = )14 disp ( r 2 , r e s i s t a n c e o f s ec on d c o i l 2 , r 2 ( ohm ) = )

    Scilab code Exa 4.3 resistance

    1 / /Example 4 . 3 : r e s i s t a n c e2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :

    18

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    20/98

    6 W 1 = 1 0 0 ; // i n wat t

    7 E = 1 1 0 ; // i n v o l t s8 W 2 = 6 0 ; // i n w att9 I 1 = W 1 / E ; // c u r r e n t t ak en by 1 00 w l amp

    10 I 2 = W 2 / E ; / / c u r r e n t t a k en by 6 0W l amp11 I = I 1 - I 2 ;

    12 R = E / I ;

    13 disp (R , r e s i s t a n c e , R( ohm ) = )

    Scilab code Exa 4.4.a power taken in parallel case

    1 // Example 4 . 4 . a : power i n c a se o f p a r a l l e l2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 w = 1 0 0 ; // i n wat t7 V = 2 2 0 ; // v o l t a g e i n v o l t s8 R 1 = V ^ 2 / w ;

    9 R = R 1 / 2 ; // t o t a l r e s i s t a n c e o f t h e c i r c u i t

    10 I = V / R ;11 W = I ^ 2 * R ;

    12 disp (W , p ower i n c a s e o f p a r a l l e l ,W( w at t ) = )

    Scilab code Exa 4.4.b power taken in series case

    1 // Example 4 . 4 . b : power i n c a s e o f s e r i e s2 clc ;

    3 clear ;4 close ;

    5 / / g i v e n d at a :6 w = 1 0 0 ; // i n wat t7 V = 2 2 0 ; // v o l t a g e i n v o l t s

    19

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    21/98

    8 R 1 = V ^ 2 / w ;

    9 R 2 = V ^ 2 / w ;10 R = R 1 + R 2 ; // t o t a l r e s i s t a n c e o f t h e c i r c u i t11 I = V / R ;

    12 W = I ^ 2 * R ;

    13 disp (W , p ower i n c a s e o f s e r i e s ,W( w at t ) = )

    Scilab code Exa 4.5.a total load

    1 / / Example 4 . 5 . a : t o t a l l o a d2 clc ;3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 l = 3 0 0 ; / / number o f l am ps7 w 1 = 6 0 ; // i n wat t8 W 1 = w 1 * l ; // w at ta ge r e q u i r e d f o r 3 00 lamps , 60 w att

    e a c h9 w 2 = 4 0 ; // i n wat t

    10 f = 1 0 0 ; // number o f f a n

    11 W 2 = w 2 * f ; // w at ta ge r e q ui r e d f o r 100 f an s , 40 wat te a c h

    12 W = ( W 1 + W 2 ) * 1 0 ^ - 3 ;

    13 disp (W , t o t a l l o a d ,W( k i l o w a tt ) = )

    Scilab code Exa 4.5.b current taken

    1 / / Example 4 . 5 . b : c u r r e n t t a ke n by l o a d

    2 clc ;3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 V = 2 2 0 ; // v o l t a g e i n v o l t s

    20

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    22/98

    7 l = 3 0 0 ; / / number o f l am ps

    8 w 1 = 6 0 ; // i n wat t9 W 1 = w 1 * l ;10 w 2 = 4 0 ; // i n wat t11 f = 1 0 0 ; // number o f f a n12 W 2 = w 2 * f ;

    13 W = ( W 1 + W 2 ) * 1 0 ^ - 3 ;

    14 I = ( W * 1 0 0 0 ) / V ;

    15 disp (I , c u r r e n t , I (A) = )

    Scilab code Exa 4.6 total cots of electric energy and total charges of bill

    1 / / Example 4 . 6 // t o t a l c o s t o f e l e c r i c c h a rg e2 clc ;

    3 clear ;

    4 close ;

    5 n l = 1 2 ; / / no . o f l am ps6 w l = 1 0 0 ; // w a t ta g e o f l am ps7 h l = 6 ; / / e ac h l am ps work 6 h o ur s a d ay s8 w 1 2 = w l * n l * h l ; / / w at ta g e o f 1 2 l am ps i n Wh

    9 n f = 6 ; // no . o f f a ns10 w f = 6 0 ; // w a tt ag e o f f a n s11 h f = 5 ; // e a ch f a n s work 5 h ou rs a d ay s12 w 6 = w f * n f * h f ; // w a tt ag e o f 12 f a n s i n Wh13 n c = 2 ; / / n o . o f e l e c t r i c c o o k e r s14 w c = 1 5 0 0 ; / / w a t t a g e o f e l e c t r i c c o o k e r s15 h c = 4 ; / / e a ch e l e c t r i c c o o k e r s wor k 4 h o u r s a d ay s16 w 2 = w c * n c * h c ; / / w a t ta g e o f 2 e l e c t r i c c o o k e r s i n Wh17 n g = 2 ; // no . o f g y s e rs18 w g = 1 0 0 0 ; // w a tt ag e o f e ac h g y s er

    19 h g = 3 ; // e a ch g y s e r wo rk s 3 h ou rs a day20 w 2 1 = w g * h g * n g ; // t o t a l w at ta ge o f g y s e r s i n Wh21 t c g = ( w 1 2 + w 6 ) * 1 0 ^ - 3 ; //TOTAL WATTAGE OF LAMPS AND FANS22 C c g = 4 0 ; // IN PAISA23 E cg = ( t c g * C cg * 3 0 ) / 1 0 0; //TOTAL ENERGY CHARGES @40

    21

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    23/98

    PAISA PER UNIT

    24 t c g 1 = ( w 2 + w 2 1 ) * 1 0 ^ - 3 ; //TOTAL WATTAGE OF COOKERS ANDGYSERS25 C c g 1 = 3 5 ; // IN PAISA26 E c g1 = ( t c g 1 * C c g1 * 3 0 ) / 1 0 0 ; //TOTAL ENERGY CHARGES @35

    PAISA PER UNIT27 t c = E c g + E c g 1 ; // IN RUPPES28 disp ( E c g , t o t a l c o s t o f e l e c t r i c c h a rg e @40 p a i s a

    p er u ni t i n r up ee s )29 disp ( E c g 1 , t o t a l c o s t o f e l e c t r i c c h a rg e @35 p a i s a

    p er u ni t i n r up ee s )30 disp ( t c , t o t a l c ha rg e f o r l i g h and power i n r u pe es )

    Scilab code Exa 4.7 voltage current power and bill amount

    1 // Example 4 . 7 // t o t a l c on su mp ti on o f f a c t o r y i nk i l l o wat ts

    2 clc ;

    3 clear ;

    4 close ;

    5 n l = 4 0 0 ; / / no . o f l am ps6 w l = 1 0 0 ; // w a t ta g e o f l am ps7 w 4 0 0 = w l * n l ; // w a tt ag e o f 40 0 l am ps i n W8 n f = 1 0 0 ; // no . o f f a ns9 w f = 4 0 ; // w a tt ag e o f f a n s

    10 w 6 = w f * n f ; // w at ta ge o f 100 f a ns i n W11 n c = 2 0 0 ; // no . o f w a ll s c o k e ts12 w c = 6 0 ; // w at ta ge o f w a ll s c c k e t s13 w 2 = w c * n c ; // w at ta ge o f 200 w a ll s o c k e ts i n Wh14 t c = w 4 00 + w 6 + w 2 ; / / t o t a l c o ns u mp t io n i n kW

    15 t c = w 4 00 + w 6 + w 2 ; / / t o t a l c o ns u mp t io n i n kW16 h = 5 ; // h o ur s17 l l = t c * 1 0 ^ - 3 * h ; // l i g h t n i n g l o a d i n kWh18 V = 2 5 0 ; // i n v o l t s19 I = 2 0 ; / / i n a m p e r es

    22

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    24/98

    20 M l = V * I * 1 0 ^ - 3 ; // m i s c e l l a n e o u s l o a d s i n kW

    21 M l = V * I * 1 0 ^ - 3 ; // m i s c e l l a n e o u s l o a d s i n kW22 h m = 2 ; // hou r s23 h l = 5 0 ; / / h e a t i n g l o a d i n kW24 M h p = 4 0 ; //BNHP25 M o = ( ( 5 0 *8 0 * 7 46 ) / ( 1 0 0* 1 0 0 0) ) ; //MOTOR AT 80% LOAD IN

    Kw26 t l = t c * 1 0 ^ - 3 + M l + h l + M o ; // t o t a l l o ad i n kW27 disp ( t l , t o t a l l o a d i s , ( kW)= )28 I t = ( t l * 1 0 ^3 ) / V ; // t o t a l c u r r e n t t ak en buy t he

    f a c t o r y i n a mp er es29 disp ( I t , t o t a l c u r r e nt t ak en by t he f a c t o r y i s , ( A)=

    )30 r = 0 . 0 3 ; // IN OHMS31 V c = I t * r ; // v o l t a g e drop i n t he c a bl e32 V s = V c + V ; // v o l t a g e a t t he s en d in g end o f t he f e e d e r

    i n v o l t s33 disp ( V s , v o l t a ge a t t he s en di ng end o f t h e f e e d e r i s

    , ( V ) )34 r = 0 . 0 3 ; // IN OHMS35 V c = I t * r ; // v o l t a g e drop i n t he c a bl e36 P w = I t ^ 2 * r ; / / p o we r w a s te d i n kW37 disp ( P w * 1 0 ^ - 3 ,

    p ow er w a st ed i s , (kW) )

    38 M l h = M l * h m ; / / m i s c e l l a n e o u s l o a d i n kWh39 t e = M l h + l l ; //TOTAL ENERGY COSNUMED PER DAY40 N u = t e * 6 ; //NO. OF UNITS41 E c = ( N u * 3 0 ) / 1 0 0 ; // ENERGY CHARGE @30 PAISA PER UNIT42 e C M = E c + 2 + 3 4 . 8 0 ; //TOTAL CHARGE AFTER TAX AND RENT IN

    RUPEES43 h l = 5 0 ; / / h e a t i n g l o a d i n kW44 h l h = 5 0 * 4 ; / / h e a t i n g l o a d i n kWh45 M o h = M o * 8 ; //MOTOR LOAD IN kWh46 T E P = h l h + M o h ; // t o t a l e ne rg y p er day

    47 t e p l = T E P * 6 ; // t o t a l e ne rg y i n 6 d ay s48 t e p c = ( t e p l * 3 5 ) / 1 0 0 ; // e ne rg y c h a rg e s @35 p a i s a p er

    u n i t i n r up ee s49 t e p c l = t e p c + 5 0 + 7 8 . 9 6 ; // t o t a l c h ar g es i n r u pe s s50 disp ( e C M , t o t a l l i g h t n i n g c ha r g e s i n c l u d i n g m e te r

    23

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    25/98

    r e n t and e l e c t r i c y t ax i s , ( Rs )= )

    51 disp ( t e p c l , t o t a l power c h ar g es i n c l u d i ng me t er r e n tand e l e c t r i c y t ax i s , ( Rs )= )52 g t = t e p c l + e C M ; //53 disp ( g t , g r an d t o t a l o f b i l l s i s , ( Rs )= )

    Scilab code Exa 4.8 current taken

    1 / / Example 4 . 8 : c u r r e nt t ak en by l o ad

    2 clc ;3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 V = 2 5 0 ; // v o l t a g e i n v o l t s7 L = 5 * 7 4 6 ; / / 1 hp =746 w a tt8 e t a = 8 0 ; // e f i c i e n c y o f motor i n %9 I n p u t = ( L * 1 0 0 ) / 8 0 ;

    10 I = I n p u t / V ;

    11 disp (I , c u r e e n t , I (A ) = )

    Scilab code Exa 4.9 amount of bills

    1 / / Exam ple 4 . 9 / / t o t a l o f b i l l s2 clc ;

    3 clear ;

    4 close ;

    5 p = 3 0 ; / / h o r s e p ow er o f m ot or6 r = 2 4 ; / / r u p e e s p e r kWh

    7 e c = 3 5 ; // p a i s a p er u n i t8 n = 8 0 ; // p e r ce n t ag e o f l o ad9 t = 8 ; // i n h ou rs

    10 d = 2 5 ; // t o t a l d ay s11 n e = 9 6 ; // e f f i c i e n c y o f motor i n p e rc e nt a ge

    24

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    26/98

    12 m o = ( n * p ) / 1 0 0 ; // o u tp ut o f motor a t 80% o f l o ad

    13 m i = ( m o * 1 0 0 * 7 4 6 ) / ( n e ) ; // i n pu t o f motor i n w at ts14 e c m = m i * 1 0 ^ - 3 * t * d ; / / e n e r g y c on su me d i n a month15 e c u = ( e c m * 3 5 ) / 1 0 0 ; / / e n e r g y c h a r g e s16 m i d = ( 3 0 * 1 0 0 * 7 4 6 ) / ( n e * 1 0 0 0 ) ; // i n p u t o f mo to r i n kW a t

    demanded17 e c u d = ( m i d * 2 4 ) ; // demanded c o n n e c t i o n i n r u p e e s18 t a = e c u + e c u d ; // t o t a l b i l l i n r u pe e s19 disp ( t a , t o t a l b i l l i n r up e e s i s )

    Scilab code Exa 4.10.a total load of light and fans

    1

    2 // Example 4 . 1 0 . a // t o t a l l oa d o f l i g h t s and f a ns3 clc ;

    4 clear ;

    5 close ;

    6 l p = 5 0 ; // no . o f l i g h t p o i n t s7 l w = 6 0 ; // w at t a ge o f l i g h t p o i n t s8 f p = 2 0 ; // no . o f f an p o i nt s

    9 f w = 1 0 0 ; // w at ta ge o f f an p o i n ts10 w p p = 1 0 ; // no . o f w a ll p lu g p o i nt s11 w p p w = 6 0 ; // w at ta ge o f w a ll p lu g p o i nt s12 b p = 5 ; // no . o f b e l l p o i n t s13 b p w = 4 0 ; // w at t a g e o f b e l l p o i n t s14 p p p = 8 ; / / po wer p l ug p o i n t s15 p p p w = 5 0 0 0 ; // w a tt ag e o f power p lu g p o i n t s16 l p w = l p * l w ; / / w at ta g e o f 5 0 l a mp s17 f p w = f p * f w ; // w at ta ge o f 20 f a ns18 w p p p w = w p p * w p p w ; // w at ta ge o f w a ll p lu g p o i n ts

    19 b p w w = b p * b p w ; // w at t a ge o f b e l l p o i n t s20 t l = l p w + f p w + w p p p w + b p w w ; // t o t a l w at ta g e21 disp ( t l , t o t a l w a t t a ge o f l i g h t n i n g l oa d i s i n w a tt s

    )

    25

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    27/98

    Scilab code Exa 4.10.b total load current

    1 / / Example 4 . 1 0 . b // t o t a l l o a d o f p ower c o n n e c t i o n2 clc ;

    3 clear ;

    4 close ;

    5 V = 4 0 0 ; // t h r e e p ha se v o l t a g e6 l p = 5 0 ; // no . o f l i g h t p o i n t s7 l w = 6 0 ; // w at t a ge o f l i g h t p o i n t s8 f p = 2 0 ; // no . o f f an p o i nt s9 f w = 1 0 0 ; // w at ta ge o f f an p o i n ts

    10 w p p = 1 0 ; // no . o f w a ll p lu g p o i nt s11 w p p w = 6 0 ; // w at ta ge o f w a ll p lu g p o i nt s12 b p = 5 ; // no . o f b e l l p o i n t s13 b p w = 4 0 ; // w at t a g e o f b e l l p o i n t s14 p p p = 8 ; / / po wer p l ug p o i n t s15 p p p w = 5 0 0 ; // w a tt ag e o f power p lu g p o i n t s16 l p w = l p * l w ; / / w at ta g e o f 5 0 l a mp s17 f p w = f p * f w ; // w at ta ge o f 20 f a ns

    18 w p p p w = w p p * w p p w ; // w at ta ge o f w a ll p lu g p o i n ts19 b p w w = b p * b p w ; // w at t a ge o f b e l l p o i n t s20 t l = l p w + f p w + w p p p w + b p w w ; // t o t a l w at ta g e21 p p p p w = p p p * p p p w ; // w a tt ag e o f power p lu g p o i n t s22 t w = t l + p p p p w ; // t o t a l w at ta g e23 I l = ( t l / V ) ; // CURRENT THROUGH LIGHTNING LOAD24 I p = p p p p w / V ; // c u r r en t t hr ou gh power l o ad25 t t l = I l + I p ; // t o t a l l oa d c ur e n t26 disp ( t t l , t o t a l l oa d c u r r e n t i n ampe re s )

    Scilab code Exa 4.11 horsepower of the motor

    1 / / Example 4 . 1 1 : h o r s e p ower

    26

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    28/98

    2 clc ;

    3 clear ;4 close ;

    5 / / g i v e n d at a :6 h = 3 0 ; // i n m7 F l = 1 0 ; / / f r i c t i o n l o s s i n %8 H l = ( F l / 1 0 0 ) * h ;

    9 t o t a l _ H = h + H l ;

    10 e t a = 9 0 ; // e f i c i e n c y o f pump11 w = 1 0 0 0 ; // w at er w ei gh t i n kg12 f l o w _ r a t e = 2 4 3 ; // i n p er ho ur13 W _ d o n e = ( f l o w _ r a t e * w * t o t a l _ H ) / 6 0 ; // i n kgm/min

    14 o u t p u t = W _ d o n e / 4 5 0 0 ; // o u tp u t o f pump i n hp15 i n = ( o u t p u t * 1 0 0 ) / e t a ;

    16 O = i n ;

    17 disp (O , o u t pu t o f t h e motor , O( hp ) = )

    Scilab code Exa 4.12.a Bhp of the motor

    1

    2 / / E xa mp le 4 . 1 2 . a : BHP o f t h e m ot or3 clc ;

    4 clear ;

    5 close ; n = 8 0 ; // e f f i c i e n c y6 l = 7 . 5 ; / / l o a d i n t o n ne s7 h = 1 3 5 ; / / h e i g h t i n m e te r s8 c = 0 . 5 ; / / c g e w e ig h t i n t o n ne s9 b = 3 ; // b a l a n c e w e ig h t i n t o n ne s

    10 t d = 9 0 ; // t i me i n s e co n d s11 o n e t = 1 0 0 0 ; // i n kg

    12 o n e h p = 7 4 6 ; / / w a t t13 w l = l + c - b ; / / w e i g h t l i f t e d d u r i n g u pwa rd j o u r n e y i nt o n n e s

    14 w l d = b - c ; / / w e i g h t l i f t e d d u r i n g do wnward j o u r n e y i nt o n n e s

    27

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    29/98

    15 w d u = ( w l * 1 0 ^ 3 * h * 6 0 ) / t d ; / / wor k d on e by t h e l i f t p e r

    m in ut e d u r i n g upward j o u r n e y16 w d d = ( w l d * 1 0 ^ 3 * h * 6 0 ) / t d ; / / wo rk d on e by t h e l i f t p e rm i nu t e d u r i n g do wnward j o u r n e y

    17 m o u = w d u / 4 5 0 0 ; // i n hp18 m i u = ( m o u * 1 0 0 * 7 4 6 ) / ( n * 1 0 0 0 ) ; // i n pu t o f motor i n kW19 m o d = w d d / 4 5 0 0 ; // i n hp20 m i d = ( m o d * 1 0 0 * 7 4 6 ) / ( n * 1 0 0 0 ) ; // i n pu t o f motor i n kW21 disp ( m o u , BHP o f t h e m ot or i n upward j o u r n e y i n hp )22 disp ( m o d , BHP o f t h e m ot or i n downward j o u r n e y i n hp

    )

    Scilab code Exa 4.12.b cost of the energy

    1 // Example 4 . 1 2 . b : c o s t o f t he e ne rg y2 clc ;

    3 clear ;

    4 close ; n = 8 0 ; // e f f i c i e n c y5 l = 7 . 5 ; / / l o a d i n t o n ne s6 h = 1 3 5 ; / / h e i g h t i n m e te r s

    7 c = 0 . 5 ; / / c g e w e ig h t i n t o n ne s8 b = 3 ; // b a l a n c e w e ig h t i n t o n ne s9 t d = 9 0 ; // t i me i n s e co n d s

    10 o n e t = 1 0 0 0 ; // i n kg11 o n e h p = 7 4 6 ; / / w a t t12 w l = l + c - b ; / / w e i g h t l i f t e d d u r i n g u pwa rd j o u r n e y i n

    t o n n e s13 w l d = b - c ; / / w e i g h t l i f t e d d u r i n g do wnward j o u r n e y i n

    t o n n e s14 w d u = ( w l * 1 0 ^ 3 * h * 6 0 ) / t d ; / / wor k d on e by t h e l i f t p e r

    m in ut e d u r i n g upward j o u r n e y15 w d d = ( w l d * 1 0 ^ 3 * h * 6 0 ) / t d ; / / wo rk d on e by t h e l i f t p e rm i nu t e d u r i n g do wnward j o u r n e y

    16 m o u = w d u / 4 5 0 0 ; // i n hp17 m i u = ( m o u * 1 0 0 * 7 4 6 ) / ( n * 1 0 0 0 ) ; // i n pu t o f motor i n kW

    28

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    30/98

    18 m o d = w d d / 4 5 0 0 ; // i n hp

    19 m i d = ( m o d * 1 0 0 * 7 4 6 ) / ( n * 1 0 0 0 ) ; // i n pu t o f motor i n kW20 t c = m i u + m i d ; / / t o t a l e n er g y c on su mp ti on i n kW21 E h = t c * 1 0 ; // t o t a l e ne rg y c o n su p t io n p er h ou r22 r a t e = 4 0 ; // r a t e i n p a i sa23 c e = E h * ( r a t e / 1 0 0 ) ; // c o s t o f e ne rg y i n r up e e s24 disp ( c e , c o s t o f e ne rg y i n r up e e s i s )

    29

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    31/98

    Chapter 5

    effects of electric current

    Scilab code Exa 5.1 ECE of silver

    1 / / Example 5 . 1 : E . C . E2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 t = 2 0 0 ; // t i m e i n s e c

    7 M = 1 1 1 . 8 3 ; // s i l v e r i n mg8 I = 0 . 5 ; // c u r r e n t i n A9 Z = ( M / ( I * t * 1 0 0 0 ) ) * 1 0 0 0 ; // e l e c t r oc h e m i c a le q u i v a l e n t

    10 disp (Z , E . C . E , Z ( m g / C ) = )

    Scilab code Exa 5.2 thickness of coper

    1 / / Example 5 . 2 : t h i c k n e s s2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :

    30

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    32/98

    6 Z = 0 . 3 2 9 * 1 0 ^ - 3 ; / / IN g /C

    7 I = 1 ; // i n a mp er es8 t = 9 0 * 6 0 ; // i n s e c on ds9 M = Z * I * t ; / / i n g ra ms

    10 A = 2 0 0 ; // a r ea i n c e n ti m e te s q ua r e11 S = 8 . 9 ; // d e n s i t y i n g / c c12 T = ( M ) / ( 2 * A * S ) ; // t h i c k n e s s i n cm13 disp (T , t h i c k n e s s o f c op pe r i n cm i s )

    Scilab code Exa 5.3 resistance

    1 / /Example 5 . 3 // r e s i s t a n c e o f t he h e at e r e le me nt2 clc ;

    3 clear ;

    4 close ;

    5 w = 1 5 ; // i n kg6 t 1 = 1 5 ; // i n d eg re e c e l s i u s7 t 2 = 1 0 0 ; // i n d eg re e c e l s i u s8 t = 2 5 ; // t im e i n m in ut es9 I = 1 0 ; / / i n a mpere

    10 n = 8 5 ; // e f f i c i e n c y o f c o nv e r s i o n i n p e r c e nt ag e11 h o = w * ( t 2 - t 1 ) ; // o ut p ut h ea t r e q u i r e d i n k c al12 R = ( ( h o * 4 1 8 7 * 1 0 0 ) / ( I ^ 2 * t * 6 0 * n ) ) ; // r e s i s t a n c e i n ohms13 disp (R , r e s i s t a n c e i n ohms )

    Scilab code Exa 5.4 potential difference

    1 / /Example 5 . 4 // p o t e n t i a l d i f f e r e n c e a c r o s s t he

    h e a t e r e l em e nt2 clc ;

    3 clear ;

    4 close ;

    5 w = 2 0 ; // i n kg

    31

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    33/98

    6 t 1 = 1 0 ; // i n d eg re e c e l s i u s

    7 t 2 = 9 0 ; // i n d eg r e e c e l s i u s8 t = 2 * 3 6 0 0 + 1 9 * 6 0 + 3 4 ; // t i me i n s e c on ds9 I = 4 ; // i n a mp ere

    10 n = 8 0 ; // e f f i c i e n c y o f c o nv e r s i o n i n p e r c e nt ag e11 h o = w * ( t 2 - t 1 ) ; // o ut p ut h ea t r e q u i r e d i n k c al12 V = ( ( h o * 4 1 8 7 * 1 0 0 ) / ( I * t * n ) ) ; // POTENTIAL DROP IN VOLTS13 disp (V , p o t e n t i a l drop a c r o s s h e at e r e le me nt i n

    v o l t s i s )

    32

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    34/98

    Chapter 6

    magnetism and

    electromagnetism

    Scilab code Exa 6.1 field strength

    1 / / Exam ple 6 . 1 / / f i e l d s t r e n g t h2 clc ;

    3 clear ;

    4 close ;

    5 I = 1 . 5 ; / / i n a mp er es6 n = 5 0 ; / / t u r n s7 l = 0 . 2 5 ; // l e n g t h o f c o i l i n me t er8 H = ( I * n ) / l ; / / f i e l d s t r e n g t h i n a mp er et u r n s / m9 disp (H , f i e l d s t r e n g t h i n a mp er et ur ns/m)

    Scilab code Exa 6.2 force

    1 / / Example 6 . 2 // f o r c e2 clc ;

    3 clear ;

    4 close ;

    33

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    35/98

    5 I = 7 0 ; / / i n a mp er es

    6 B = 0 . 4 ; / / f l u s d e n s i t y i n Wb/m 27 n = 1 ; / / t u r n s8 F = B * n * I ; / / i n newto n9 disp (F , f o r c e i n n ew to ns i s )

    Scilab code Exa 6.3 emf induced

    1

    2 / / E xam ple 6 . 3 / / emf i n d u ce d3 clc ;

    4 clear ;

    5 close ;

    6 b = 2 ; // i n Wb/m27 l = 6 ; // i n cm8 s = 0 . 7 5 ; // i n m s9 a l p h a = 9 0 ; //

    10 e m f = b * l * s * ( s i n d ( a l p h a ) ) ; //11 disp ( e m f , emf i nd uc ed i n v o l t s i s )

    34

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    36/98

    Chapter 7

    DC generators

    Scilab code Exa 7.1.a emf induced

    1 / / E xa mp le 7 . 1 . a : e . m. f 2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 p = 8 ; // number o f p o l e s

    7 a = p ; // i n l ap w in di ng8 f i = 1 5 * 1 0 ^ - 3 ; // i n wb9 N = 5 0 0 ; / / r e v / min

    10 Z = 8 0 0 ; / / number o f c o n d u c to r s on a rm at ur e11 e m f = ( f i * Z * N * p ) / ( 6 0 * a ) ; // when t he a rm at ur e i s l a p

    wound12 disp ( e m f , e m f ( V ) = )

    Scilab code Exa 7.1.b emf generated

    1 / / Exam ple 7 . 1 . b : e .m . f i f t h e a r ma t ur e i s wave wound2 clc ;

    35

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    37/98

    3 clear ;

    4 close ;5 / / g i v e n d at a :6 p = 8 ; // number o f p o l e s7 a = 2 ; / / i n wave w in d in g8 f i = 1 5 * 1 0 ^ - 3 ; // i n wb9 N = 5 0 0 ; / / r e v / min

    10 Z = 8 0 0 ; / / number o f c o n d u c to r s on a rm at ur e11 e m f = ( f i * Z * N * p ) / ( 6 0 * a ) ; // when t h e a rm at ur e i s wave

    wound12 disp ( e m f , e m f ( V ) = )

    Scilab code Exa 7.2.a total armature current

    1 / / Example 7 . 2 . a : t o t a l a rm at ur e c u r r e n t2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 V t = 2 0 0 ; // t e r m i n a l v o l t a ge i n v o l t s

    7 R s h = 1 0 0 ; // s h u n t f i e l d r e s i s t a n c e i n ohm8 R a = 0 . 1 ; // a rm at u re r e s i s t a n c e i n ohm9 l = 6 0 ; / / number o f l am ps

    10 w = 4 0 ; // i n wat t11 t o t a l _ l = l * w ; // i n wat t12 I l = t o t a l _ l / V t ; // l oa d c u r r e nt13 I s h = V t / R s h ; / / s h un t f i e l d c u r r e n t14 I a = I l + I s h ;

    15 disp ( I a , a r m a t u r e c u r r e n t , I a (A) = )

    Scilab code Exa 7.2.b current per armature path

    1 / / Example 7 . 2 . b : c u r r e n t p e r a rm at ur e p at h

    36

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    38/98

    2 clc ;

    3 clear ;4 close ;

    5 / / g i v e n d at a :6 V t = 2 0 0 ; // t e r m i n a l v o l t a ge i n v o l t s7 R s h = 1 0 0 ; // s h u n t f i e l d r e s i s t a n c e i n ohm8 R a = 0 . 1 ; // a rm at u re r e s i s t a n c e i n ohm9 l = 6 0 ; / / number o f l am ps

    10 w = 4 0 ; // i n wat t11 t o t a l _ l = l * w ; // i n wat t12 I l = t o t a l _ l / V t ; // l oa d c u r r e nt13 I s h = V t / R s h ; / / s h un t f i e l d c u r r e n t

    14 I a = I l + I s h ;15 N = 4 ; // number o f p o l e s16 I = I a / N ;

    17 disp (I , c u r r e n t p e r p at h i n a a rm at ur e , I (A) = )

    Scilab code Exa 7.2.c emf generated

    1 / / E xa mp le 7 . 2 . c : e mf

    2 clc ;3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 V t = 2 0 0 ; // t e r m i n a l v o l t a ge i n v o l t s7 R s h = 1 0 0 ; // s h u n t f i e l d r e s i s t a n c e i n ohm8 R a = 0 . 1 ; // a rm at u re r e s i s t a n c e i n ohm9 l = 6 0 ; / / number o f l am ps

    10 w = 4 0 ; // i n wat t11 t o t a l _ l = l * w ; // i n wat t

    12 I l = t o t a l _ l / V t ; // l oa d c u r r e nt13 I s h = V t / R s h ; / / s h un t f i e l d c u r r e n t14 I a = I l + I s h ;

    15 N = 4 ; // number o f p o l e s16 I = I a / N ;

    37

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    39/98

    17 V a = I a * R a ; // a r m at ur e v o l t a g e d ro p

    18 V b = 1 + 1 ; // b r u s h c on t a c t dr op f o r 2 p a i r o f p o l es19 E = V t + V a + V b ;20 disp (E , emf , E ( v ) = )

    Scilab code Exa 7.3.a terminal voltage

    1 / / Example 7 . 3 . a : t e r m i n a l v o l t a g e2 clc ;

    3 clear ;4 close ;

    5 / / g i v e n d at a :6 W = 1 0 ; // o u tp u t o f t he g e n e ra t o r i n kw7 V = 2 5 0 ; // v o l t a g e i n v o l t s8 R = 0 . 0 7 ; / / i n ohm9 I l = ( W * 1 0 0 0 ) / V ; // l oa d c u r r e n t i n A

    10 V f = I l * R ; // v o lt a g e dr op i n f e e de r11 V t = V + V f ;

    12 disp ( V t , t e r m i n a l v o l t a g e , Vt (V) = )

    Scilab code Exa 7.3.b emf generated

    1 / / E xa mp le 7 . 3 . b : e mf 2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 W = 1 0 ; // o u tp u t o f t he g e n e ra t o r i n kw

    7 V = 2 5 0 ; // v o l t a g e i n v o l t s8 R = 0 . 0 7 ; / / i n ohm9 I l = ( W * 1 0 0 0 ) / V ; // l oa d c u r r e n t i n A

    10 V f = I l * R ; // v o lt a g e dr op i n f e e de r11 V t = V + V f ; // t e rm i n al v o l t a g e

    38

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    40/98

    12 R s h = 6 3 . 2 ; // s hu nt r e s i s t a n c e i n ohm

    13 R a = 0 . 0 5 ; // a rm at ur e r e s i s t a n c e i n ohm14 V b = 2 ; // b ru sh c o n t ac t d ro p15 I s h = V t / R s h ;

    16 I a = I l + I s h ;

    17 V d = I a * R a ; // v o l t a g e dr op i n t he a rm at ur e18 E = V t + V d + V b ;

    19 disp (E , e mf , E ( V ) = )

    Scilab code Exa 7.4.a terminal voltage

    1 / / Example 7 . 4 . a : t e r m i n a l v o l t a g e2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 W = 2 0 0 0 0 ; // i n wat t7 V = 2 0 0 ; // i n v o l t s8 R = 0 . 0 8 ; / / i n ohm9 R s = 0 . 0 2 ; // s e r i e s f i e l d r e s i s t a n c e i n ohm

    10 I = W / V ; // i n A11 V f = I * R ;

    12 V s = I * R s ;

    13 V 1 = V f + V s ; / / v o l t ag e dro p o f f e e d e r and s e r i e s f i e l d14 V g = V + V 1 ;

    15 disp ( V g , t e r m i n a l v o l t a g e , Vg (V) = )

    Scilab code Exa 7.4.b emf generated

    1 / / Exam ple 7 . 4 . b : emf g e n e r a t e d2 clc ;

    3 clear ;

    4 close ;

    39

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    41/98

    5 / / g i v e n d at a :

    6 W = 2 0 0 0 0 ; // i n wa tt7 V = 2 0 0 ; // i n v o l t s8 R = 0 . 0 8 ; / / i n ohm9 R s = 0 . 0 2 ; // s e r i e s f i e l d r e s i s t a n c e i n ohm

    10 I = W / V ; // i n A11 R s h = 4 2 ; // s h u n t i e l d r e s i s t a n c e i n ohm12 R a = 0 . 0 4 ; // a r m a t u r e r e s i s t a n c e i n ohm13 V f = I * R ;

    14 V s = I * R s ;

    15 V 1 = V f + V s ; / / v o l t ag e dro p o f f e e d e r and s e r i e s f i e l d16 V g = V + V 1 ; // t e rm i n al v o l t a g e

    17 I s h = V g / R s h ; / / s h un t f i e l d c u r r e n t18 I a = I + I s h ;

    19 V d = I a * R a ;

    20 e m f = V g + V d ;

    21 disp ( e m f , e m f ( V ) = )

    Scilab code Exa 7.4.c copper losses

    1 / / Example 7 . 4 . c : c o pp e r l o s s e s2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 W = 2 0 0 0 0 ; / / e l e c t r i c a l o u t p u t i n w a t t7 V = 2 0 0 ; // i n v o l t s8 R = 0 . 0 8 ; / / i n ohm9 R s = 0 . 0 2 ; // s e r i e s f i e l d r e s i s t a n c e i n ohm

    10 I = W / V ; // i n A

    11 R s h = 4 2 ; // s h u n t i e l d r e s i s t a n c e i n ohm12 R a = 0 . 0 4 ; // a r m a t u r e r e s i s t a n c e i n ohm13 V f = I * R ;

    14 V s = I * R s ;

    15 V 1 = V f + V s ; / / v o l t ag e dro p o f f e e d e r and s e r i e s f i e l d

    40

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    42/98

    16 V g = V + V 1 ; // t e rm i n al v o l t a g e

    17 I s h = V g / R s h ; / / s h un t f i e l d c u r r e n t18 I a = I + I s h ;19 V d = I a * R a ;

    20 e m f = V g + V d ;

    21 E d = e m f * I a ; // i n wat t22 c o p p e r _ l o s s e s = E d - W ;

    23 disp (copper_ losses , c o p p er l o s s e s ( Watt ) = )

    Scilab code Exa 7.4.d Bhp metric of the primemover

    1 / / Exam ple 7 . 4 . d : bhp m e t r i c o f t h e p ri me mo ve r2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 W = 2 0 0 0 0 ; / / e l e c t r i c a l o u t p u t i n w a t t7 V = 2 0 0 ; // i n v o l t s8 R = 0 . 0 8 ; / / i n ohm9 R s = 0 . 0 2 ; // s e r i e s f i e l d r e s i s t a n c e i n ohm

    10 I = W / V ; // i n A11 R s h = 4 2 ; // s h u n t i e l d r e s i s t a n c e i n ohm12 R a = 0 . 0 4 ; // a r m a t u r e r e s i s t a n c e i n ohm13 i r o n _ l o s s e s = 3 0 9 . 5 ; / / i r o n a nd f r i c t i o n l o s s e s14 V f = I * R ;

    15 V s = I * R s ;

    16 V 1 = V f + V s ; / / v o l t ag e dro p o f f e e d e r and s e r i e s f i e l d17 V g = V + V 1 ; // t e rm i n al v o l t a g e18 I s h = V g / R s h ; / / s h un t f i e l d c u r r e n t19 I a = I + I s h ;

    20 V d = I a * R a ;21 e m f = V g + V d ;

    22 E d = e m f * I a ; // i n wat t23 c o p p e r _ l o s s e s = E d - W ;

    24 m e c h _ i n = W + c o p p e r _ l o s s e s + i r o n _ l o s s e s ;

    41

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    43/98

    25 B h p = m e c h _ i n / 7 3 5 . 5 ;

    26 disp ( B h p , bhp m e t r i c o f t h e p ri me mo ve r , Bhp = )

    Scilab code Exa 7.4.e commercial efficiency

    1

    2 / / Exam ple 7 . 4 . d : bhp m e t r i c o f t h e p ri me mo ve r3 clc ;

    4 clear ;

    5 close ;6 / / g i v e n d at a :7 W = 2 0 0 0 0 ; / / e l e c t r i c a l o u t p u t i n w a t t8 V = 2 0 0 ; // i n v o l t s9 R = 0 . 0 8 ; / / i n ohm

    10 R s = 0 . 0 2 ; // s e r i e s f i e l d r e s i s t a n c e i n ohm11 I = W / V ; // i n A12 R s h = 4 2 ; // s h u n t i e l d r e s i s t a n c e i n ohm13 R a = 0 . 0 4 ; // a r m a t u r e r e s i s t a n c e i n ohm14 i r o n _ l o s s e s = 3 0 9 . 5 ; / / i r o n a nd f r i c t i o n l o s s e s15 V f = I * R ;

    16 V s = I * R s ;17 V 1 = V f + V s ; / / v o l t ag e dro p o f f e e d e r and s e r i e s f i e l d18 V g = V + V 1 ; // t e rm i n al v o l t a g e19 I s h = V g / R s h ; / / s h un t f i e l d c u r r e n t20 I a = I + I s h ;

    21 V d = I a * R a ;

    22 e m f = V g + V d ;

    23 E d = e m f * I a ; // i n wat t24 c o p p e r _ l o s s e s = E d - W ;

    25 m e c h _ i n = W + c o p p e r _ l o s s e s + i r o n _ l o s s e s ; / / m e ch a n ic a l

    p ow er i n o p u t26 B h p = m e c h _ i n / 7 3 5 . 5 ;27 e f f i c i e n c y = ( W / m e c h _ i n ) * 1 0 0 ;

    28 disp (efficiency , e f f i c i e n c y (%) = )

    42

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    44/98

    Scilab code Exa 7.5.a total armature current

    1 / / Example 7 . 5 . a : t o t a l a rm at ur e c u r r e n t2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 n = 3 ; / / number o f m o to r s7 i = 3 0 ; // c u r r e nt i n A8 I = i * n ; // c u r r en t t ak en by t h r e e m ot or s9 R s h = 4 4 ; // s hu nt f i e l d r e s i s t a n c e

    10 V = 4 4 0 ; // v o l t a g e i n V11 I s h = V / R s h ; / / s h un t f i e l d c u r r e n t12 I a = I + I s h ;

    13 disp ( I a , t o t a l a r ma t ur e c u r r e n t , I a (A) = )

    Scilab code Exa 7.5.b current

    1 / / Example 7 . 5 . b : c u r r e n t i n e ac h p at h2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 n = 3 ; / / number o f m o to r s7 n 1 = 4 ; // number o f p a r a l l e l pat h i n w in di ng8 i = 3 0 ; // c u r r e nt i n A9 I = i * n ; // c u r r en t t ak en by t h r e e m ot or s

    10 R s h = 4 4 ; // s hu nt f i e l d r e s i s t a n c e11 R a = 0 . 0 8 ; // a rm at ur e r e s i s t a n c e i n ohm12 V = 4 4 0 ; // v o l t a g e i n V13 I s h = V / R s h ; / / s h un t f i e l d c u r r e n t14 I a = I + I s h ;

    43

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    45/98

    15 I 1 = I a / n 1 ; // c u r r e nt i n e a ch path

    16 disp ( I 1 , c u r r e n t i n e a ch p at h , I 1 (A) = )

    Scilab code Exa 7.5.c emf generated

    1 / / E xa mp le 7 . 5 . c : e . m. f 2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 n = 3 ; / / number o f m o to r s7 n 1 = 4 ; // number o f p a r a l l e l pat h i n w in di ng8 i = 3 0 ; // c u r r e nt i n A9 I = i * n ; // c u r r en t t ak en by t h r e e m ot or s

    10 R s h = 4 4 ; // s hu nt f i e l d r e s i s t a n c e11 R a = 0 . 0 8 ; // a rm at ur e r e s i s t a n c e i n ohm12 V = 4 4 0 ; // v o l t a g e i n V13 I s h = V / R s h ; / / s h un t f i e l d c u r r e n t14 I a = I + I s h ;

    15 I 1 = I a / n 1 ; // c u r r e nt i n e a ch path

    16 V a = I a * R a ; // a r ma t ur e d ro p17 V b = 2 ; // we know , b ru sh c o n ta c t d ro ps18 E = V + V a + V b ;

    19 disp (E , e mf , E ( V ) = )20 / / a ns we r i s wrong i n a book

    Scilab code Exa 7.5.d power developed

    1 / / E xa mp le 7 . 5 . d : e l e c t r i c a l p ow er d e v e l o p e d i n t h ea r m a t u r e

    2 clc ;

    3 clear ;

    4 close ;

    44

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    46/98

    5 / / g i v e n d at a :

    6 n = 3 ; / / number o f m o to r s7 n 1 = 4 ; // number o f p a r a l l e l pat h i n w in di ng8 i = 3 0 ; // c u r r e nt i n A9 B h p = 6 5 ; // i n hp

    10 I = i * n ; // c u r r en t t ak en by t h r e e m ot or s11 R s h = 4 4 ; // s hu nt f i e l d r e s i s t a n c e12 R a = 0 . 0 8 ; // a rm at ur e r e s i s t a n c e i n ohm13 V = 4 4 0 ; // v o l t a g e i n V14 I s h = V / R s h ; / / s h un t f i e l d c u r r e n t15 I a = I + I s h ;

    16 I 1 = I a / n 1 ; // c u r r e nt i n e a ch path

    17 V a = I a * R a ; // a r ma t ur e d ro p18 V b = 2 ; // we know , b ru sh c o n ta c t d ro ps19 E = V + V a + V b ;

    20 E _ p o w e r = E * I a ;

    21 W = V * I ; // i n w att22 M _ p o w e r = B h p * 7 4 6 ; // assume Bhp=746 W23 disp (E_p ower , e l e c t r i c a l p o we r d e v e l o p e d i n w a t t =

    )

    24 / / a ns we r i s wrong i n a book

    Scilab code Exa 7.5.e copper losses

    1 / / Example 7 . 5 . e : c o pp e r l o s s e s2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 n = 3 ; / / number o f m o to r s

    7 n 1 = 4 ; // number o f p a r a l l e l pat h i n w in di ng8 i = 3 0 ; // c u r r e nt i n A9 B h p = 6 5 ; // i n hp

    10 I = i * n ; // c u r r en t t ak en by t h r e e m ot or s11 R s h = 4 4 ; // s hu nt f i e l d r e s i s t a n c e

    45

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    47/98

    12 R a = 0 . 0 8 ; // a rm at ur e r e s i s t a n c e i n ohm

    13 V = 4 4 0 ; // v o l t a g e i n V14 I s h = V / R s h ; / / s h un t f i e l d c u r r e n t15 I a = I + I s h ;

    16 I 1 = I a / n 1 ; // c u r r e nt i n e a ch path17 V a = I a * R a ; // a r ma t ur e d ro p18 V b = 2 ; // we know , b ru sh c o n ta c t d ro ps19 E = V + V a + V b ;

    20 E _ p o w e r = E * I a ;

    21 W = V * I ; // i n w att22 M _ p o w e r = B h p * 7 4 6 ; // assume Bhp=746 W23 Copper_l osses =E_power -W;

    24 disp (Copper_ losses , c o pp er l o s s e s (W) = )

    Scilab code Exa 7.5.f stray losses

    1 // Example 7 . 5 . f : s t r a y l o s s e s2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 n = 3 ; / / number o f m o to r s7 n 1 = 4 ; // number o f p a r a l l e l pat h i n w in di ng8 i = 3 0 ; // c u r r e nt i n A9 B h p = 6 5 ; // i n hp

    10 I = i * n ; // c u r r en t t ak en by t h r e e m ot or s11 R s h = 4 4 ; // s hu nt f i e l d r e s i s t a n c e12 R a = 0 . 0 8 ; // a rm at ur e r e s i s t a n c e i n ohm13 V = 4 4 0 ; // v o l t a g e i n V14 I s h = V / R s h ; / / s h un t f i e l d c u r r e n t

    15 I a = I + I s h ;16 I 1 = I a / n 1 ; // c u r r e nt i n e a ch path17 V a = I a * R a ; // a r ma t ur e d ro p18 V b = 2 ; // we know , b ru sh c o n ta c t d ro ps19 E = V + V a + V b ;

    46

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    48/98

    20 E _ p o w e r = E * I a ;

    21 W = V * I ; // i n w att22 M _ p o w e r = B h p * 7 4 6 ; // assume Bhp=746 W23 Copper_l osses =E_power -W;

    24 S_loses =M_power -E_p ower;

    25 disp (S_l oses , s t r a y l o s s e s (W) = )

    Scilab code Exa 7.5.g.1 electrical efficiency

    1 / / E xa mp le 7 . 5 . g . i : e l e c t r i c a l e f f i c i e n c y2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 n = 3 ; / / number o f m o to r s7 n 1 = 4 ; // number o f p a r a l l e l pat h i n w in di ng8 i = 3 0 ; // c u r r e nt i n A9 B h p = 6 5 ; // i n hp

    10 I = i * n ; // c u r r en t t ak en by t h r e e m ot or s11 R s h = 4 4 ; // s hu nt f i e l d r e s i s t a n c e

    12 R a = 0 . 0 8 ; // a rm at ur e r e s i s t a n c e i n ohm13 V = 4 4 0 ; // v o l t a g e i n V14 I s h = V / R s h ; / / s h un t f i e l d c u r r e n t15 I a = I + I s h ;

    16 I 1 = I a / n 1 ; // c u r r e nt i n e a ch path17 V a = I a * R a ; // a r ma t ur e d ro p18 V b = 2 ; // we know , b ru sh c o n ta c t d ro ps19 E = V + V a + V b ;

    20 E _ p o w e r = E * I a ;

    21 W = V * I ; // i n w att

    22 M _ p o w e r = B h p * 7 4 6 ; // assume Bhp=746 W23 Copper_l osses =E_power -W;24 S_loses =M_power -E_p ower;

    25 e t a _ e = ( W / E _ p o w e r ) * 1 0 0 ;

    26 disp ( e t a _ e , e l e c t r i c a l e f f i c i e n c y , e t a e (%) = )

    47

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    49/98

    Scilab code Exa 7.5.g.2 commercial efficiency

    1 / / Example 7 . 5 . g . i : c o mm e rc i al e f f i c i e n c y2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 n = 3 ; / / number o f m o to r s

    7 n 1 = 4 ; // number o f p a r a l l e l pat h i n w in di ng8 i = 3 0 ; // c u r r e nt i n A9 B h p = 6 5 ; // i n hp

    10 I = i * n ; // c u r r en t t ak en by t h r e e m ot or s11 R s h = 4 4 ; // s hu nt f i e l d r e s i s t a n c e12 R a = 0 . 0 8 ; // a rm at ur e r e s i s t a n c e i n ohm13 V = 4 4 0 ; // v o l t a g e i n V14 I s h = V / R s h ; / / s h un t f i e l d c u r r e n t15 I a = I + I s h ;

    16 I 1 = I a / n 1 ; // c u r r e nt i n e a ch path17 V a = I a * R a ; // a r ma t ur e d ro p18 V b = 2 ; // we know , b ru sh c o n ta c t d ro ps19 E = V + V a + V b ;

    20 E _ p o w e r = E * I a ;

    21 W = V * I ; // i n w att22 M _ p o w e r = B h p * 7 4 6 ; // assume Bhp=746 W23 Copper_l osses =E_power -W;

    24 S_loses =M_power -E_p ower;

    25 e t a _ c = ( W / M _ p o w e r ) * 1 0 0 ;

    26 disp ( e t a _ c , c o m me rc i al e f f i c i e n c y , e t a c (%) = )

    Scilab code Exa 7.5.g.3 mechanical efficiency

    48

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    50/98

    1 / / E xa mp le 7 . 5 . g . i : e l e c t r i c a l e f f i c i e n c y

    2 clc ;3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 n = 3 ; / / number o f m o to r s7 n 1 = 4 ; // number o f p a r a l l e l pat h i n w in di ng8 i = 3 0 ; // c u r r e nt i n A9 B h p = 6 5 ; // i n hp

    10 I = i * n ; // c u r r en t t ak en by t h r e e m ot or s11 R s h = 4 4 ; // s hu nt f i e l d r e s i s t a n c e12 R a = 0 . 0 8 ; // a rm at ur e r e s i s t a n c e i n ohm

    13 V = 4 4 0 ; // v o l t a g e i n V14 I s h = V / R s h ; / / s h un t f i e l d c u r r e n t15 I a = I + I s h ;

    16 I 1 = I a / n 1 ; // c u r r e nt i n e a ch path17 V a = I a * R a ; // a r ma t ur e d ro p18 V b = 2 ; // we know , b ru sh c o n ta c t d ro ps19 E = V + V a + V b ;

    20 E _ p o w e r = E * I a ;

    21 W = V * I ; // i n w att22 M _ p o w e r = B h p * 7 4 6 ; // assume Bhp=746 W23 Copper_l osses =E_power -W;

    24 S_loses =M_power -E_p ower;

    25 e t a _ m = ( E _ p o w e r / M _ p o w e r ) * 1 0 0 ;

    26 disp ( e t a _ m , m e c h a n ic a l e f f i c i e n c y , e ta m (%) = )

    49

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    51/98

    Chapter 8

    DC motors

    Scilab code Exa 8.1 speed

    1 / / Exam ple 8 . 1 / / s p e ed2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 p i = 2 2 / 7 ;

    7 s = 2 2 ; // s h a f t o f t h e m otor i n hp8 T s h = 2 1 0 ; // t or ue i n hp9 N = ( s * 6 0 * 7 4 6 ) / ( 2 * p i * T s h ) ;

    10 disp (N , s p e e d , N ( r p m ) = )

    Scilab code Exa 8.2.a Bhp

    1 / / E xa mp le 8 . 2 . a : bhp2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :

    50

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    52/98

    6 V = 2 3 0 ; // v o l t a g e i n v o l t s

    7 I = 7 2 ; // c u r r e n t i n A8 W = V * I ;9 s = 9 6 8 ; // s t r a y l o s s e s

    10 R s h = 1 1 5 ; // s hu nt f i e l d r e s i s t a n c e i n ohm11 R a = 0 . 5 ; // a rm at ur e r e s i s t a n c e i n ohm12 I s h = V / R s h ; // s hu nt f i e l d r e s i s t a n c e13 I a = I - I s h ;

    14 E b = V - ( I a * R a ) ; // back emf i n v o l t s15 D p d = E b * I a ; // d r i v i n g power d e ve l op e d16 M p o = D p d - s ;

    17 b h p = M p o / 7 4 6 ;

    18 disp ( b h p , b h p = )

    Scilab code Exa 8.2.b copper losses

    1 / / Example 8 . 2 . b : c o pp e r l o s s e s2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 V = 2 3 0 ; // v o l t a g e i n v o l t s7 I = 7 2 ; // c u r r e n t i n A8 W = V * I ;

    9 s = 9 6 8 ; // s t r a y l o s s e s10 R s h = 1 1 5 ; // s hu nt f i e l d r e s i s t a n c e i n ohm11 R a = 0 . 5 ; // a rm at ur e r e s i s t a n c e i n ohm12 I s h = V / R s h ; // s hu nt f i e l d r e s i s t a n c e13 I a = I - I s h ;

    14 E b = V - ( I a * R a ) ; // back emf i n v o l t s

    15 D p d = E b * I a ; // d r i v i n g power d e ve l op e d16 M p o = D p d - s ;17 b h p = M p o / 7 4 6 ;

    18 c _ l o s s e s = W - D p d ;

    19 disp (c_ losses , c o p p er l o s s e s (W) = )

    51

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    53/98

    Scilab code Exa 8.2.c armature torque

    1 / / Exam ple 8 . 2 . c : a r ma t ur e t o r q u e2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 N = 9 5 5 ; / / i n r . p . m

    7 V = 2 3 0 ; // v o l t a g e i n v o l t s8 I = 7 2 ; // c u r r e n t i n A9 W = V * I ;

    10 s = 9 6 8 ; // s t r a y l o s s e s11 R s h = 1 1 5 ; // s hu nt f i e l d r e s i s t a n c e i n ohm12 R a = 0 . 5 ; // a rm at ur e r e s i s t a n c e i n ohm13 I s h = V / R s h ; // s hu nt f i e l d r e s i s t a n c e14 I a = I - I s h ;

    15 E b = V - ( I a * R a ) ; // back emf i n v o l t s16 D p d = E b * I a ; // d r i v i n g power d e ve l op e d17 M p o = D p d - s ;

    18 b h p = M p o / 7 4 6 ;

    19 c _ l o s s e s = W - D p d ;

    20 T a = ( 9 . 5 5 * E b * I a ) / N ;

    21 disp ( T a , t o r q u e a r ma t ur e , Ta ( Nm ) = )

    Scilab code Exa 8.2.d shaft torque

    1 / / Example 8 . 2 . d : s h a f t t o r q ue2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :

    52

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    54/98

    6 p i = 2 2 / 7 ;

    7 N = 9 5 5 ; / / i n r . p . m8 V = 2 3 0 ; // v o l t a g e i n v o l t s9 I = 7 2 ; // c u r r e n t i n A

    10 W = V * I ;

    11 s = 9 6 8 ; // s t r a y l o s s e s12 R s h = 1 1 5 ; // s hu nt f i e l d r e s i s t a n c e i n ohm13 R a = 0 . 5 ; // a rm at ur e r e s i s t a n c e i n ohm14 I s h = V / R s h ; // s hu nt f i e l d r e s i s t a n c e15 I a = I - I s h ;

    16 E b = V - ( I a * R a ) ; // back emf i n v o l t s17 D p d = E b * I a ; // d r i v i n g power d e ve l op e d

    18 M p o = D p d - s ;19 b h p = M p o / 7 4 6 ;

    20 c _ l o s s e s = W - D p d ;

    21 T a = ( 9 . 5 5 * E b * I a ) / N ;

    22 T s h = ( b h p * 6 0 * 7 4 6 ) / ( 2 * p i * N ) ;

    23 disp ( T s h , s h a f t t o r q u e , Tsh ( Nm ) = )

    Scilab code Exa 8.2.e lost torque

    1 / / Example 8 . 2 . e : l o s t t o r q ue2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 p i = 2 2 / 7 ;

    7 N = 9 5 5 ; / / i n r . p . m8 V = 2 3 0 ; // v o l t a g e i n v o l t s9 I = 7 2 ; // c u r r e n t i n A

    10 W = V * I ;11 s = 9 6 8 ; // s t r a y l o s s e s12 R s h = 1 1 5 ; // s hu nt f i e l d r e s i s t a n c e i n ohm13 R a = 0 . 5 ; // a rm at ur e r e s i s t a n c e i n ohm14 I s h = V / R s h ; // s hu nt f i e l d r e s i s t a n c e

    53

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    55/98

    15 I a = I - I s h ;

    16 E b = V - ( I a * R a ) ; // back emf i n v o l t s17 D p d = E b * I a ; // d r i v i n g power d e ve l op e d18 M p o = D p d - s ;

    19 b h p = M p o / 7 4 6 ;

    20 c _ l o s s e s = W - D p d ;

    21 T a = ( 9 . 5 5 * E b * I a ) / N ;

    22 T s h = ( b h p * 6 0 * 7 4 6 ) / ( 2 * p i * N ) ;

    23 T l = T a - T s h ;

    24 disp ( T l , l o s t t o r qu e , T l ( Nm ) = )

    Scilab code Exa 8.2.f commercial efficiency

    1 // Example 8 . 2 . f : c om me rc ia l e f f i c i e n c y2 clc ;

    3 clear ;

    4 close ;

    5 / / g i v e n d at a :6 p i = 2 2 / 7 ;

    7 N = 9 5 5 ; / / i n r . p . m

    8 V = 2 3 0 ; // v o l t a g e i n v o l t s9 I = 7 2 ; // c u r r e n t i n A

    10 W = V * I ;

    11 s = 9 6 8 ; // s t r a y l o s s e s12 R s h = 1 1 5 ; // s hu nt f i e l d r e s i s t a n c e i n ohm13 R a = 0 . 5 ; // a rm at ur e r e s i s t a n c e i n ohm14 I s h = V / R s h ; // s hu nt f i e l d r e s i s t a n c e15 I a = I - I s h ;

    16 E b = V - ( I a * R a ) ; // back emf i n v o l t s17 D p d = E b * I a ; // d r i v i n g power d e ve l op e d

    18 M p o = D p d - s ;19 b h p = M p o / 7 4 6 ;

    20 c _ l o s s e s = W - D p d ;

    21 T a = ( 9 . 5 5 * E b * I a ) / N ;

    22 T s h = ( b h p * 6 0 * 7 4 6 ) / ( 2 * p i * N ) ;

    54

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    56/98

    23 T l = T a - T s h ;

    24 e t a = ( M p o / W ) * 1 0 0 ;25 disp ( e t a , c o m me rc i al e f f i c i o e n c y , e t a (%) = )

    Scilab code Exa 8.3 speed

    1 / / Exam ple 8 . 3 / / s p e ed2 clc ;

    3 clear ;

    4 close ;5 V = 2 3 0 ; // i n v o l t s6 I = 5 ; / / i n a mp er es7 r p m = 9 1 4 ; / / t u r n s8 r a = 0 . 5 ; // r e s i s t a n c e o f a rm at u re i n ihms9 r s h = 1 1 5 ; / / s h u n t f i e l d i n ohms

    10 I l = 3 0 ; // i n a mp er es11 a r = 1 0 ; // i n p e rc e n t12 I s h = V / r s h ; / / i n a mp er es13 a n l = I - I s h ; // a r ma tu re c u r r e nt i n a mp er es a t no l o ad14 a l = I l - I s h ; // a r ma tu re c u r r e n t i n a mp ere s a t l o ad

    15 E b 1 = ( V - a n l * r a ) ; // b ack emf a t no l o ad16 E b 2 = ( V - a l * r a ) ; // b ack emf a t l o ad17 p h 1 = 1 0 0 ; //18 p h 2 = 9 0 ; //19 N s = ( r p m * E b 2 * p h 1 ) / ( E b 1 * p h 2 ) ; / / s p e e d when l o a d e d i n

    rpm20 disp ( N s , s p e e d when l o a d e d i n rpm )

    Scilab code Exa 8.4.a stray losses

    1 / / Example 8 . 4 . a // s t r a y l o s s e s2 clc ;

    3 clear ;

    55

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    57/98

    4 close ;

    5 I l = 8 3 ; // WHEN LOADED IN AMPERES6 V = 1 1 0 ; // i n v o l t s7 I = 5 ; // i n a mp ere s w it ho ut l o ad8 r a = 0 . 5 ; // a r ma tu re r e s i s t a n c e i n ohms9 r s h = 1 1 0 ; / / s h u n t f i e l d i n ohms

    10 I s h = V / r s h ; / / i n a mpere11 a n l = I - I s h ; // a r ma tu re c u r r e nt i n a mp er es a t no l o ad12 a l = I l - I s h ; // a r ma tu re c u r r e n t i n a mp ere s a t l o ad13 E b 1 = ( V - a n l * r a ) ; // b ack emf a t no l o ad14 E b 2 = ( V - a l * r a ) ; // b ack emf a t l o ad15 D p = E b 1 * a n l ; // d r i v i n g power a t no l o ad i n w att

    16 D p l = E b 2 * a l ; // d r i v i n g power a t l o ad i n wa tt17 m o = D p l - D p ; // o u t o f motor i n wa tt18 disp ( D p , s t ra y l o s s e s i n wat t )

    Scilab code Exa 8.4.b horsepower of the motor

    1 / / Exam ple 8 . 4 . b / / h o r s e p ow er2 clc ;

    3 clear ;4 close ;

    5 I l = 8 3 ; // WHEN LOADED IN AMPERES6 V = 1 1 0 ; // i n v o l t s7 I = 5 ; // i n a mp ere s w it ho ut l o ad8 r a = 0 . 5 ; // a r ma tu re r e s i s t a n c e i n ohms9 r s h = 1 1 0 ; / / s h u n t f i e l d i n ohms

    10 I s h = V / r s h ; / / i n a mpere11 a n l = I - I s h ; // a r ma tu re c u r r e nt i n a mp er es a t no l o ad12 a l = I l - I s h ; // a r ma tu re c u r r e n t i n a mp ere s a t l o ad

    13 E b 1 = ( V - a n l * r a ) ; // b ack emf a t no l o ad14 E b 2 = ( V - a l * r a ) ; // b ack emf a t l o ad15 D p = E b 1 * a n l ; // d r i v i n g power a t no l o ad i n w att16 D p l = E b 2 * a l ; // d r i v i n g power a t l o ad i n wa tt17 m o = D p l - D p ; // o u t o f motor i n wa tt

    56

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    58/98

    18 b h p = m o / 7 4 6 ; / / h o r s e p ow er

    19 disp ( b h p , h o r s e po wer i n a mp ere i s )

    Scilab code Exa 8.4.c efficiency

    1 // Example 8 . 4 . c // e f f i c i e n c y2 clc ;

    3 clear ;

    4 close ;

    5 I l = 8 3 ; // WHEN LOADED IN AMPERES6 V = 1 1 0 ; // i n v o l t s7 I = 5 ; // i n a mp ere s w it ho ut l o ad8 r a = 0 . 5 ; // a r ma tu re r e s i s t a n c e i n ohms9 r s h = 1 1 0 ; / / s h u n t f i e l d i n ohms

    10 I s h = V / r s h ; / / i n a mpere11 a n l = I - I s h ; // a r ma tu re c u r r e nt i n a mp er es a t no l o ad12 a l = I l - I s h ; // a r ma tu re c u r r e n t i n a mp ere s a t l o ad13 E b 1 = ( V - a n l * r a ) ; // b ack emf a t no l o ad14 E b 2 = ( V - a l * r a ) ; // b ack emf a t l o ad15 D p = E b 1 * a n l ; // d r i v i n g power a t no l o ad i n w att

    16 D p l = E b 2 * a l ; // d r i v i n g power a t l o ad i n wa tt17 m o = D p l - D p ; // o u t o f motor i n wa tt18 b h p = m o / 7 4 6 ; / / h o r s e p ow er19 m i = V * a l ; / / i n p u t p ow er i n w at t20 n = ( m o / m i ) * 1 0 0 ; // e f f i c i e n c y i n p e r ce nt a g e21 disp (n , e f f i c i e n c y o f motor when i t i s work on f u l l

    , l oa d i n p e rc e nt a ge i s )22 / / a ns we r i s wrong i n t he t ex t bo o k

    Scilab code Exa 8.5.a back emf

    1 / / Exam ple 8 . 5 . a / / b ac k emf 2 clc ;

    57

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    59/98

    3 clear ;

    4 close ;5 V = 2 3 0 ; // i n v o l t s6 I = 6 0 ; / / i n a mp er es7 r p m = 9 5 5 ; / / t u r n s8 r a = 0 . 2 ; // r e s i s t a n c e o f a rm at u re i n ihms9 r s h = 0 . 1 5 ; / / s h u n t f i e l d i n ohms

    10 s l = 6 0 4 ; // s t ra y l o s s e s i n w a tt s11 R m = r a + r s h ; / / i n ohms12 E b = ( V - I * R m ) ; // back emf i n v o l t s13 disp ( E b , ba ck emf i n v o l t s )

    Scilab code Exa 8.5.b copper losses

    1 // Example 8 . 5 . b // c op pe r l o s s e s2 clc ;

    3 clear ;

    4 close ;

    5 V = 2 3 0 ; // i n v o l t s6 I = 6 0 ; / / i n a mp er es

    7 r p m = 9 5 5 ; / / t u r n s8 r a = 0 . 2 ; // r e s i s t a n c e o f a rm at u re i n ihms9 r s h = 0 . 1 5 ; / / s h u n t f i e l d i n ohms

    10 s l = 6 0 4 ; // s t ra y l o s s e s i n w a tt s11 R m = r a + r s h ; / / i n ohms12 E b = ( V - I * R m ) ; // back emf i n v o l t s13 D p = E b * I ; // d r i v i n g p ower i n w a tt s14 m i = V * I ; / / i n p u t po we r i n w a tt s15 C l = m i - D p ; // c o pp er l o s s e s i n w at t s16 disp ( C l , c op pe r l o s s e s i n w a tt s )

    Scilab code Exa 8.5.c Bhp

    58

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    60/98

    1 / / E xa mp le 8 . 5 . c / / h o r s e p ow er

    2 clc ;3 clear ;

    4 close ;

    5 V = 2 3 0 ; // i n v o l t s6 I = 6 0 ; / / i n a mp er es7 r p m = 9 5 5 ; / / t u r n s8 r a = 0 . 2 ; // r e s i s t a n c e o f a rm at u re i n ihms9 r s h = 0 . 1 5 ; / / s h u n t f i e l d i n ohms

    10 s l = 6 0 4 ; // s t ra y l o s s e s i n w a tt s11 R m = r a + r s h ; / / i n ohms12 E b = ( V - I * R m ) ; // back emf i n v o l t s

    13 D p = E b * I ; // d r i v i n g p ower i n w a tt s14 m i = V * I ; / / i n p u t po we r i n w a tt s15 C l = m i - D p ; // c o pp er l o s s e s i n w at t s16 m o = D p - s l ; / / o ut p ut o f m oto r17 b h p = m o / 7 4 6 ; // h o r se power i n bhp18 disp ( b h p , h o r se power i s )

    Scilab code Exa 8.5.d total torque

    1 / / Example 8 . 5 . d / / t o t a l t o r q ue2 clc ;

    3 clear ;

    4 close ;

    5 V = 2 3 0 ; // i n v o l t s6 I = 6 0 ; / / i n a mp er es7 r p m = 9 5 5 ; / / t u r n s8 r a = 0 . 2 ; // r e s i s t a n c e o f a rm at u re i n ihms9 r s h = 0 . 1 5 ; / / s h u n t f i e l d i n ohms

    10 s l = 6 0 4 ; // s t ra y l o s s e s i n w a tt s11 R m = r a + r s h ; / / i n ohms12 E b = ( V - I * R m ) ; // back emf i n v o l t s13 D p = E b * I ; // d r i v i n g p ower i n w a tt s14 m i = V * I ; / / i n p u t po we r i n w a tt s

    59

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    61/98

    15 C l = m i - D p ; // c o pp er l o s s e s i n w at t s

    16 m o = D p - s l ; / / o ut p ut o f m oto r17 b h p = m o / 7 4 6 ; // h o r se power i n bhp18 T a = ( 9 . 5 5 * E b * I ) / r p m ; // t o t a l t or qu e i n Nm19 disp ( T a , t o t a l t or qu e i n Nm)

    Scilab code Exa 8.5.e shaft torque

    1 / / Example 8 . 5 . e / / s h a f t t o r q ue

    2 clc ;3 clear ;

    4 close ;

    5 V = 2 3 0 ; // i n v o l t s6 I = 6 0 ; / / i n a mp er es7 r p m = 9 5 5 ; / / t u r n s8 r a = 0 . 2 ; // r e s i s t a n c e o f a rm at u re i n ihms9 r s h = 0 . 1 5 ; / / s h u n t f i e l d i n ohms

    10 s l = 6 0 4 ; // s t ra y l o s s e s i n w a tt s11 R m = r a + r s h ; / / i n ohms12 E b = ( V - I * R m ) ; // back emf i n v o l t s

    13 D p = E b * I ; // d r i v i n g p ower i n w a tt s14 m i = V * I ; / / i n p u t po we r i n w a tt s15 C l = m i - D p ; // c o pp er l o s s e s i n w at t s16 m o = D p - s l ; / / o ut p ut o f m oto r17 b h p = m o / 7 4 6 ; // h o r se power i n bhp18 T a = ( 9 . 5 5 * E b * I ) / r p m ; // t o t a l t or qu e i n Nm19 T s = ( b h p * 6 0 * 7 4 6 ) / ( 2 * % p i * r p m ) ; // s h a f t t or qu e i n Nm20 disp ( T s , s h a f t t or qu e i n Nm)

    Scilab code Exa 8.5.f lost torque

    1 / / Example 8 . 5 . f / / l o s t t o r q ue2 clc ;

    60

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    62/98

    3 clear ;

    4 close ;5 V = 2 3 0 ; // i n v o l t s6 I = 6 0 ; / / i n a mp er es7 r p m = 9 5 5 ; / / t u r n s8 r a = 0 . 2 ; // r e s i s t a n c e o f a rm at u re i n ihms9 r s h = 0 . 1 5 ; / / s h u n t f i e l d i n ohms

    10 s l = 6 0 4 ; // s t ra y l o s s e s i n w a tt s11 R m = r a + r s h ; / / i n ohms12 E b = ( V - I * R m ) ; // back emf i n v o l t s13 D p = E b * I ; // d r i v i n g p ower i n w a tt s14 m i = V * I ; / / i n p u t po we r i n w a tt s

    15 C l = m i - D p ; // c o pp er l o s s e s i n w at t s16 m o = D p - s l ; / / o ut p ut o f m oto r17 b h p = m o / 7 4 6 ; // h o r se power i n bhp18 T a = ( 9 . 5 5 * E b * I ) / r p m ; // t o t a l t or qu e i n Nm19 T s = ( b h p * 6 0 * 7 4 6 ) / ( 2 * % p i * r p m ) ; // s h a f t t or qu e i n Nm20 T l = T a - T s ; // l o s t t or qu e i n Nm21 disp ( T l , l o s t t or qu e i n Nm)

    Scilab code Exa 8.5.g commercial efficiency

    1 // Example 8 . 5 . g // c o mm er ci al e f f i c i e n c y2 clc ;

    3 clear ;

    4 close ;

    5 V = 2 3 0 ; // i n v o l t s6 I = 6 0 ; / / i n a mp er es7 r p m = 9 5 5 ; / / t u r n s8 r a = 0 . 2 ; // r e s i s t a n c e o f a rm at u re i n ihms

    9 r s h = 0 . 1 5 ; / / s h u n t f i e l d i n ohms10 s l = 6 0 4 ; // s t ra y l o s s e s i n w a tt s11 R m = r a + r s h ; / / i n ohms12 E b = ( V - I * R m ) ; // back emf i n v o l t s13 D p = E b * I ; // d r i v i n g p ower i n w a tt s

    61

  • 8/10/2019 Basic Electrical Engineering_P. S. Dhogal

    63/98

    14 m i = V * I ; / / i n p u t po we r i n w a tt s

    15 C l = m i - D p ; // c o pp er l o s s e s i n w at t s16 m o = D p - s l ; / / o ut p ut o f m oto r17 b h p = m o / 7 4 6 ; // h o r se power i n bhp18 T a = ( 9 . 5 5 * E b * I ) / r p m ; // t o t a l t or qu e i n Nm19 T s = ( b h p * 6 0 * 7 4 6 ) / ( 2 * % p i * r p m ) ; // s h a f t t or qu e i n Nm20 T l = T a - T s ; // l o s t t or qu e i n Nm21 n c = ( m o / m i ) * 1 0 0 ; // c om me rc ia l e f f i c i e n c y i n p e rc e n t ge22 disp ( n c , c om me rc ia l e f f i c i e n c y i n p e rc e nt g e )

    Scilab code Exa 8.6 current taken

    1 / / Exam ple 8 . 6 / / c u r r e n t2 clc ;

    3 clear ;

    4 close ;

    5 V = 2 2 0 ; // i n v o l t s6 I = 6 0 ; / / i n a mp er es7 r p m = 7 2 8 ; / / t u r n s8 T s = 1 5 0 ; // s h a f t t or qu e i n Nm

    9 n c = 8 0 ; // c o mm er ci al e f f i c i e n c y i n p e rc e nt g e10 I = ( ( T s * 2 *