Balan Irina 1

download Balan Irina 1

of 27

description

Determinants of inflation in romania

Transcript of Balan Irina 1

  • Dissertation paperDeterminants of inflation in RomaniaStudent: Balan IrinaSupervisor: Professor Moisa AltarACADEMY OF ECONOMIC STUDIESDOCTORAL SCHOOL OF FINANCE AND BANKING

  • Contents Literature review The data Estimating the inflation rate CPI model PPI model Concluding remarks

  • LITERATURE REVIEW using cointegration and error-correction models Domac I. and Elbirt C. (1998) argue that the roots of Albanian inflation are rahter conventional: inflation is positively associated with money growth and exchange rates but negatively with real income Brada and Kutan (1999) - the Czech Republic, Hungary and Poland - import price changes play the most important role in explaining inflation dynamics, while nominal wage growth and money supply are quantitatively unimportant Nikolic M. (2000) estimated the determinants of Russian inflation in a single equation framework - money growth is a core determinant of Russian inflation Golinelli R. and Orsi R. (2002) - analysed the determinants of the inflation rate in the Czech Republic, Hungary and Poland and they found that the exchange rate is the main long term factor influencing domestic prices, and can be seen to be the common inflation-adjusting mechanism utilised in all three countries

  • Chart1

    5.1

    174.5

    210.4

    256.1

    136.7

    32.3

    38.8

    154.8

    59.1

    45.8

    45.7

    34.9

    17.8

    14

    Romania

    Figure 1: Anual inflation rate in Romania (%)

    Sheet1

    199019911992199319941995199619971998199920002001

    Czech Republic10.856.711.220.8109.18.88.510.72.13.94.7

    Hungary28.9352322.518.828.223.618.314.3109.89.2

    Poland585.870.34335.332.227.819.914.911.87.310.15.5

    Romania5.1174.5210.4256.1136.732.338.8154.859.145.845.734.9

    19911992199319941995199619971998199920002001

    Czech Republic56.711.220.8109.18.88.510.72.13.94.7

    Hungary352322.518.828.223.618.314.3109.89.2

    Poland70.34335.332.227.819.914.911.87.310.15.5

    Romania174.5210.4256.1136.732.338.8154.859.145.845.734.9

    19901991199219931994199519961997199819992000200120022003

    Romania5.1174.5210.4256.1136.732.338.8154.859.145.845.734.917.814

    Sheet1

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    Czech Republic

    Hungary

    Poland

    Romania

    Sheet2

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Romania

    Anual inflation rate in Romania (%)

    Sheet3

  • THE DATA (all variables in logarithms)

    quarterly data sample: 1991:1 - 2003:4 source: National Bank of Romania, Romanian Institute of Statistics p - Consumer Price Index (fixed base 1996=100) p_ppi - Producer Price Index (fixed base 1996=100) m - broad money (M2) w - nominal wages y - industrial production index (fixed base 1996=100) e - nominal exchange rate (ROL/USD)

  • THE GOAL

    to estimate the determinants of inflation

    methods: Cointegration technique, VAR and VEC models

  • Estimating the inflation rate

    unit root tests

    Variable

    ADF

    PP

    p

    p_ppi

    m

    w

    y

    e

    I(1)

    I(1)

    I(1)

    I(1)

    I(1)

    I(1)

    I(1)

    I(1)

    I(1)

    I(1)

    I(1)

    I(1)

    I(1)

    I(1)

  • Estimating the inflation rate

    VAR analysis Johansen cointegration testUnrestricted Cointegration Rank TestHypothesizedTrace5 Percent1 PercentNo. of CE(s)EigenvalueStatisticCritical ValueCritical ValueNone ** 0.671155 144.7644 87.31 96.58At most 1 ** 0.516027 90.26820 62.99 70.05At most 2 ** 0.429085 54.70761 42.44 48.45At most 3 * 0.296258 27.24240 25.32 30.45At most 4 0.185047 10.02659 12.25 16.26 *(**) denotes rejection of the hypothesis at the 5%(1%) level Trace test indicates 4 cointegrating equation(s) at the 5% level Trace test indicates 3 cointegrating equation(s) at the 1% levelHypothesizedMax-Eigen5 Percent1 PercentNo. of CE(s)EigenvalueStatisticCritical ValueCritical ValueNone ** 0.671155 54.49624 37.52 42.36At most 1 * 0.516027 35.56059 31.46 36.65At most 2 * 0.429085 27.46521 25.54 30.34At most 3 0.296258 17.21581 18.96 23.65At most 4 0.185047 10.02659 12.25 16.26 *(**) denotes rejection of the hypothesis at the 5%(1%) level Max-eigenvalue test indicates 3 cointegrating equation(s) at the 5% level Max-eigenvalue test indicates 1 cointegrating equation(s) at the 1% levelA. CPI model

  • impulse response functions variance decomposition Variance Decomposition of P: PeriodS.E.PEMWY 1 0.056720 100.0000 0.000000 0.000000 0.000000 0.000000 2 0.114275 93.85281 2.451476 2.716686 0.892874 0.086158 3 0.158674 87.38295 3.384578 3.737108 4.504839 0.990522 4 0.192170 80.12246 4.351817 3.949469 9.803749 1.772504 5 0.214628 74.43547 5.603106 3.842002 13.63369 2.485737 6 0.230038 70.31289 6.864842 3.870439 15.82085 3.130981 7 0.241042 67.40471 7.922160 4.046781 16.91413 3.712217 8 0.249382 65.35814 8.715221 4.348139 17.40862 4.169876 9 0.256012 63.91147 9.275760 4.725601 17.60252 4.484657 10 0.261499 62.87060 9.657330 5.134743 17.67093 4.666394

  • SHORT-RUN DYNAMICS VEC representationD(P) = C(1)*( P(-1) - 1.170937515*W(-1) + 0.2982640716*Y(-1) + 0.002647872491*(@TREND(91:1)) + 8.729001573 ) + C(2)*( E(-1) - 1.222579591*W(-1) + 0.03272644293*Y(-1) - 0.008874279592 *(@TREND(91:1)) + 7.60235849 ) + C(3)*( M(-1) - 1.069243511 *W(-1) - 0.7280624046*Y(-1) - 0.006766951579*(@TREND(91:1)) + 0.0527490756 ) + C(4)*D(P(-1)) + C(5)*D(P(-2)) + C(6)*D(P(-3)) + C(7)*D(E(-1)) + C(8)*D(E(-2)) + C(9)*D(E(-3)) + C(10)*D(M(-1)) + C(11)*D(M(-2)) + C(12)*D(M(-3)) + C(13)*D(W(-1)) + C(14)*D(W( -2)) + C(15)*D(W(-3)) + C(16)*D(Y(-1)) + C(17)*D(Y(-2)) + C(18) *D(Y(-3)) + C(19)

  • R2 0.906Adj. R2 0.848

    Coefficient

    Std. Error

    t-Statistic

    Prob.

    C(1)

    -0.814528

    0.218811

    -3.722515

    0.0008

    C(2)

    0.270003

    0.071490

    3.776815

    0.0007

    C(3)

    0.121931

    0.106420

    1.145753

    0.2613

    D(p(-1))

    0.668933

    0.207208

    3.228324

    0.0031

    D(p(-2))

    0.507886

    0.209492

    2.424367

    0.0218

    D(p(-3))

    0.054800

    0.170047

    0.322264

    0.7496

    D(e(-1))

    0.029440

    0.103609

    0.284145

    0.7783

    D(e(-2))

    -0.371292

    0.094693

    -3.921026

    0.0005

    D(e(-3))

    -0.126947

    0.109797

    -1.156195

    0.2570

    D(m(-1))

    0.171201

    0.167383

    1.022807

    0.3149

    D(m(-2))

    0.280404

    0.130784

    2.144025

    0.0405

    D(m(-3))

    0.036422

    0.174237

    0.209038

    0.8359

    D(w(-1))

    -0.064621

    0.201443

    -0.320789

    0.7507

    D(w(-2))

    -0.058450

    0.170338

    -0.343144

    0.7340

    D(w(-3))

    -0.090983

    0.128050

    -0.710530

    0.4831

    D(y(-1))

    0.401300

    0.164282

    2.442748

    0.0209

    D(y(-2))

    0.143692

    0.182006

    0.789487

    0.4362

    D(y(-3))

    -0.128014

    0.158577

    -0.807269

    0.4261

    constant

    -0.012510

    0.044949

    -0.278315

    0.7827

  • residual tests

    Breusch-Godfrey Serial Correlation LM Test:

    F-statistic

    1.293750

    Probability

    0.299182

    Obs*R-squared

    12.11215

    Probability

    0.059513

    ARCH Test:

    F-statistic

    0.191267

    Probability

    0.663956

    Obs*R-squared

    0.198922

    Probability

    0.655592

  • stability test

  • In-sample fit for the model

  • B. PPI model VAR analysis Johansen cointegration test

    Unrestricted Cointegration Rank Test

    Hypothesized

    Trace

    5 Percent

    1 Percent

    No. of CE(s)

    Eigenvalue

    Statistic

    Critical Value

    Critical Value

    None **

    0.565996

    114.6477

    87.31

    96.58

    At most 1 **

    0.524582

    72.91269

    62.99

    70.05

    At most 2

    0.289215

    35.73466

    42.44

    48.45

    At most 3

    0.210171

    18.66540

    25.32

    30.45

    At most 4

    0.128351

    6.868447

    12.25

    16.26

    *(**) denotes rejection of the hypothesis at the 5%(1%) level

    Trace test indicates 2 cointegrating equation(s) at both 5% and 1% levels

    Hypothesized

    Max-Eigen

    5 Percent

    1 Percent

    No. of CE(s)

    Eigenvalue

    Statistic

    Critical Value

    Critical Value

    None *

    0.565996

    41.73502

    37.52

    42.36

    At most 1 **

    0.524582

    37.17803

    31.46

    36.65

    At most 2

    0.289215

    17.06926

    25.54

    30.34

    At most 3

    0.210171

    11.79696

    18.96

    23.65

    At most 4

    0.128351

    6.868447

    12.25

    16.26

    *(**) denotes rejection of the hypothesis at the 5%(1%) level

    Max-eigenvalue test indicates 2 cointegrating equation(s) at the 5% level

    Max-eigenvalue test indicates no cointegration at the 1% level

  • impulse response functions variance decomposition

    Period

    S.E.

    P_PPI

    E

    M

    W

    Y

    1

    0.069582

    100.0000

    0.000000

    0.000000

    0.000000

    0.000000

    2

    0.132047

    88.09193

    9.452873

    1.196678

    1.136262

    0.122255

    3

    0.160008

    80.59072

    11.80334

    2.924426

    4.138142

    0.543368

    4

    0.173924

    73.40588

    13.48070

    4.025327

    8.628089

    0.460004

    5

    0.181116

    68.70436

    14.89957

    4.407568

    11.42647

    0.562037

    6

    0.186366

    65.53107

    16.35004

    4.608071

    12.80272

    0.708098

    7

    0.191102

    63.22293

    17.86279

    4.758302

    13.43549

    0.720491

    8

    0.196033

    61.31825

    19.29533

    4.911243

    13.79045

    0.684724

    9

    0.200990

    59.66170

    20.56622

    5.058059

    14.04124

    0.672784

    10

    0.205728

    58.21028

    21.66202

    5.196492

    14.23669

    0.694517

  • SHORT-RUN DYNAMICS VEC representationD(P_PPI) = C(1)*( P_PPI(-1) - 2.48984122*M(-1) + 1.410028341*W(-1) + 1.007226247*Y(-1) + 0.006980471507*(@TREND(91:1)) + 14.88603259 ) + C(2)*( E(-1) - 2.47182148*M(-1) + 1.338029779 *W(-1) + 1.185997149*Y(-1) + 0.01758795447*(@TREND(91:1)) + 11.13242619 ) + C(3)*D(P_PPI(-1)) + C(4)*D(P_PPI(-2)) + C(5) *D(P_PPI(-3)) + C(6)*D(E(-1)) + C(7)*D(E(-2)) + C(8)*D(E(-3)) + C(9)*D(M(-1)) + C(10)*D(M(-2)) + C(11)*D(M(-3)) + C(12)*D(W(-1)) + C(13)*D(W(-2)) + C(14)*D(W(-3)) + C(15)*D(Y(-1)) + C(16)*D(Y( -2)) + C(17)*D(Y(-3)) + C(18)

  • R2 0.933Adj. R2 0.895

    Coefficient

    Std. Error

    t-Statistic

    Prob.

    C(1)

    -0.606827

    0.109469

    -5.543350

    0.0000

    C(2)

    0.551595

    0.097025

    5.685050

    0.0000

    D(p_ppi(-1))

    0.390650

    0.148409

    2.632246

    0.0133

    D(p_ppi(-2))

    0.608079

    0.173151

    3.511839

    0.0014

    D(p_ppi(-3))

    -0.030612

    0.079954

    -0.382868

    0.7045

    D(e(-1))

    0.132318

    0.111346

    1.188350

    0.2440

    D(e(-2))

    -0.513438

    0.115565

    -4.442835

    0.0001

    D(e(-3))

    -0.493779

    0.130951

    -3.770710

    0.0007

    D(m(-1))

    0.102157

    0.136725

    0.747170

    0.4608

    D(m(-2))

    -0.188631

    0.107790

    -1.749980

    0.0903

    D(m(-3))

    0.155841

    0.112735

    1.382366

    0.1771

    D(w(-1))

    0.285759

    0.111475

    2.563428

    0.0156

    D(w(-2))

    -0.029445

    0.126186

    -0.233344

    0.8171

    D(w(-3))

    0.013717

    0.101413

    0.135256

    0.8933

    D(y(-1))

    -0.239335

    0.166358

    -1.438673

    0.1606

    D(y(-2))

    -0.067026

    0.135804

    -0.493547

    0.6252

    D(y(-3))

    -0.370331

    0.158653

    -2.334221

    0.0265

    constant

    0.066437

    0.029255

    2.270930

    0.0305

  • residual test

    Breusch-Godfrey Serial Correlation LM Test:

    F-statistic

    1.290639

    Probability

    0.290960

    Obs*R-squared

    4.051542

    Probability

    0.131892

    ARCH Test:

    F-statistic

    0.712090

    Probability

    0.403214

    Obs*R-squared

    0.732153

    Probability

    0.392186

  • stability test

  • In-sample fit for the model

  • Conclusions the empirical results indicate that there is a long-run equilibrium relantionship between prices and e, m, w and y; the findings show that in the long run inflation in Romania is positively related to the nominal exchange rate, money growth and nominal wage growth, while it is negatively related to the output (proxied by the industrial production index); in terms of the magnitude of effects shocks to wages and nominal exchange rate have relatively larger impacts on prices; the empirical findings from the error-correction model showed that inflation adjusts to its equilibrium fairly rapidly; in the short run inflation is determined by its past values, the exchange rate and by the output;

  • the significant and negative coefficient on the variable of the nominal exchange rate implies that the appreciation of the Romanian leu in the transition period has contributed to reducing inflation; in the CPI model, in the short run, inflation is also determined by the money supply while in the PPI model moeny doesnt affect inflation; in the CPI model, in the short run, wages doesnt influence inflation, while in the PPI model it does.

  • REFERENCES:

    Arratibel Olga, Rodriguez-Palenzuela Diego, Thimann Christian (2002)- Inflation dynamics and dual inflation in accession countries: A new keynesian perspective , ECB WP. Brada Josef, King Arthur E.,. Kutan Ali M. (2000) - Inflation bias and productivity shocks in transitions economies: The case of the Czech Republic, ZEI WP. Bertocco Giancarlo, Fanelli Luca, Paruolo Paolo (2002)- On the determinants of inflation in Italy: evidence of cost-push effects before the European Monetary Union. Enders Walter Applied Econometric Time Series, JohnWiley $ Sons, Inc. Engle R. F.,. Granger C. W. J (1987)- Cointegration and error correction: representation, estimation and testing , Econometrica. Gali J., Gertler M., Lopez-Salido J. D. (2001) - European inflation dynamics, European Economic Review. Gerlach Stefan, Svensson Lars E. O. (2000)- Money and inflation in the euro area: A case for monetary indicators?, NBER WP. Golinelli Roberto, Orsi Renzo (2002) - Modelling inflation in EU accession countries: The case of the Czech Republic, Ezoneplus WP.

  • Golinelli R., Orsi R. (1998)- Exchange rate, inflation and unemployment in East European economies: the case of Poland and Hungary. Golinelli R., Rovelli R.( 2001) - Painless disinflation? Monetary policy rules in Hungary (1991 - 1999). Hamilton James, D. (1994) Time Series Analysis, Princeton University Press. Hubrich Kirstin (Aug. 2003)- Forecasting euro area inflation: does aggregating forecast accuracy? , ECB WP. Johansen Soren (1991) Estimation and Hypothesis Testing of Contegration Vectors in Gaussian Vector Autoregressive Models, Econometrica, vol. 59, No. 6. Kim Byung-Yeong (2001)- Determinants of inflation in Poland: A structural cointegration approach, Bofit Discussion Papers. Lyziak Tomasz (2003) - Consumer inflation expectations in Poland, ECB WP. Mohanty M. S., Klan Marc - What determines inflation in emerging market economies?, BIS WP;

  • CPI model

    Pairwise Granger Causality Tests

    Null Hypothesis:

    Obs

    F-Statistic

    Probability

    E does not Granger Cause P

    50

    5.30421

    0.00854

    P does not Granger Cause E

    0.57743

    0.56544

    M does not Granger Cause P

    50

    7.63532

    0.00140

    P does not Granger Cause M

    2.36732

    0.10531

    W does not Granger Cause P

    50

    3.24510

    0.04825

    P does not Granger Cause W

    7.33230

    0.00175

    Y does not Granger Cause P

    50

    0.06496

    0.93720

    P does not Granger Cause Y

    2.15490

    0.12773

    M does not Granger Cause E

    50

    1.44232

    0.24710

    E does not Granger Cause M

    4.00100

    0.02516

    W does not Granger Cause E

    50

    1.82747

    0.17255

    E does not Granger Cause W

    6.31042

    0.00384

    Y does not Granger Cause E

    50

    1.73196

    0.18852

    E does not Granger Cause Y

    0.42012

    0.65952

    W does not Granger Cause M

    50

    4.28134

    0.01986

    M does not Granger Cause W

    0.03292

    0.96764

    Y does not Granger Cause M

    50

    0.27489

    0.76092

    M does not Granger Cause Y

    0.41005

    0.66607

    Y does not Granger Cause W

    50

    0.99528

    0.37761

    W does not Granger Cause Y

    3.67962

    0.03311

  • PPI model

    Null Hypothesis:

    Obs

    F-Statistic

    Probability

    E does not Granger Cause P_PPI

    50

    11.1745

    0.00011

    P_PPI does not Granger Cause E

    0.21038

    0.81107

    M does not Granger Cause P_PPI

    50

    8.90000

    0.00055

    P_PPI does not Granger Cause M

    1.69156

    0.19574

    W does not Granger Cause P_PPI

    50

    5.61756

    0.00664

    P_PPI does not Granger Cause W

    3.12871

    0.05343

    Y does not Granger Cause P_PPI

    50

    0.68804

    0.50777

    P_PPI does not Granger Cause Y

    0.36211

    0.69821

    M does not Granger Cause E

    50

    1.44232

    0.24710

    E does not Granger Cause M

    4.00100

    0.02516

    W does not Granger Cause E

    50

    1.82747

    0.17255

    E does not Granger Cause W

    6.31042

    0.00384

    Y does not Granger Cause E

    50

    1.73196

    0.18852

    E does not Granger Cause Y

    0.42012

    0.65952

    W does not Granger Cause M

    50

    4.28134

    0.01986

    M does not Granger Cause W

    0.03292

    0.96764

    Y does not Granger Cause M

    50

    0.27489

    0.76092

    M does not Granger Cause Y

    0.41005

    0.66607

    Y does not Granger Cause W

    50

    0.99528

    0.37761

    W does not Granger Cause Y

    3.67962

    0.03311