Austen)Brooks)Casey1,)Benjamin)Beach2,)Taylor)Tarlton2...

1
Hydrogel is generated Polymer strands are allowed to move and energy compared Par5cles are allowed to move and the energy compared un5l 10% of the total par5cles in the hydrogel are released The process starts all over. The simula5on con5nues 5ll 60% of all molecules are released or a predetermined volume frac5on of the hydrogel is achieved. Simula5ng the Diffusion of Nanopar5cles through Hydrogels Austen Brooks Casey 1 , Benjamin Beach 2 , Taylor Tarlton 2 , Divya Elumalai 2 , and Pedro Derosa 2,3 1 Department of Chemistry and Physics, Warren Wilson College 2 Ins<tute for Micromanufacturing , Louisiana Tech University 3 Department of Mathema<cs and Physics, Grambling State University Acknowledgements This material is based upon work supported by the Na5onal Science Founda5on under the NSF EPSCoR Coopera5ve Agreement No. EPS1003897 with addi5onal support from the Louisiana Board of Regents. Mo<va<on To create a code that tracks the diffusion of nanopar5cles (NPs) through a computa5onal model of a physical hydrogel Understand the contribu5on of various interac5ons to the diffusion of NP through a polymer network Introduc<on Physical hydrogels have many uses ranging from cell encapsula5on and 5ssue scaffolding, to drug delivery. These are transient polymer networks that rely on physical entanglements, ionic interac5ons, and hydrogenbonding as a means to resist dissolu5on. The degree and method of swelling is dependent upon the polymers that make up the hydrogel; that is, whether thermoresponsive or pH sensi5ve polymers are present. Methodology A random walk Monte Carlo algorithm is used to determine the most energe5cally favorable movements for the NP and polymer chains as the hydrogel swells or contracts. The model was executed using MATLAB to simulate the diffusion through a 1 μm 3 par55oned box containing a physical hydrogel. Van der Waal and Columbic interac5ons play in this process. A Java code was used to visualize the diffusion process through the polymer network. We consider the hydrodynamic radius of the solute/NPs diffusing out of the hydrogels The hydrogel considered is a generic physical hydrogel. Future Work Validate simula5ons with experimental data Build a model for crosslinked hydrogels Extend model for pH, temperature, and electromagne5c fields responsive hydrogels. Derive coefficients such as the molecular weight between crosslinks (M c ) and determine a predic5ve model to es5mate these coefficients Calculate how a change in coefficients, such as M c , influences diffusion through a hydrogel Conclusions A 3D coarse grain Monte Carlo model based on the Boltzmann transport was used to simulate the release profiles and diffusion of molecules into and out of physical hydrogels. In the case studied 20% of total NPs were released. The NPs undergo molecular diffusion in the system considered. The model developed is a promising alterna5ve to the computa5onally intensive molecular dynamics approach to simula5ng diffusion. References 1. Hoffman, Allan S. "Hydrogels for biomedical applica5ons." Advanced drug delivery reviews, 64 (2012): 1823. 2. Chang, Chunyu., Ang, Lue., and Lina, Zhang., "Effects of crosslinking methods on structure and proper5es of cellulose/PVA hydrogels." Macromolecular Chemistry and Physics, 209.12 (2008): 12661273. Figure 5: Flowchart detailing the methodology of the model used in this study ()=+>0 ||<,>0||< >0||< Figure 9: Visualiza5on of both solute and solvent molecules Figure 1: Schema5c representa5on of polymer orienta5on in physical and chemical hydrogels. Reproduced from ref [1]. Results Figure 2: SEM of chemical and physical PVA/cellulose hydrogel cross sec5ons Reproduced from ref [2]. Figure 8: Visualiza5on of NPs diffusing out of the hydrogel Figure 7: Visualiza5on of NPs diffusing into of the hydrogel For each new configura5on NPs are moved as follows: Par5cles are allowed to move in any random direc5on if the total energy of the system aier the move is less than or equal to the energy of the system before the move. If the total energy increases, the move is accepted with Boltzmann probability. Any move is rejected if the par5cle overlaps with any other par5cle or with any polymer strand. A new posi5on for the polymer strand is tested, using the force on it as a bias. Polymer strands are allowed to move if the total energy of the system aier the move is less than or equal to the energy of the system before the move. (including the energy associated with bending and stretching). If the total energy increases, the move is accepted with Boltzmann probability. Mo<on of Polymer Mo<on of Par<cles Total Energy of the System PolymerNP Interac5ons have contribu5ons from Coulombic and Van Der Waals interac=ons NP –NP interac=ons are accounted for by shielded Coulombic and Van Der Waals interac=ons Energy contribu5on due to temperature and other are considered using a Boltzmann probability Total Energy of the System Polymer – Polymer Interac5ons have contribu5ons from Coulombic and Van Der Waals interac=ons Energy associated with bending and stretching is also accounted for. Energy contribu5on due to temperature and other are considered using a Boltzmann probability Figure 3: Contribu5on of the polymer strands to the total energy of the system Figure 4: Contribu5on of the diffusing NPs to the total energy of the system Figure 6: Visualiza5on of the hydrogel model Figure 10: Release profile for the first 20% of NPs from a generic physical hydrogel. 0 5 10 15 20 25 0 10000 20000 30000 40000 % Released Timestep Figure 9: Visualiza5on of a hydrogel sample

Transcript of Austen)Brooks)Casey1,)Benjamin)Beach2,)Taylor)Tarlton2...

Page 1: Austen)Brooks)Casey1,)Benjamin)Beach2,)Taylor)Tarlton2 ...institute.loni.org/lasigma/reu/documents/posters2015/Casey_Poster.… · Hydrogel)is)generated)))Polymer)strands)are)allowed)

Hydrogel  is  generated    

 Polymer  strands  are  allowed  to  move  and  energy  

compared    

Par5cles  are  allowed  to    move  and  the  energy  

compared  un5l  10%  of  the  total  par5cles  in  the  hydrogel  

are  released    

The  process  starts  all  over.    

The  simula5on  con5nues  5ll  60%  of  all  molecules  are  

released  or  a  predetermined  volume  frac5on  of  the  hydrogel  is  achieved.  

Simula5ng  the  Diffusion  of  Nanopar5cles  through  Hydrogels  Austen  Brooks  Casey1,  Benjamin  Beach2,  Taylor  Tarlton2,  Divya  Elumalai2,  and  Pedro  Derosa2,3  

 1Department  of  Chemistry  and  Physics,  Warren  Wilson  College  2Ins<tute  for  Micromanufacturing  ,  Louisiana  Tech  University  

3Department  of  Mathema<cs  and  Physics,  Grambling  State  University  

Acknowledgements    This  material  is  based  upon  work  supported  by  the  Na5onal  Science  Founda5on  under  the    NSF  EPSCoR  Coopera5ve  Agreement  No.  EPS-­‐1003897  with  addi5onal  support  from  the    

Louisiana  Board  of  Regents.  

Mo<va<on  v  To  create  a  code  that  tracks  the  diffusion  of  nanopar5cles  (NPs)  through  a  computa5onal  

model  of  a  physical  hydrogel  v  Understand  the  contribu5on  of  various  interac5ons  to  the  diffusion  of  NP  through  a  

polymer  network  

Introduc<on  v  Physical  hydrogels  have  many  uses  ranging  from  cell  encapsula5on  and  5ssue-­‐

scaffolding,  to  drug  delivery.    v  These  are  transient  polymer  networks  that  rely  on  physical  entanglements,  ionic  

interac5ons,  and  hydrogen-­‐bonding  as  a  means  to  resist  dissolu5on.  v  The  degree  and  method  of  swelling  is  dependent  upon  the  polymers  that  make  up  the  

hydrogel;  that  is,  whether  thermo-­‐responsive  or  pH  sensi5ve  polymers  are  present.    

Methodology  v  A  random  walk  Monte  Carlo  algorithm  is  used  to  determine  the  most  energe5cally  

favorable  movements  for  the  NP  and  polymer  chains  as  the  hydrogel  swells  or  contracts.  

v   The  model  was  executed  using  MATLAB  to  simulate  the  diffusion  through  a  1  µm3  par55oned  box  containing  a  physical  hydrogel.    

v  Van  der  Waal  and  Columbic  interac5ons  play  in  this  process.    v  A  Java  code  was  used  to  visualize  the  diffusion  process  through  the  polymer  network.  v We  consider  the  hydrodynamic  radius  of  the  solute/NPs  diffusing  out  of  the  hydrogels  v  The  hydrogel  considered  is  a  generic  physical  hydrogel.        

Future  Work  v  Validate  simula5ons  with  experimental  data  v  Build  a  model  for  cross-­‐linked  hydrogels  v  Extend  model  for  pH,  temperature,  and  electromagne5c  fields  responsive  hydrogels.    v  Derive  coefficients  such  as  the  molecular  weight  between  crosslinks  (Mc)  and  

determine  a  predic5ve  model  to  es5mate  these  coefficients  v  Calculate  how  a  change  in  coefficients,  such  as  Mc,  influences  diffusion  through  a  

hydrogel    

Conclusions  v  A  3-­‐D  coarse  grain  Monte  Carlo  model  based  on  the  Boltzmann  transport  was  used  to  

simulate  the  release  profiles  and  diffusion  of  molecules  into  and  out  of  physical  hydrogels.    

v  In  the  case  studied  20%  of  total  NPs  were  released.    v  The  NPs  undergo  molecular  diffusion  in  the  system  considered.    v  The  model  developed  is  a  promising  alterna5ve  to  the  computa5onally  intensive  

molecular  dynamics  approach  to  simula5ng  diffusion.    

References   1.  Hoffman,  Allan  S.  "Hydrogels  for  biomedical  applica5ons."  Advanced  drug  delivery    

             reviews,  64  (2012):  18-­‐23.  2.  Chang,  Chunyu.,  Ang,  Lue.,  and  Lina,  Zhang.,  "Effects  of  crosslinking  methods  on    

             structure  and  proper5es  of  cellulose/PVA  hydrogels."  Macromolecular  Chemistry  and                Physics,  209.12  (2008):  1266-­‐1273.

Figure  5:  Flowchart  detailing  the  methodology  of  the  model  used  in  this  study  

𝑢(𝑟)= 𝑢↓𝑉𝑑𝑊 + 𝑢↓𝐶𝐵           𝑧>0  ||𝑧<𝐿,𝑥>0||𝑥<𝐿  𝑎𝑛𝑑  𝑦>0||𝑦<𝐿

Figure  9:  Visualiza5on  of  both  solute  and  solvent  molecules    

Figure  1:  Schema5c  representa5on  of  polymer  orienta5on  in  physical  and  chemical  hydrogels.  Reproduced  from  ref  [1].    

Results  

Figure  2:  SEM  of  chemical  and  physical  PVA/cellulose  hydrogel  cross  sec5ons Reproduced  from  ref  [2].    

Figure  8:  Visualiza5on  of  NPs  diffusing  out  of  the  hydrogel  

Figure  7:  Visualiza5on  of  NPs  diffusing  into  of  the  hydrogel  

For  each  new  configura5on  NPs  are  moved  as  follows:  v  Par5cles  are  allowed  to  move  in  any  random  direc5on  if  the  

total  energy  of  the  system  aier  the  move  is  less    than  or  equal  to  the  energy  of  the  system  before  the  move.  

v  If  the  total  energy  increases,  the  move  is  accepted  with  Boltzmann  probability.  

v  Any  move  is  rejected  if  the  par5cle  overlaps  with  any  other  par5cle  or  with  any  polymer  strand.  

               

v  A  new  posi5on  for  the  polymer  strand  is  tested,  using  the  force  on  it  as  a  bias.  

v  Polymer  strands  are  allowed  to  move  if  the  total  energy  of  the  system  aier  the  move  is  less    than  or  equal  to  the  energy  of  the  system  before  the  move.  (including  the  energy  associated  with  bending  and  stretching).  

v  If  the  total  energy  increases,  the  move  is  accepted  with  Boltzmann  probability.  

               

Mo<on  of  Polymer   Mo<on  of  Par<cles  

Total  Energy  of  the  System    

Polymer-­‐NP  Interac5ons  

have  contribu5ons  

from  Coulombic  and    Van  Der  

Waals  interac=ons  

NP  –NP  interac=ons      are  accounted  for  by    shielded  Coulombic  and    Van  Der  Waals  interac=ons    

Energy  contribu5on  

due  to  temperature  and  other  

are  considered  using  a  

Boltzmann  probability  Total  Energy  

of  the  System    

Polymer  –Polymer  

Interac5ons  have  

contribu5ons  from  

Coulombic  and    Van  Der  Waals  interac=ons  

Energy  associated  

with  bending  and  stretching  

is  also  accounted  for.  

Energy  contribu5on  

due  to  temperature  and  other  are  considered  using  a  

Boltzmann  probability  

Figure  3:  Contribu5on  of  the  polymer  strands  to  the  total  energy  of  the  system    

Figure  4:  Contribu5on  of  the  diffusing  NPs  to  the  total  energy  of  the  system    

Figure  6:  Visualiza5on  of  the  hydrogel  model  

Figure  10:  Release  profile  for  the  first  20%  of  NPs  from  a  generic  physical  hydrogel.  

0  

5  

10  

15  

20  

25  

0   10000   20000   30000   40000  

%  Released  

Timestep  

Figure  9:    Visualiza5on  of  a  hydrogel  sample