Artificial Intelligencekti.mff.cuni.cz/~bartak/ui2/lectures/lecture01eng.pdf · 2016. 2. 29. ·...

17
Artificial Intelligence Roman Barták Department of Theoretical Computer Science and Mathematical Logic Introduction We construct rational agents. An agent is an entity that perceives its environment through sensors and acts upon that environment through actuators. A rational agent is an agent maximizing its expected performance measure. In AI 1 we dealt mainly with a logical approach to agent design (no uncertainty). We ignored interface to environment (sensors, actuators) uncertainty the possibility of self-improvement (learning)

Transcript of Artificial Intelligencekti.mff.cuni.cz/~bartak/ui2/lectures/lecture01eng.pdf · 2016. 2. 29. ·...

  • ArtificialIntelligence

    Roman BartákDepartment of Theoretical Computer Science and Mathematical Logic

    Introduction

    Weconstructrationalagents.Anagent isanentitythatperceives itsenvironmentthroughsensors andactsuponthatenvironmentthroughactuators.Arationalagentisanagentmaximizingitsexpectedperformancemeasure.

    InAI1wedealtmainlywithalogicalapproachtoagentdesign(nouncertainty).Weignored

    – interfacetoenvironment(sensors,actuators)– uncertainty– thepossibilityofself-improvement(learning)

  • Coursestructure

    Introduction– motivation and background on probability

    Probabilistic reasoning – uncertainty, probabilistic reasoning, Bayesian

    networks, Hidden Markov Models

    Rational decisions– utility theory, Markov Decision Processes, game

    theory, mechanism design

    Machine learning– decision trees, regression, SVM, reinforcement

    learning

    Resources

    Artificial Intelligence: A Modern Approach– S. Russell and P. Norvig– Prentice Hall, 2010 (3rd ed.)– http://aima.cs.berkeley.edu/

    Umělá inteligence 1-6– Vladimír Mařík, Olga Štěpánková,

    Jiří Lažanský a kol.– Academia

  • Coursewebsite

    http://ktiml.mff.cuni.cz/~bartak/ui2

    Youcanfindthere:– slides– linksandresources– contacts– quiz– …

    Linkstoothercourses

    SeminaronArtificialIntelligenceII– howtoapplyAItechniquesinpractice

    Machinelearning– howcancomputerslearnnewthings

    Multi-agentsystems– howtohandlemultipleagents

    Probabilisticgraphicalmodels– howtodoBayesianinferenceefficientlyetc.

    Human-likeartificialagents– howtodesignagentsforvirtualenvironments

    Practicalcourseonrobotics– howtodesignhardwareagents

  • Uncertaintysofar

    Canwehandleuncertaininformation inthepurelogicalapproach?beliefstates– representsetsofallpossibleworldstates fortheagent

    Drawbacks– a logicalagentmustconsidereverylogicallypossibleexplanationfortheobservations,nomatterhowunlikely(largeandcomplexrepresentations)

    – acorrectcontingentplanmustconsiderarbitrarylikelycontingencies(bigplans)

    – sometimesthereisnoplanthatisguaranteedtoachievethegoal,yettheagentmustact

    Example

    Diagnosingadentalpatient‘stoothacheLetustrytoapplypropositionallogic:Toothache⇒ Cavity

    Hmm,isitreallytrue?– notallpatientswithtoothacheshavecavities;someofthemhavegumdisease,anabscess,orotherproblemsToothache⇒ Cavity∨ GumProblem ∨ Abscess∨ …

    Wecouldtryturningtheruleintoacausalrule:Cavity⇒ Toothache

    Butthisisnotrighteither– notallcavitiescausepainTheonlywaytofixtheruleistomakeitlogicallyexhaustive!

  • Usingalogicalapproach

    Whydoeslogicfailtocopewithadomainlikemedicaldiagnosis?

    • laziness: itistoomuchworktolistthecompletesetofantecedentorconsequentsandtoohardtousesuchrules

    • theoreticalignorance:medicalsciencehasnocompletetheoryforthedomain

    • practicalignorance:evenifweknowalltheruleswemightbeuncertainbecausenotallthenecessarytestshavebeenorcanberun

    Weneedanothertooltodealwithdegreesofbelief–probabilitytheory.

    Alogicalagentbelieveseachsentencetobetrueorfalseorhasnoopinion.Aprobabilisticagentmayhaveanumericaldegreeofbeliefbetween0(certainlyfalse)and1(certainlytrue).

    Basicprobabilitynotation

    Likelogicalassertions,probabilisticassertionsareaboutpossibleworlds– samplespaceΩ.– thepossibleworldsaremutuallyexclusive andexhaustive

    Eachpossibleworldω isassociatedwithanumericalprobabilityP(ω)suchthat:

    0≤ P(ω)≤ 1Σω∈Ω P(ω)=1

    Example:Ifweareabouttorolltwo(distinguishable)dice,thereare36possibleworldstoconsider:(1,1),(1,2),…,(6,6)P(ω)=1/36

  • Events

    Thesetsofpossibleworldsarecalledevents.Example:„doublesarerolled“isanevent

    Theprobabilityofeventisthesumofprobabilitiesofpossibleworldsintheevent.

    P(φ) =Σω∈φ P(ω)Example:P(doubles)=1/36+1/36+1/36+1/36+1/36+1/36=1/6

    Theseprobabilitiesarecalledunconditional orprior probabilities („priors“forshort).

    Conditionalprobability

    Frequently,wehavesomeinformation(evidence)andweareinterestedinprobabilityofsomeevent.

    Forexample,whatistheprobabilityofdoubleifwealreadyknowthatfirstdierolledto5?P(doubles|Die1 =5)=1/36/(6*1/36)=1/6

    Thisiscalledconditionalor posteriorprobabilityP(a|b)=P(a∧ b)/P(b),wheneverP(B)> 0

    ThiscanbealsowritteninadifferentformcalledtheproductruleP(a∧ b)=P(a|b).P(b)

    Beware!Ifwehavemoreevidencethentheconditionalprobabilityneedstoassumeit.P(doubles |Die1 =5,Die2 =5)=1

  • Randomvariables

    Inafactoredrepresentation,apossibleworldisrepresentedbyasetofvariable/valuepairs.Variablesinprobability theoryarecalledrandomvariables.Everyrandomvariablehasadomain–thesetofpossiblevaluesitcantakeon(similarlytoaCSP).

    Die1 – representsavalueonthefirstdie1(1,…,6)Cavity– describeswhether thepatienthasorhasnotcavity(true,false)

    Apossibleworldisfullyidentifiedbyvaluesofallrandomvariables.

    P(Die1 =5,Die2 =5)

    Probabilitydistribution

    Probability of all possible worlds can be described using a table called a full joint probability distribution – the elements are indexed by values of random variables.

    Given the table, we can calculate probabilities of values of any random variable:

    P(toothache=true) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2P(toothache=false) = 0.072+ 0.008 + 0.144 + 0.576 = 0.8

    We will describe the table in a short way as:P(Toothache) = 〈0.2, 0.8〉

  • Probabilityaxioms

    P(¬a)=1– P(a)

    inclusion-exclusionprincipleP(a∨ b)=P(a)+P(b)– P(a∧ b)

    chainruleP(A,B,C,D)=P(A|B,C,D)P(B,C,D)=P(A|B,C,D)P(B|C,D)P(C,D)=P(A|B,C,D)P(B|C,D)P(C|D)P(D)

    Inferenceusingfulljointdistributions

    How to answer questions?Knowledge base isrepresented using full joint distribution.To compute posterior probability of a query proposition given observed evidence, we add up probabilities of possible worlds in which the proposition is true (marginalization or summing out).P(φ) = Σω:ω|=φ P(ω)P(Y) = Σz∈Z P(Y,z)

  • Exampleofprobabilisticinference

    P(φ)=Σω:ω|=φ P(ω)P(Y)=Σz∈Z P(Y,z)

    P(toothache) (=P(Toothache=true))=0.108+0.012+0.016+0.064 =0.2

    P(cavity ∨ toothache)=0.108+0.012+0.072+0.008+0.016+0.064=0.28

    P(¬cavity|toothache)=P(¬cavity ∧ toothache) /P(toothache)=(0.016+0.064)/(0.108+0.012+0.016+0.064)=0.4

    Normalization

    P(¬cavity|toothache)=P(¬cavity∧ toothache)/P(toothache)=(0.016+0.064)/(0.108+0.012+0.016+0.064)=0.4

    P(cavity|toothache)=P(cavity∧ toothache)/P(toothache)=(0.108+0.012)/(0.108+0.012+0.016+0.064)=0.6

    Noticethatdenominatorsareidenticalinbothformulas!Weevendonotneedtoknowtheexactvalueofdenominator:

    P(¬cavity|toothache)+P(cavity|toothache)=1Wecanuseanormalizationconstantα instead,computedsuch

    thattheevaluateddistributionaddsupto1.P(Cavity|toothache)=α P(Cavity,toothache)

    =α [P(Cavity,toothache,catch)+P(Cavity,toothache,¬catch)]= α [〈0.108,0.016〉 +〈0.012,0.064〉 ]= α [〈0.12,0.08〉 ]= [〈0.6,0.4〉 ]

  • Inferenceviaenumeration

    Inatypicalcase,weknowvalueseofrandomvariablesEfromtheobservation andwearelookingforprobabilitydistributionofrandomvariablesY fromthequery.TheotherrandomvariablesarehiddenH =X– Y– E.P(Y |E=e)=α P(Y,E=e)=α Σh P(Y,E=e,H=h)

    Somedrawbacksofinferencebyenumeration:• theworst-casetimecomplexityisO(dn),wheredisthenumberofvaluesindomainsofeachrandomvariable

    • tostorefulljointprobabilitydistributionweneedO(dn)space

    • lastbutnotleast,itisnoteasytoobtainprobabilitiesforallpossibleworlds

    Independence

    LetusexpandthefulljointdistributionbyaddingafourthvariableWeatherwiththedomain{cloudy,sunny,rain,snow}– thenewfulljointdistributionhas2x2x2x4=32elements(possibleworlds).

    P(toothache,catch,cavity,cloudy)=P(cloudy|toothache,catch,cavity)*P(toothache,catch,cavity)

    Doone‘sdentalproblemsinfluencetheweather?P(cloudy|toothache,catch,cavity)=P(cloudy)

    Wecanwriteingeneral:

    P(Toothache,Catch,Cavity,Weather)=P(Toothache,Catch,Cavity)*P(Weather)

    Hencethefulljointdistributioncanbeconstructedfromtwosmallertables,onewith8elementsandonewith4elements.

    Thispropertyiscalled(absolute)independence:P(X|Y)=P(X)orP(Y|X)=P(Y)orP(X,Y)=P(X).P(Y)

  • Conditionalindependence

    Fullindependenceallowsusreducingthesizeofthedomainrepresentation,butunfortunatelyfullindependence israreandevenindependentsubsetscanbequitelarge.

    Whenonehascavity,doescatchdependontoothache?P(catch|toothache,cavity)=P(catch|cavity)P(catch|toothache,¬ cavity)=P(catch|¬ cavity)

    RandomvariablesCatchandToothacheareindependent ifweknowthevalueofCavity.

    P(Catch|Toothache,Cavity)=P(Catch|Cavity)

    Thispropertyiscalledconditionalindependence:P(X|Y,Z)=P(X|Y)orP(Z|X,Y)=P(Z|Y)orP(Z,X|Y)=P(Z|Y)P(X|Y)

    Exploitingconditionalindependence

    Conditionalindependence canbeusedtofurtherreducethesizeofdomainrepresentation.

    P(Toothache,Catch,Cavity)=P(Toothache|Catch,Cavity)P(Catch,Cavity)=P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)=P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

    Thefulljointdistributioncanbeconstructedfromthreesmallertablesofsizes2+2+1=5(onlyindependentelementsarerepresented).

  • Diagnosticsystems

    Letusgobacktodiagnosticproblems.Usuallywearelookingfordisease(thesourceofproblems)basedonsymptoms(observations).– weareinterestedinthediagnosticdirectionexpressedasconditionalprobabilityP(disease|symptoms)

    However,frompastexperienceweoftenhaveotherinformation:– theprobabilityofdiseaseP(disease)– theprobabilityofsymptomsP(symptoms)– the causalrelationexpressedasconditionalprobabilityP(symptoms|disease)

    Howcanthisinformationbeexploitedtogettheprobabilityofthediagnosticdirection?

    Bayes' rule

    RecalltheproductruleP(a∧b)=P(a|b)P(b)=P(b|a)P(a)

    WecandeduceasocalledBayes‘rule(lawortheorem):P(a|b)=P(b|a)P(a)/P(b)

    ingeneral:P(Y|X)=P(X|Y)P(Y)/P(X)= α P(X|Y)P(Y)

    ItlooksliketwostepsbackwardasnowweneedtoknowP(X|Y),P(Y),P(X).Butthesearethevaluesthatwefrequentlyhave.P(cause|effect)=P(effect|cause)P(cause)/P(effect)– P(effect|cause)describesthecausaldirection– P(cause|effect)describesthediagnosticrelation

  • UsingBayes'rule

    Medicaldiagnosis– frompastcasesweknowP(symptoms|disease),P(disease),P(symptoms)

    – foranewpatientweknowsymptomsandlookingfordiagnosisP(disease|symptoms)

    Example:– meningitiscausesastiffneck70%ofthetime– thepriorprobabilityofmeningitisis1/50000– thepriorprobabilityofstiffneckis1%Whatistheprobabilitythatapatienthavingastiffneckhasmeningitis?

    P(m|s)=P(s|m).P(m)/P(s)=0.7*1/50000/0.01=0.0014

    Whytheconditionalprobabilityforthediagnosticdirectionisnotstoreddirectly?• diagnosticknowledgeisoftenmorefragilethancausalknowledge• forexample,ifthereisasuddenepidemicofmeningitis,theunconditionalprobabilityofmeningitisP(m)willgoupsoP(m|s) shouldalsogoupwhilethecausalrelationP(s|m)isunaffectedbytheepidemic,asitreflectshowmeningitisworks

    NaiveBayes model

    Whatiftherearemoreobservations?Wecanexploitconditional independence asfollows

    P(Toothache,Catch,Cavity)=P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

    Ifalltheeffectsareconditionally independent giventhecausevariable,weget:

    P(Cause,Effect1,…,Effectn) =P(Cause)Πi P(Effecti|Cause)SuchaprobabilitydistributioniscalledanaiveBayesmodel

    (itisoftenusedevenincaseswherethe“effect”variablesarenotactuallyconditionally independentgiventhevalueofthecausevariable).

  • TheWumpus worldrevisited

    Wumpus isback!Wehaveamazewithpitsthataredetectedinneighboringsquaresviabreeze(Wumpus andgoldwillnotbeassumednow).

    Wheredoestheagentshouldgo,ifthereisbreezeat(1,2)and(2,1)?

    Purelogicalinferencecanconcludenothingaboutwhichsquareismostlikelytobesafe!

    Towhichsquaredoestheagentshouldgo?

    Wumpus:probabilisticmodel

    Booleanvariables:Pi,j – pitatsquare(i,j)Bi,j – breezeatsquare(i,j)(onlyfortheobservedsquaresB1,1,B1,2 aB2,1.

    FulljointprobabilitydistributionP(P1,2,…,P4,4,B1,1,B1,2,B2,1)=P(B1,1,B1,2,B2,1|P1,2,…,P4,4,)*P(P1,2,…,P4,4)P(P1,2,…,P4,4)=Πi,j P(Pi,j)P(P1,2,…,P4,4)=0.2n *0.816-n

    product rule

    pits are spread independently

    probability of pit is 0.2 and there are n pits

  • Wumpus:queryandsimplereasoning

    Assumethatwehaveevidence:b=b1,1 ∧ b1,2 ∧ b2,1known=¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

    WeareinterestedinansweringqueriessuchasP(P1,3|known,b).

    Answercanbecomputedbyenumerationofthefulljointprobabilitydistribution.LetUnknownbethevariablesPi,j exceptP1,3andKnown:P(P1,3|known,b)=Σunknown P(P1,3,unknown,known,b)

    ButitmeanstoexploreallpossiblevaluesofvariablesUnknownandthereare212 =4096terms!

    Canwedoitbetter(faster)?

    Wumpus:conditionalindependence

    Observation:Theobservedbreezesareconditionallyindependentoftheothervariablesgiventheknown(white),frontier(yellow),andqueryvariables.

    Wesplitthesetofhiddenvariablesintofringeandothervariables:Unknown=Fringe∪ Other

    Fromconditionalindependenceweget:P(b |P1,3,known,unknown)=P(b |P1,3,known,fringe)

    Now,letusexploitthisformula.

  • Wumpus:reasoning

    P(P1,3 | known, b)= α Σunknown P(P1,3, known, unknown, b)

    = α Σunknown P(b | P1,3, known, unknown) * P(P1,3, known, unknown)

    = α ΣfringeΣother P(b | P1,3, known, fringe,other) * P(P1,3, known, fringe,other)

    = α ΣfringeΣother P(b | P1,3,known, fringe) * P(P1,3,known,fringe,other)

    = α Σfringe P(b | P1,3,known, fringe) * Σother P(P1,3,known,fringe,other)

    = α Σfringe P(b | P1,3,known, fringe) * Σother P(P1,3)P(known)P(fringe)P(other)

    = α P(known)P(P1,3) Σfringe P(b | P1,3,known, fringe) P(fringe) Σother P(other)

    = α´ P(P1,3) Σfringe P(b | P1,3,known, fringe) P(fringe)

    α = α. P(known)Σother P(other) = 1

    product rule P(X,Y) = P(X|Y) P(Y)

    Wumpus:solution

    P(P1,3|known,b)=α´ P(P1,3)Σfringe P(b|P1,3,known,fringe)P(fringe)Letusexplorepossiblemodels(values)ofFringethatarecompatiblewithobservationb.

    P(P1,3|known,b)=α´ 〈0.2(0.04+0.16+0.16),0.8(0.04+0.16) 〉=〈 0.31,0.69 〉

    P(P2,2|known,b)=〈 0.86,0.14 〉

    Definitelyavoidthesquare(2,2)!

  • Summary

    Probabilitytheoryisaformalmechanismtohandleuncertainty.Fulljointdistributiondescribesprobabilities ofallpossibleworlds.Answers toqueriescanbeobtainedbysummingoutprobabilities ofpossibleworldsconsistentwiththeobservation.However,largerproblemswillrequireabetterapproach.Wearegoingtoexploit independence andconditionalindependence.

    © 2016 Roman BartákDepartment of Theoretical Computer Science and Mathematical Logic

    [email protected]