Articles - Universitas Islam Riau

22

Transcript of Articles - Universitas Islam Riau

Page 1: Articles - Universitas Islam Riau
Page 3: Articles - Universitas Islam Riau

11/2/2019 Vol 17 No 1 (2017) | JURNAL SAINTIS

journal.uir.ac.id/index.php/saintis/issue/view/156 2/8

Analisis Pengaruh Perubahan Tata Guna Lahan Terhadap Saluran Drainase Jalan DorakBerdasarkan Pola Rencana Tata Ruang Tata Wilayah Kabupaten Meranti Tahun 2013-2032Menggunakan Model Epa Swmm 5.0

PDF (Bahasa Indonesia)

Perhitungan Lendutan Perkerasan Jalan Sistem Cakar Ayam Modifikasi dengan VariasiFaktor Aman Pada Tambahan Modulus Reaksi Subgrade

PDF (Bahasa Indonesia)

Perbaikan Sifat Mekanis Tanah Lempung Ekspansif Menggunakan Abu Vulkanis Sinabungdan Kapur

PDF (Bahasa Indonesia)

Imam Suprayogi, Bambang Sujatmoko, Yenita Morena, Khoirul Ghofirin1-14

Dinda Rosita Agustin, Anas Puri, Rony Ardiansyah15-23

Devi Oktaviana Latif, Ahmad Rifa’i, Kabul Basah Suryolelono24-32

Page 4: Articles - Universitas Islam Riau

11/2/2019 Vol 17 No 1 (2017) | JURNAL SAINTIS

journal.uir.ac.id/index.php/saintis/issue/view/156 3/8

The Friction Coefficient of Cohesive Soils and Geotextile: An Approach Based On the DirectShear Test Data

PDF (Bahasa Indonesia)

Kualitas Pelayanan Trans Metro Pekanbaru Sebagai Angkutan Komuter Mahasiswa (StudiKasus: Kelompok Mahasiswa Komuter Fakultas Teknik Universitas Islam Riau)

PDF (Bahasa Indonesia)

Anas Puri33-42

Muchammad Zaenal Muttaqin43-51

Page 5: Articles - Universitas Islam Riau

11/2/2019 Vol 17 No 1 (2017) | JURNAL SAINTIS

journal.uir.ac.id/index.php/saintis/issue/view/156 4/8

Tinjauan Kuat Tekan Bata Ringan Menggunakan Bahan Tambah Foaming Agent

PDF (Bahasa Indonesia)

Estimasi Debit Puncak Sub DAS Sail Menggunakan Integrasi Data Penginderaan Jauh danSistm Informasi Geografi (SIG)

PDF (Bahasa Indonesia)

Penerapan Value Engineering Pada Pekerjaan Pembangunan Ruang Kelas Smkn I KuokKecamatan Kuok

PDF (Bahasa Indonesia)

Hendra Taufik, Alex Kurniawandy, Deri Arita52-62

Idham Nugraha63-70

Abdi Abdi, Deddy Purnomo Retno, Astuti Boer71-76

Page 6: Articles - Universitas Islam Riau

11/2/2019 Vol 17 No 1 (2017) | JURNAL SAINTIS

journal.uir.ac.id/index.php/saintis/issue/view/156 5/8

Analisa Kebutuhan Ruang Parkir Di Bandar Udara Raja Haji Fisabilillah TanjungpinangKepulauan Riau

PDF (Bahasa Indonesia)

Kajian Tarif Angkutan Penumpang Yang Layak Bus Trans Metro Pekanbaru

PDF (Bahasa Indonesia)

Optimalisasi Waktu Dan Biaya Menggunakan Metode Least Cost Analysis Pada ProyekPeningkatan Jalan Lingkar Kota Dumai

Edison Saputra, Harmiyati Harmiyati, Roza Mildawati77-83

Muhammad Sofwan, Jajan Rohjan, Reza M Surdia84-99

Page 7: Articles - Universitas Islam Riau

11/2/2019 FOCUS AND SCOPE | JURNAL SAINTIS

journal.uir.ac.id/index.php/saintis/FOCUSANDSCOPE 1/4

Search

Announcements Current Archives About

Register Login

FOCUS AND SCOPE

Saintis is devoted to research on civil engineering related fields including geotechnics, transports,

structures, water resources and others related with civil engineering topics. 

Subject areas include (but are by no means limited to):

Structural mechanics and engineeringStructural design and construction managementStructural analysis and computational mechanicsConstruction technology and implementationConstruction materials design and engineeringHighway and transport engineeringBridge and tunnel engineeringMunicipal and urban engineeringCoastal, harbour and offshore engineeringGeotechnical and earthquake engineeringEngineering for water, waste, energy, and environmental applicationsHydraulic engineering and fluid mechanicsSurveying, monitoring, and control systems in constructionHealth and safety in a civil engineering setting

Saintis is expected to publish the research result based on experiment, qualitative and

quantitative method as well as literature study which may develop the quality of research and

new invention in civil engineering field.

ADDITIONAL MENU

Editorial Board

List Of Reviewer

Focus and scope

Open access policy

Page 8: Articles - Universitas Islam Riau

11/2/2019 EDITORIAL BOARD | JURNAL SAINTIS

journal.uir.ac.id/index.php/saintis/EDITORIALBOARD 1/4

Search

Announcements Current Archives About

Register Login

EDITORIAL BOARD

Editor-in-Chief

Elizar, Scopus ID: 57189589348 , Universitas Islam Riau, Indonesia

Managing Editor

Mursyidah, Scopus ID: 22636226600, Universitas Islam Riau, Indonesia

Editorial Member

Meifrinaldi, Scopus ID: 57200570379, Institut Teknologi Bandung, IndonesiaReni Suryanita, Scopus ID: 55791179400, Universitas Riau, IndonesiaJafril Tanjung, Scopus ID: 6504134079, Universitas Andalas, IndonesiaHarnedi Maizir, Scopus ID: 55753748400 Sekolah Tinggi Teknologi Pekanbaru, IndonesiaMaidiawati, Scopus ID: 36246392000, Institut Teknologi Padang, IndonesiaSapitri, Scopus ID: 57201944892, Universitas Islam Riau, IndonesiaWidya Apriani, Scopus ID: 57200091463, Universitas Lancang Kuning, Indonesia

Layout Editor

Bismi Annisa, Universitas Islam Riau, IndonesiaFirman Syarif, Universitas Islam Riau, Indonesia Zarnold Aziz, Universitas Islam Riau, IndonesiaJumeilia Armayani, Universitas Islam Riau, Indonesia

ADDITIONAL MENU

Editorial Board

Page 9: Articles - Universitas Islam Riau

11/2/2019 LIST OF REVIEWER | JURNAL SAINTIS

journal.uir.ac.id/index.php/saintis/REVIEWER 1/4

Search

Announcements Current Archives About

Register Login

LIST OF REVIEWER

Jurnal Saintis  gladly introduce our dedicated reviewer that willing to share their time and

expertise to help the journal produces engineering publication of the highest caliber.

Dr. Betty Susanti, Scopus ID: 56523230500 , Universitas Sriwijaya, Palembang, IndonesiaDr. Wulfram Ervianto,  Scopus ID:  56527120000, Universitas Atmajaya, Yogyakarta,IndonesiaDr. Junaedi Utomo, Scopus ID: 57170556300, Universitas Atmajaya, Yogyakarta, IndonesiaDr. Kurnia Hastuti, Scopus ID: 55748301900, Universitas Islam Riau, Pekanbaru, IndonesiaDr. Evizal Abdul Kadir,  Scopus ID:  50561254400,  Universitas Islam Riau, Pekanbaru,IndonesiaDr. Anas Puri, Scopus ID: 57193131754, Universitas Islam Riau, Pekanbaru, IndonesiaIman Adipurnama, Ph.D, Scopus ID: 57192576082, National Taiwan University of Scienceand Technology, TaiwanUsama Fauzijuniansyah, Ph.D, Scopus ID: 55987521500, University of Tokyo, JapanLeonardus Setia Budi Wibowo, Ph.D, Scopus ID: 56979951200, Universitas Widya Kartika,Surabaya, Indonesia

To volunteer to be a reviewer, send a message with your name, affiliation, and areas of expertise

to Journal Contact Email

ADDITIONAL MENU

Editorial Board

List Of Reviewer

Focus and scope

Open access policy

Publication Frequency

Author Guideline

Peer Review Process

Page 10: Articles - Universitas Islam Riau

11/2/2019 INDEXING | JURNAL SAINTIS

journal.uir.ac.id/index.php/saintis/INDEXING 1/3

Search

Announcements Current Archives About

Register Login

INDEXING

DOAJGoogle Scholar Indonesia OneSearch by PerpusnasIPI Portal GarudaBASE (Bielefeld Academic Search Engine)OCLC WorldcatCrossref

Every article published in this journal is assigned with Crossref DOI. Full metadata and open

references registered in Crossref make research outputs easy to find, cite, link, and assess in any

project world-wide. Further https://www.crossref.org/services/metadata-delivery/

ADDITIONAL MENU

Editorial Board

List Of Reviewer

Focus and scope

Open access policy

Publication Frequency

Author Guideline

Peer Review Process

Publication Ethical

Complaints and Disclaimer

Copyright

License

Contact

Page 13: Articles - Universitas Islam Riau

ISSN: 1410-7783Volume 17 Nomor 1, April 2017, 33-42

aintisJurnal

The Friction Coefficient of Cohesive Soils and Geotextile: AnApproach Based On the Direct Shear Test Data

Anas PuriDepartment of Civil Engineering Islamic University of RiauJl. Kaharuddin Nasution 113 Pekanbaru, Indonesia-28284

[email protected]

AbstractThe soil reinforcement designing by using geotextile requires the friction coefficient of soil-geotextile interface, bothgranular and cohesive soils. For cohesive soils, this coefficient was usually defined by [⅔ tan Is this approachefficient enough or conservative? This paper presents an approach to determine the friction coefficient of soil-geotextile interface based on the empirical data from some researchers. It was used direct shear test data oncohesive soil-geotextile interfaces. Result show that the friction coefficient of soil-geotextile interface higher thanthe value of tan . It was also proved by the interface friction angle tend to higher than the soil internal frictionangle . Hence, the approach by [⅔ tan would be yield excessive safety design, which the safety factor would beadded for soils and geotextiles. The new approach in determining the interface friction coefficient was conducted byusing direct relationship between interface friction coefficient and soil internal friction angle.

Keywords: cohesive soils, direct shear test, friction coefficient, soil-geotextile interface,geotextiles

1. INTRODUCTION

In the designing of soil reinforcementconstruction using a geotextilereinforcement material, in addition to knownproperties of the soil and geotextilematerials, is also required behavior of theinteraction between soil and geotextile.Interaction of soil and geotextile can beexpressed by a coefficient called interfacefriction coefficient, . The problem is, notevery design can be conducted the testing todetermine this coefficient, so often the valueof the friction coefficient of interface istaken as an approach value. Approach valueof the friction coefficient of soil-geotextileinterface is often used for = tan ¾ ⅔ ,where is the angle of soil internal friction.

However, whether such approaches can beused for all types of soil, whereas granularsoil and cohesive soil having differentproperties. Is this approach efficient enoughor conservative? Puri (Puri, 2003) hasproposed a determination of the friction

coefficient of sand-geotextile interfacewhich is relatively efficient compared withthe approach that is often used. How doesthe friction coefficient of cohesive soil-geotextile interface, will be discussed in thispaper? This study aims to determine thecoefficient of friction between the cohesivesoil and geotextile, and approaches indetermining the friction coefficient of thecohesive soils-geotextile interface.

2. LITERATURE REVIEW

Geometry, roughness and stiffness ofreinforcement, as well as the types and soilconditions are the main factors thatinfluence the characteristic of frictionbetween soil and reinforcement (Puri, 2003;Mitchell & Villet, 1987; Makiuchi &Miyamori, 1988; Puri, et al., 2003).Interaction between soil and reinforcementis generally stated as the apparent frictioncoefficient, *. This coefficient can becalculated by using Equation 1.

Page 14: Articles - Universitas Islam Riau

J. Saintis Volume 17 Nomor 01, 2017

34

* = tan (1)Where is the soil-geotextile interfacefriction angle.

Two types of testings can be done todetermine the coefficient of friction; they arethe direct shear tests and pull out tests.Therefore, if both tests are not available,then the general point of friction anglebetween soil and geotextile () is taken theapproach of assuming that is lower thanthe soil internal friction angle (), forexample = tan-1 (⅔ tan ) (Mitchell andVillet, 1987) or sometimes used = ⅔(Mitchell and Villet, 1987; Das, 1995), forall woven and non woven geotextiles tan =0,601,00 tan ' (Williams and Houlihan,1987), rough woven geotextiles tan =0,801,00 tan ', granular soil-solid polymersheet tan 0,6 tan ' (Jewell, 1996), andtan = ⅔¾ tan which is generally takentan = ⅔ tan for geotextile and tan = ¾tan for geogrid (Suryolelono , 2000), sothat in certain cases the value of theseapproach to be conservative.

Puri (2003), through his research by usingwell rounded beach sand and non wovengeotextile and data from other researchersfrom the direct shear test, proposed theEquation 2 to predict the apparent frictioncoefficient at the sand-non woven geotextileinterface.

* = 0,00004'2 + 0,0158' (2)

Since the first term of Equation 2 does notgive significant results, and then theequation can be written as

* = 0,0158' (3)

Equation 3 shows the prediction of thefriction coefficient only required soilinternal friction angle, '. This equation canbe used in case of testing on the interface isnot available.

Puri & Wanim (2003) compared the frictioncoefficient of Pekanbaru clay-geotextileinterface with friction coefficient valuescalculated using Equation 2. Provided thatthe calculated coefficient closes to thefriction coefficient of test results, both forthe reinforcement in the form of woven andnon woven geotextile. Nevertheless, theconclusion is still very limited because ofsoil used only one type.

3. RESEARCH METHODOLOGY

The research was conducted by using directshear test data for the interface of cohesivesoil and geotextile. Data are obtained fromvarious sources that have been published,they are Williams and Houlihan (1987), Puriand Wanim (2003), Gource (1982),Garbulewski (1990), Mahmood and Zakaria(2000), and Rifa'i (2004). The type of sheartest is the laboratory direct shear test. Thesteps undertaken in this study include:collection and sorting of data, analysis andinterpretation, preparation of researchreports, and publication of research results.

Soil internal friction angle data and soil-geotextile interface friction angle depicted ingraphic form and in the same way for theangle of soil internal friction and frictioncoefficient of soil-geotextile interface.Tabulation of data and drawing graphs wasusing Microsoft Office Excel. Statisticaltests performed included the t test,correlation test and regression test, usingSPSS 12 application program.

4. RESULTS AND DISCUSSIONS

Soil Types and the Interface

Based on data from various researchers, itcan be resumed that the soil types are clay,silt, sandy clay, silty clay, and kaolinite.Woven and non woven geotextilesmanufactured from various companies wasused. Direct shear box size used by all

Page 15: Articles - Universitas Islam Riau

The Friction Coefficient of Cohesive Soils and Geotextile (Anas Puri)

35

researchers are also vary from the smallest100 mm 100 mm up to the largest size of3000 mm 300 mm. Summaries of soiltypes and soil-geotextile interfaces are givenin Appendix A.

Relationship of Interface Friction Angleand Soil Internal Friction Angle

Recapitulation of interface friction angle ispresented in Appendix B. Relationship ofsoil-geotextile interface friction angle andthe soil internal friction angle is given in

Figure 1. Interface friction angle tend to behigher than the soil internal friction angle ,as well as to the value of ⅔ . Thissuggests that the frictional resistance at theinterface is greater than the soil one.Approach value [tan = ⅔ tan ] which iscommonly used will always be smaller thanthe real resistance. Figure 2 shows that theratio / tend to be higher than 1.0. Thelowest, the largest and the average value ofratio / are 0.87; 6.97 and 1.67respectively.

Figure 1. Relationship of interface friction angle and the soil internal friction angle

Figure 2. Rasio / vs. the soil internal friction angle Relationship of Interface FrictionCoefficient and Soil Internal FrictionAngle

Figure 3 shows the relationship of interfacefriction coefficient with soil internalfriction angle . Seen that the interfacefriction coefficients tend to be above [⅔ tan

Page 16: Articles - Universitas Islam Riau

J. Saintis Volume 17 Nomor 01, 2017

36

and increase with increasing soil internalfriction angle. Interface friction coefficientvalues range from 0.045 to 1.00. From thestatistical tests, the soil internal frictionangle has standard deviation of 14.87 witha mean of 16.08 and the average standard

error 3.04. The coefficient of friction has astandard deviation of 0.35 with a mean of0.40 and the average standard error 0.07.The t test results for one-sided test and two-sided test was qualified, where t calculation> t table. The probability of sig. is 0.000

< 0.05.

Figure 3. Interface friction coefficient vs. the soil internal friction angle

Correlation of interface friction coefficientand the soil internal friction angle issignificant at the level of confidence 99%.It is based on Product moment correlationtest (Pearson), Spearman rank and Kendalltau. Furthermore, the relationship of vs. is obtained as Equation 4.

= 0,0340,869 (4)

The Equation 4 has a correlationcoefficient R = 0.858. It means the -relationship is 85.8%. The coefficient ofdetermination R2 = 0.838 (or R2 = 0.839from MS Excel analysis), which means83.8% of the variation that occurs iscaused by soil internal friction angle or soilfrictional resistance, while the remaining16.2% due to something else. Based on theF test (Anova) was obtained F calculation> F table and the probability of sig. < 0.05.It is also found the satisfying the t test and

significance < 0.05. Regression models arenot susceptible to heteroskedastisityinterference and multicollinearity (notrandom), but having otocorrelation. So ingeneral the Equation 4 is acceptable tomodel the relationship vs. .

Interface CohesionFigure 4 shows the relationship of cohesivesoil-geotextile interface cohesion(adhesion) ca with soil cohesion c. Seenthat the interface cohesion tends todecrease with increasing soil cohesion, sothat the adhesion factor will be decrease,too. The curve for approache ca = ⅔ cwhich is often taken in the desiging is alsoshown. It turns out that there is trend datacontrary to the approach. Presumably thefailure that occurred was not on theinterface of soil-geotextile but rather in thesoil near the interface.

Page 17: Articles - Universitas Islam Riau

The Friction Coefficient of Cohesive Soils and Geotextile (Anas Puri)

37

Figure 4. Relationship of ca vs. cPlastisity Index Effects to InterfaceShear Strength ParametersShear strength parameters of the soilinterface are the interface cohesion ca andinterface friction angle . The relationshipof interface friction angle with plasticityindex PI of cohesive soil is shown inFigure 5. The interface friction angle tendsto decrease with increasing PI. This is dueto soil with a higher PI resulted indecreasing of friction between soilparticles; here the role of cohesion tends tobe more dominant. This phenomenon canlead to the failure tends to occur in the soilnear the interface.

Figure 6 shows the relationship of interfacecohesion and PI. It appears that theinterface cohesion tends to increase withincreasing PI. This means that cohesion incohesive soil is an important part to theformation of bond resistance in theinterface. It is also concluded by Mahmood& Zakaria (2000). Therefore, interfacecohesion should be taken into account insoil reinforcement design. Relationship ca

vs. PI in the cohesive soil-geotextileinterface can be expressed as

ca = 0,2316PI + 0,5773 (5)

Figure 5. Relationship of interface friction angle with plasticity index PI

Page 18: Articles - Universitas Islam Riau

J. Saintis Volume 17 Nomor 1, 2017

38

Figure 6. Relationship of cohesion of cohesive soil-geotextile interface and PI

5. CONCLUSIONS

The research results the value of thefriction coefficient of cohesive soil-geotextile interface ranged from 0.045 to1.00. Coefficient of interface friction tends to be higher than tan . This is alsoevidenced by the value of interface frictionangle tends to be higher than the soilinternal friction angle . Therefore,determination the interface frictioncoefficient with the commonly approach of = ⅔ tan , will produce a very safedesign (conservative), considering thesafety factor is also given on theparameters of the soil, and geotextiletensile strength.

Equation 4 can be used to estimate thefriction coefficient of cohesive soil-geotextile interface in case there is noavailable testing of the interface. Theproposed approach in determining thefriction coefficient of cohesive soil-geotextile interface should be tested withnumerical analysis in a case of soilreinforcement structure using geotextile.

ACKNOWLEGDEMENT

The manuscript is part of the research hasbeen funded by the Research Institute ofthe Islamic University of Riau, Pekanbaru.

REFERENCES

Das, Braja M., 1995, Principles ofFoundation Engineering, PWS-KentPublishing, New York.

Gourc, Jean-Pierre, 1982, QuelquesAspects du Comportement desGeotextiles en Mecanique des Sols,These, Docteur es-sciences, Institut deRecherches Interdisciplinaires deGeologie et de Mecanique, L’InstitutNational Polytechnique de Grenoble.

Garbulewski, K., 1990, Direct Shear andPullout Frictional Resistance at theGeotextiles-Mud Interface, Proc., 4th

Int. Conf. on Geotextiles,Geomembranes and Related Products,Vol. 2, Den Hoedt (ed), Balkema,Rotterdam, pp.737-742.

Jewell, R.A., 1996, Soil Reinforcementwith Geotextiles, CIRIA, London.

Mahmood, A.A., and Zakaria, N.A., 2000,A Study on the Coefficient of Frictionof Soil/Geotextile Interfaces, EJGE,paper 0012.

Makiuchi, K. and Miyamori, T., 1988,Mobilisation of Soil-GeofabricFriction, Intrn. Geotechnical Symp. onTheory and Practice of EarthReinfrocement, Yamanouchi dkk. (ed),Balkema, Rotterdam, pp. 129-134.

Mitchell, J.K. and Villet, W.C.B., 1987,Reinforcement of Earth Slopes and

Page 19: Articles - Universitas Islam Riau

The Friction Coefficient of Cohesive Soils and Geotextile (Anas Puri)

39

Embankments, National CooperativeHighway Research Program Report290, Transportation Research Board,Washington D.C.

Puri, A., 2003, Determination ofInteraction Between Sand andGeotextile Using TriaxialCompression Testing, MagisterTheses, Civil Engineering GraduateProgram of Gadjah Mada University,Yogyakarta.

Puri, A., and Wanim, A., 2003, FrictionalResistance of Pekanbaru Clay-Geotextile Interface, J. Saintis, Vol.6No.2, Pekanbaru, pp. 91-98.

Puri, A., Hardiyatmo, H.C. and Suhendro,B., 2003, Behavior and Mobilizationof Sand-Non Woven GeotextileInterface Friction on ConventionalDirect Shear Testing, Rahardjo et.al.(eds), Proceeding of the 6thIndonesian Geotechnical Conferenceand the 7th Annually Meeting ofIndonesian Geotechnical Engineers,HATTI, Jakarta, 11-13 Agustus 2003,pp 239-247.

Rifa’i, A., 2004, Behavior of Soil-Geotextile Interaction on the ShearStrength Parameters, Jurnal ForumTeknik, Jurusan Teknik Sipil UGM.

Suryolelono, K.B., 2000, GeosintetikGeoteknik, Nafiri, Yogyakarta.

Williams, N.D., and Houlihan, M.F., 1987,Evaluation of Interface FrictionProperties Between Geosynthetics andSoils, Proc. Geosynthetics ’87Conference, New Orleans, USA,pp.616-627.

Page 20: Articles - Universitas Islam Riau

The Friction Coefficient of Cohesive Soils and Geotextile: An Approach Based On the Direct Shear Test Data (Anas Puri)

40

Appandix A. Recapitulation of Cohesive Soil-Geotextile Interfaces

No. Researchers Description of Interface Area andOthers Type of Geotextile (o) ca

(kPa) Soil Descriptions (o) c(kPa)

1 Williams & Houlihan(1987)

Area 30,5 cm x 30,5 cm. Soil Typar 3401 38 1,3 Gulf Coast clay (CL), LL= 20 57two sides, Trevira 1155 45 1,8 42%, PL=28%, PI=14%,

Nicolon 900-M 43 2,0 wopt=15,5%.Typar 3401 33 0,4 Silt Glacial till (ML), LL=47%Trevira 1155 37 0,5 PL=17%, wopt=7,5%. 38 31Nicolon 900-M 35 2,5

2* Saxene & Budiman Area 25 cm x 25 cm. Soil Celenese 800X 14 14 45%DS, 5% bentonite, 50% 12,8 7,8two sides, depth 1,27-7,6 cm Monsanto C-34 15 22 kaolonite, saturated 12,8displacement rate 0,75 mm/minnormal stress 72-288 kPa.

3* Degoute & Mathleu Area 3 x 0,3 m, soil depth Geotextile 39 Sandy clay, PL= 13% 34 5015cm, normal stress 200-1200 kPa, soil one side

4Puri & Wanim(2003) Area 10 cm x 10 cm Non woven: Pekanbaru clay,CH 2,46 8,52

soil thickness 1,0 cm, soil one Polyfelt TS 30 3,5 5,73 LL= 68,56%; PL= 45,56%;side. Displacement rate Polyfelt TS 50 3,22 5,54 PI= 23%, Gs = 2,66.0,25 mm/menit Polyfelt TS 60 3 6,47 coloid (particle <2m) 75%

Polyfelt TS 70 3,03 8,88 very fine particlesWoven: Hate Reinfox (<0,001 mm) 35%HT385-130XT 2,71 1,69HT385-185XT 2,56 5,43HT385-250XT 2,62 6,16

5 Gourc (1982) Area 40 cm x 25 cm. BD 340 41,8 6,46 saturated clay (undrained) 39 30Normal stress 2-30 kPa. Soil BD 340 39,9 2,09 39 10two sides, depth 2x10 cm

Page 21: Articles - Universitas Islam Riau

J. Saintis Volume 17 Nomor 1, 2017

41

Appandix A. Continued6 Garbulewski (1990) Area 100mm x 100mm, soil Road geotextile-1000 = 10,2 Mud (organic mud), classified 24,2 12,4

one side, rate 0,1 mm/min (needle punched poly- 0,47 as silty clay with 2% of sandconventional propylene) (25,2) 77% silt, 21% clay.13% organic

Filtration geotextile = 12,5 matter, wn=54%, LL=90%,J/Sm 5214 (polypropy- 0,4 PL=33,7%, PI=56,3%,lene & polyamid) (21,8) su=12 kPa, =15 kN/m3

7 Mahmood & Zakaria(2000)

Area 10 cm x 10 cm Non woven needle punched: Organic clay, = 1,356 g/cm3 2,15 9,44soil one side. Displacement rate TS550 5,6 12,5 wn=115,41%; organic1,27 mm/menit. TS600 8,6 11,6 content 14,70%.

TS700 14,98 9,66 PI = 35,4%; UndrainedTS750 3,5 12,0 Gs = 2,54

8 Rifa'i (2004) Standard direct shear Soaked condition: Wonosari clay, CH 20,2 29,6Non-woven TS600 27,5 2,24 = 1,775 g/cm3, Gs=2,673Non-woven R206 31,6 0 LL= 72,01%; PL= 35,65%;Woven BW250 23,0 0,53 PI= 36,36%. OMC=37,64;Unsoaked condition: MDD=1,292; fine grain 81,36% 26,6 39,1Non-woven TS600 34,3 1,85Non-woven R206 22,2 15,0Woven BW250 20,7 3,69

* see William & Houlihan (1987)

Page 22: Articles - Universitas Islam Riau

The Friction Coefficient of Cohesive Soils and Geotextile: An Approach Based On theDirect Shear Test Data (Anas Puri)

42

Appandix B. Soil Internal Friction Angle and Interface Parameters

No. Researchers Type of Interface

Frcition angleFriction

coefficient,

Soilinternal,

' (o)

Inter-face, (o)

1 Williams & Houlihan(1987)

Gulf Coast clay-Typar 3401 20 38 0,781Gulf Coast clay-Trevira 1155 20 45 1,000Gulf Coast clay-Nicolon 900-M 20 43 0,933Silt Glacial till-Typar 3401 38 33 0,649Silt Glacial till-Trevira 1155 38 37 0,754Silt Glacial till-Nicolon 900-M 38 35 0,700

2* Saxene & Budiman Kaolinite-Celenese 800X 12,8 14 0,249Kaolinite-Monsanto C-34 12,8 15 0,268

3* Degoute & Mathleu Sandy clay-Geotextile 34 39 0,8104 Puri & Wanim (2003) Pekanbaru clay-Polyfelt TS 30 2,46 3,5 0,061

Pekanbaru clay-Polyfelt TS 50 2,46 3,22 0,056Pekanbaru clay-Polyfelt TS 60 2,46 3 0,052Pekanbaru clay-Polyfelt TS 70 2,46 3,03 0,053Pekanbaru clay-Hate Reinfox HT385-130XT 2,46 2,71 0,047Pekanbaru clay-Hate Reinfox HT385-185XT 2,46 2,56 0,045Pekanbaru clay-Hate Reinfox HT385-250XT 2,46 2,62 0,046

5 Gourc (1982) Clay-BD 340 39 41,8 0,894Clay-BD 340 39 39,9 0,836

6 Garbulewski (1990) Silty clay-Road geotextile-1000 24,2 25,2 0,471Silty clay-Filtration geotextile J/Sm5214 24,2 21,8 0,400

7 Mahmood & Zakaria(2000)

Organic clay-Non woven TS550 2,15 5,6 0,098Organic clay-Non woven TS600 2,15 8,6 0,151Organic clay-Non woven TS700 2,15 14,98 0,268Organic clay-Non woven TS750 2,15 3,5 0,061

8 Rifa'i (2004) Wonosari CH clay-Non woven TS600 20,20 27,52 0,521Wonosari CH clay-Non woven R206 20,20 31,6 0,615Wonosari CH clay-Woven BW250 20,20 23,04 0,425Wonosari CH clay-Non woven TS600 26,59 34,34 0,683Wonosari CH clay-Non woven R206 26,59 22,23 0,409Wonosari CH clay-Woven BW250 26,59 20,66 0,377

* See William & Houlihan (1987)