B. Liscic · H. M. Tensi · W Luty - Springer978-3-662-01596-4/1.pdf · B. Liscic · H. M. Tensi ·...

14

Transcript of B. Liscic · H. M. Tensi · W Luty - Springer978-3-662-01596-4/1.pdf · B. Liscic · H. M. Tensi ·...

B. Liscic · H. M. Tensi · W Luty (Eds.)

Theory and Technology of Quenching

AHandbook

With 379 Figures and 43 Tables

Springer Science+ Business Media, LLC

Professor Dr.-Ing. Bozidar LisCic University of Zagreb Faculty of Mech. Engineering Dept. for Material Science, Djure Salaja 1

HR-41001 Zagreb

Professor Dr.-Ing. Hans M. Tensi Technical University of Munich Institute for Materials and Processing Sciences Arcisstr. 21

W-8000 München 2 (FRG)

Professor DrAng. Wacl'aw Luty Institute of Precision Mechanics ul. Duchnicka 3

ISBN 978-3-662-01598-8 Springer Science+Business Media New York ISBN 978-3-662-01598-8 ISBN 978-3-662-01596-4 (eBook) DOI 10.1007/978-3-662-01596-4

Library of Congress Cataloging-in-Publication Data Theory and technology of quenching / B. Li§cic, H. M. Tensi, W. Luty (eds.). p. cm. ISBN 3-540-52040-6 (Berlin : acid-free paper) ISBN 0-387-52040-6 (New York : acid-free paper) 1. Metals--Quenching. I. Liscic, B. (BoZidar) 11. Tensi, H. M. III. Luty, W. TN672.T48 1991 671.3'6--dc20 91-25653 CIP

This work is subject to copyright. All rights are reserved, whether the whole or part of the materials is concemed, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its current version and a copyright fee must always be paid. Viola­tions fall under the prosecution act of the German Copyright Law.

© Springer Science+Business Media New York 1992 Originally published by Springer-Verlag New York 1992

The use ofregistered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regula­tions and therefore free for general use.

61/3020-5432 1 0 - Printed on acid-free paper

Preface

Heat treatment of metallic alloys constitutes an important step within the production process. The heat treatment process itself is considered as a cycle of heating the workpieces to a predetermined temperature, keeping them at this temperature for the time period required, and cooling them to room temperature in an appropriate way.

The process of heating and keeping workpieces at the required temperature is now­adays weil mastered and mostly automatized. The process of cooling or quenching which determines actually the resulting properties, is handicapped with many physical and technical uncertainties. Good results can already be obtained predominantly by using empirically based practice. But increased demands on the properties of the pro­ducts as weIl as demands on safety and environment conditions of the quenching media require efforts to investigate the details of the quenching process and to transfer the results of the research to practical application.

Advances in the knowledge about quenching processes have been achieved by modem applied thermodynamics especially by the heat and mass transfer researches; further the application of computer technology was helpful to new approaches in quenching pro­cesses.

Special emphases has been given to:

- The theory of heat transfer and heat exchange intensification during quenching - Wetting kinematics - Residual stresses after quenching - Determination of the quenching intensity - Prediction of microstructural transformation and hardness distribution after quenching,

the latter with some limitations.

The idea to write this book originated with the Technical Committee: "Scientific and Technological Aspects of Quenching" of the INTERNATIONAL FEDERA TION FOR HEAT TREATMENT AND SURFACE ENGINEERING (lFHT).

While the development of quenching media is pushed on by the chemical industry, the deveiopment of quenching techniques lies with heat treatment equipment manufac­turers. The above named Committee deals primarily with standardization of methods for testing the quenching intensity (cooling power) of different quenchants in labora­tory and in practical conditions, as weil as with the upgrading of the theoretical expla­nations of different quenching phenomena.

As a consequence of the multidisciplinary approach of the very complicated process of quenching, 17 authors from 6 different countries, have contributed to this book. Only in this way we have been able to deal with this specific matter from many different aspects.

VI Preface

Being aware of the very intensive research going on during the recent years in the field of quenching we would be grateful for every further comments or suggestions.

Zagreb München Warszawa, February 1992

B. LisCic H. M. Tensi W. Luty

Table of Contents

1 Transformation of Steels During Cooling

1.1 1.2 1.3 1.3.1 1.3.2 1.3.2.1 1.3.2.2 1.3.2.3 1.3.2.4 1.3.2.5 1.3.2.6 1.3.3 1.3.4 1.3.4.1 1.3.4.2 1.3.4.3 1.4 1.4.1 1.4.2 1.4.3 1.5 1.6

2

2.1 2.2

2.2.1 2.2.2 2.3

By H. P. Hougardy .................................. .

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Constitution of Iron Alloys ............................. . Kinetics of Transformation ............................. . Principles ........................................ . Microstructures of Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Types of Microstructure ............................... . Ferrite and Pearlite .................................. . Martensite ........................................ . Bainite .......................................... . Influence of Transformation Temperature ..................... . Tempering ........................................ . Mechanical Properties of Microstructures . . . . . . . . . . . . . . . . . . . . . . Transformation Diagrams .............................. . Austenitization ..................................... . Isothermal Transformation .............................. . Transformation During Continuous Cooling ................... . Factors Influencing the Transformation ...................... . Austenitizing Conditions ............................... . Cooling Rate ...................................... . Alloying Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of Transformation in Components .................. . Ca1culation of Transformation and Properties .................. . References ....................................... .

Mechanical Properties of Ferrous and Nonferrous Alloys After Quenching By H. J. Spies ................................... .

Objectives of Quenching ............................ . Influence of Heat Treatment Structures on the Mechanical Properties .............................. . Ferrous Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Precipitation-Hardenable Aluminium Alloys ................ . Characterization of Transformation Behaviour ............... . References ..................................... .

3 3 4 4 4 5 7

11 11 12 12 12 14 15 15 15 15 15 16 17 17

19

19

21 21 29 33 39

VIII Table of contents

3 Thermo- and Fluiddynamic Principles of Heat Transfer During Cooling By F. Mayinger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 41

3.1 Phenomena of Reat Transfer During Immersion Cooling . . . . . . . . .. 41 3.2 Single Phase Convection ............................. 48 3.2.1 Reat Transfer Equations for Forced Convection ............... 53 3.2.2 Reat Transfer Equations for Natural Convection ............... 54 3.3 Two Phase Reat Transfer ............................. 55 3.3.1 Free Convection Boiling ............................. 55 3.3.2 Forced Convection Boiling ............................ 57 3.3.3 Reat Transfer with Film Boiling . . . . . . . . . . . . . . . . . . . . . . . .. 63 3.3.4 Transition Boiling ................................. 65 3.3.5 Critical Reat Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 66 3.3.6 Immersion Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 67

List of Symbols ................ . . . . . . . . . . . . . . . . . .. 69 List of Subscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 71

4 Heat Transfer During Cooling of Heated Metallic Objects with Evaporating Liquids By R. Jeschar, E. Specht and Chr. Köhler ................... 73

4.1 Mechanism of Reat Transfer ........................... 73 4.2 Film Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75 4.3 Immersion Quenching .............. . . . . . . . . . . . . . . . .. 81 4.4 Spray Quenching .................................. 89

References ...................... . . . . . . . . . . . . . . .. 92

5 Wetting Kinematics By R. M. Tensi .......................... . 91

5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 93 5.2 Definition of the Wetting Process ........................ 93 5.3 Model of Vapour Blanket Breakdown During Immersion Cooling of

Metallic Bodies ................................... 97 5.4 Effect ofWetting Process on Cooling Behaviour . . . . . . . . . . . . . .. 99 5.5 Impact of Quenchant Properties on Wetting Process . . . . . . . . . . . .. 102 5.6 Impact of Sampie Properties on Wetting Process . . . . . . . . . . . . . .. 110 5.7 Summary ....................................... 114 5.8 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 115

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 116

6 Residual Stresses After Cooling By E. Macherauch and O. Vöhringer 117

6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 117 6.2 Some Fundamentals ................................ 119 6.2.1 Definitions of Residual Stresses ......................... 119 6.2.2 Quenching of Steel Cylinders .......................... 123 6.2.3 Transformation Processes of Austenitized Steels During Quenching ... 127

Table of contents IX

6.3

6.3.1

6.3.2

6.3.3 6.4

6.4.1 6.4.2

6.4.3

6.5 6.5.1 6.5.2 6.6

6.6.1 6.6.2 6.7

6.7.1 6.7.2

Stresses During Quenching of Cylinders with Ideal Linear-Elastic Deformation Behaviour Shrinking Stresses Due to Local and Temporal Differences in

133

Thermal Shrinking ................................. 133 Transformation Stresses Due to Local and Temporal Stresses in Phase Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 135 Superposition of Shrinking and Transformation Stresses .......... 136 Residual Stresses After Quenching of Cylinders with Real Elastic-Plastic Deformation Behaviour . . . . . . . . . . . . . . . . .. 137 Plastic Deformations Due to Shrinking and Phase Transformations . . .. 137 General Aspects of Shrinking, Transformation and Hardening Residual Stresses ........................... 139 Characteristic Examples of Stresses and Residual Stresses in Differently Quenched Plain Carbon and Low Alloy Steels ......... 147 Residual Stresses After Quenching of Carburized Steels .......... 155 Some Fundamentals ................................ 155 Characteristic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 161 Residual Stresses After Quenching of Steels with Induction Heated Surface Layers ........................ 168 Quenching Without Transformation. . . . . . . . . . . . . . . . . . . . . .. 168 Quenching Combined with Transformation .................. 169 Residual Stresses After Self-Quenching of Steels with Laser-Heated Surface Layers ................................... 174 Quenching After Austenitizing . . . . . . . . . . . . . . . . . . . . . . . . .. 174 Quenching After Melting ............................. 178 References ...................................... 180

7 Effect of W orkpiece Surface Properties on Cooling Behaviour By F. Moreaux and G. Beck ........................... 182

7.1 Effect of Quenching Conditions on Liquid Vaporization Types ...... 182 7.1.1 Transition Between Film-Boiling and Nudeate-Boiling . . . . . . . . . .. 183 7.1.2 Instability of Film-Boiling in Sub-Cooled Water . . . . . . . . . . . . . .. 184 7.1.3 Cooling Law Ca1culation ............................. 189 7.2 Influence on the Workpiece Surface's Thermophysical Properties 191 7.2.1 Influence of the Initial Workpiece-Liquid Contact on the

Cooling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 191 7.2.2 Surface Thermal Resistance Effect on the Cooling Process . . . . . . . .. 196 7.2.3 Influence of the Surface Condition on the Cooling Process ......... 200 7.3 Quenching Control by Adding a Solute to the Water ............. 200 7.3.1 Aqueous Solutions ofInorganic Solutes .................... 200 7.3.2 Organic Polymer Aqueous Solution ....................... 202

References ...................................... 206

8 Determination of Quenching Power of Various Fluids . . . . . . . . . . 208

8.1 Methods and Standards for Laboratory Tests of Liquid Quenchants By H. M. Tensi ................................... 208

8.1.1 Laboratory Test for Industrial Quenching Oils ................ 209

x Table of contents

8.1.2 Laboratory Test for Industrial Polymer Quenchants ............. 210 8.1.3 Representation of Results ............................. 218

References ...................................... 218 List of Symbols ................................... 219

8.2 Concept of the Grossmann' s H-Value and its Shortcomings By B. Liscic ..................................... 219

8.2.1 Theoretical Background and Definition of the "Quenching Severity H" . 219 8.2.2 The Use and Evaluation of H-Values ...................... 221 8.2.3 Shortcomings of the H-Value .......................... 227 8.3 Practical Problems when Measuring Temperature

Within Quenching Specimens By B. LisCic ..................................... 232

8.4 Measurement and Recording of the Quenching Intensity in Workshop Practice Based on Heat-Flux-Density By B. LisCic ..................................... 234

8.4.1 Concept and Aims of the Temperature Gradient Method .......... 234 8.4.2 Description of the Method ............................ 235 8.5 Definition and Evaluation of the Quenching Intensity

By B. LisCic ..................................... 243 8.6 Possibilities of Automatic Control of the Quenching Process

By B. Liscic ..................................... 244 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

9 Types of Cooling Media and Their Properties By W. Luty ..................................... 248

9.1 Required Properties ................................ 248 9.2 General Classification and Comparison of Quenchants ........... 249 9.3 Water as a Quenching Medium ......................... 254 9.3.1 General Characteristic ............................... 254 9.3.2 Effect of the Temperature of Quenching Water upon its Quenching Power 256 9.3.3 Effect of Agitation Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 9.3.4 Effect of Water Contamination . . . . . . . . . . . . . . . . . . . . . . . . . . 259 9.4 Water Solutions ofNon-Organic Salts and Alkali .............. 260 9.5 Water-Oil Emulsions ................................ 263 9.6 Aqueous Polymer Solutions ........................... 266 9.6.1 General Characteristic ............................... 267 9.6.2 Performance Characteristics ........................... 274 9.6.3 How to Use Polymer Quenchants ........................ 277 9.7 Mineral Quenching Oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 9.7.1 Composition of Quenching Oils ......................... 281 9.7.2 Classification and General Description of Quenching Oils ......... 285 9.7.3 Physical and Chemical Properties ........................ 287 9.7.4 Quenching Power of Oils ............................. 291 9.7.5 Effects ofOils Temperature and Agitation ................... 295 9.7.6 Contamination of Quenching Oils with Water ................ 297 9.7.7 Ageing Process in Quenching Oils ....................... 300 9.7.8 Hot Quenching Oils ................................ 301

Table of contents XI

9.7.9 9.7.10 9.8 9.8.1 9.8.2 9.8.3 9.8.4 9.9 9.9.1 9.9.2 9.10 9.10.1 9.10.2 9.10.3 9.10.4

10

10.1

10.2

Vacuum Quenching Oils ............................ 304 Fire Hazard and Safety Precautions ...................... 305 Saltbaths used in Martempering and Austempering ............. 307 General Description ................................ 307 Salpetre Salts .................................... 309 Martempering and Austempering in Molten Alkalis and A1kali-Salt-Baths 313 Safety Precautions when Using Salpetre Baths ................ 315 Gas Quenching ................. . .............. 316 Air Quenching ................. . .............. 316 In Situ Gas Quenching in Vacuum Fumaces ....... . . . . . . . 317 Fluidized Quenching Beds ..... . . . . . . . . . . ...... 324 Fluidization Effect ....................... . . . . . . 324 General Description ................................ 325 Effect of Technological Factors on the Quenching Power . . . . .. 327 The Range of Application of Fluidized Beds ........ . . . . .. 334 References ...................................... 339

Techniques of Quenching 341

Immersion Cooling (Direct Quenching) By H. E. Boyer ................................... 341 Quenching Techniques By H. E. Boyer ............... . ............. 346

10.2.1 Interrupted Quenching Techniques ... . ............. 347 10.2.2 Rinse Quenching .................................. 347 10.2.3 Austempering .................................... 348 10.2.4 10.2.5 10.2.6

Martempering .................................... 351 Gas and Fog Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 Press and Cold Die Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . 356

10.2.7 Self Quenching ................................... 359 10.3 Computer Controlled Spray Cooling

By P. Archambau1t and F. Moreaux . . . . . . . . . . . . . . . . . . . . . .. 360 References ...................................... 366

10.4 Intensive Steel Quenching Methods By N. I. Kobasko .................................. 367

10.4.1 New Methods for Quenching Alloyed Stee1s Based on the Heat Exchange Intensification .......................... 367

10.4.1.1 Methods of Quenching Alloy Steel Parts . . . . . . . . . . . . . . . . . . .. 370 10.4.1.2 Stee1 Quenching Method Based on the Mechanism of Non-Stationary

Nucleate Boiling .................................. 374 10.4.1.3 Application of New Methods for Quenching Parts of

Complex Configuration .............................. 375 10.4.2 Reasoning for a Promotion of the Reliability of Parts of Machines and

Tools Which were Hardened with Intensive Quenching Methods ..... 380 10.4.3 Practical Use of New Quenching Methods and Perspective of Their Wide

Application in Industry, Based on the Development of New Equipment . 384 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

XII Table of contents

11 Prediction of Hardness Profile in W orkpiece, Based on Characteristic Cooling Parameters and Material Behaviour During Cooling . . . . . 390

11.1 Prediction of Hardening Behaviour U sing the Wetting Kinematics By H. M. Tensi ................................... 390

11.1.1 Possibilities and Limits to Predict the Hardening Behaviour ........ 390 11.1.2 Influence of Wetting on the Temperature Distribution during

Quenching ...................................... 392 11.1.3 Prediction of Hardening Behaviour U sing the Wetting Kinematics .... 394 11.1.3.1 Calculation ofthe Surface Hardness ...................... 395 11.1.3.2 Calculation of the Hardness Distribution in Cross-Section

of Cylindrical Specimens ............................. 399 11.1.3.3 Calculation of the Hardness Distribution in Specimens

of Optional Geometries .............................. 403 References ...................... . . . . . . . . . . . . . . . . 407 List of Symbols ................. . . . . . . . . . . . . . . . . 408

11.2 Predetermination of Hardness Results By B. Liscic ................................... 409

11.2.1 The QTA-Method ................................. 409 List of Symbols ............................. . . . . . . 418 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

11.2.2 Relations Between Cooling Curves and Hardness Distribution (after K. E. Thelning) ByB.Liscic ..................................... 419 References ..................................... 425

11.2.3 IVF Method for Classification of Quenching Oils By B. Liscic ..................................... 425 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

11.2.4 Prediction of Hardness Values based on Cooling Parameter By B. Liscic ..................................... 428 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

11.2.5 Method CETIM for Prediction of Hardening Power of Quenching Oils By B. Liscic ..................................... 436 References ...................................... 445

11.2.6 Calculation of Mechanical Properties According to Blondeau, Maynier, DoBet and VeiBard-Baron By T. Filetin .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

11.2.7 Own Databank for Quenching Intensities, Jominy Hardenability and Hardness Distribution on Test Specimens By T. Filetin ..................................... 450

11.2.8 Computer-Aided Prediction of Hardness Profile upon Quenching Using the Own Databank By T. Filetin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 References ...................................... 466

11.2.9 Prediction of Structural Constituents and Hardness Values upon Quenching by Using CCT-Diagrams By B. Liscic ..................................... 466

Table of contents XIII

References 476

Subject Index ... 477

Contributors

Dr. P. Archambault Universite de Nancy I, Ecole des Mines de Nancy, Laboratoire de Science et Genie des Materiaux Metalliques, Parc de Saurupt, F-54042 Nancy Cedex, France

H. E. Boyer (deceased) Formerly at Consulting Service Materials, Manufacturing Processes, 7935 Chagrin Road, Chagrin Falls, OH 44022, USA

Prof. Dr. G. Beck Universite de Nancy I, Ecole des Mines de Nancy, Laboratoire de Science et Genie des Materiaux Metalliques, Parc de Saurupt, F-54042 Nancy Cedex, France

Dr. T. Filetin University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Dept. of Materials Science, Djure Salaja I, 41001 Zagreb, Croatia

Prof. Dr. H. P. Hougardy Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße I, W-4000 Düsseldorf I, Federal Republic of Germany

Prof. Dr. R. Jeschar Technische Universität Clausthal, Institut für Energieverfahrenstechnik, Agricolastraße 4, W -3392 Clausthal-Zellerfeld, Federal Republic of Germany

Dr. N. T. Kobasko Head of Laboratory, Ukrainian Academy of Sciences, Institute of Engineering Thermophysics, Zelyaborstreet 2 A, 252057 Kiev, CIS

Prof. Dr. Boiidar Liscic University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Dept. of Materials Science, Djure Salaja I, 4\001 Zagreb, Croatia

XVI

Prof. Dr. W. Luty Instytut Mechaniki Precyzyjnej, ul. Duchnicka 3, skr. poczt. 11, PL-00967 Warszawa, Poland

Prof. Dr. E. Macherauch Universität Karlsruhe, Institut für Werkstoffkunde I, Kaiserstraße 12, W-7500 Karlsruhe, Federal Republik of Germany

Dr. F. Moreaux Universite de Nancy I, Ecole des Mines de Nancy, Laboratoire de Science et Genie des Materiaux Metalliques, Parc de Saurupt, F-54042 Nancy Cedex

Prof. Dr. E.-J. Spies Bergakademie Freiberg, Institut für Werkstofftechnik, 0-9200 Freiberg/Sachsen, Federal Republic of Germany

Prof. Dr. H. M. Tensi Technische Universität München, Institut für Werkstoffwissenschaften, Arcisstraße 21, W -8000 München 2, Federal Republic of Germany

Prof. Dr. O. Vöhringer Universität Karlsruhe, Institut für Werkstoffkunde I, Kaiserstraße 12, W-7500 Karlsruhe 1, Federal Republic of Gerrnany

Contributors