April 14th, 2020 AACE review Adaptive Control and Integral...

25
April 14 th , 2020 AACE review Adaptive Control and Integral Concurrent Learning for Differential Drag-Based Spacecraft Formations Mr. Camilo Riaรฑo (Fulbright Fellow, PhD Candidate), [email protected] Dr. Riccardo Bevilacqua (Associate Professor & UF Term Professor), co-PI, [email protected] Dr. Warren Dixon (Newton C. Ebaugh Professor), PI, [email protected]

Transcript of April 14th, 2020 AACE review Adaptive Control and Integral...

Page 1: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

April 14th, 2020AACE review

Adaptive Control and Integral Concurrent Learning for Differential Drag-Based Spacecraft Formations

Mr. Camilo Riaรฑo (Fulbright Fellow, PhD Candidate), [email protected]. Riccardo Bevilacqua (Associate Professor & UF Term Professor), co-PI, [email protected]

Dr. Warren Dixon (Newton C. Ebaugh Professor), PI, [email protected]

Page 2: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Motivations & contributions

Space is a contested warfighter operational scenario.

Resident Space Object ID, on-orbit SSA, and multi-S/C coordination are key elements of the new scenario.

The ADAMUS efforts focus on solving the following problems (long term)

Propellant-less relative maneuvering with respect to unknown space objects (cost effective & stealth).

Increase autonomy by eliminating dependence on atmospheric density forecasts for differential-drag based

maneuvers.

Build the foundations to design complex multiple spacecraft missions. RT4 (networked agent

coordination)

This talk shows (work so far)

Simultaneous formation control and estimation of the targetโ€™s drag parameter (may augment/substitute orbit

determination). RT2 (Adaptation)

Page 3: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Relative Maneuvering & Online System ID

G. Chowdhary, T. Yucelen, M. Muhlegg, E. N. Johnson, โ€œConcurrent learning adaptive control of linear systemswith exponentially convergent bounds disturbancesโ€, International Journal of Control and Signal Processing 27(4)(2013) 280-301.

Page 4: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

แˆท๐’“๐‘ซ = โˆ’๐œŒ ๐‘ก ๐‘†๐ถ๐ท2๐‘š

๐‘‰๐‘Ÿ2 ๐‘ฝ๐’“

Drag Acceleration

D. Guglielmo, S. Omar, R. Bevilacqua, et al., "Drag De-Orbit Device - A New Standard Re-EntryActuator for CubeSats", Journal of Spacecraft and Rockets, Vol. 56, No. 1 (2019), pp. 129-145.

Atmospheric drag acceleration experienced by a spacecraft

๐œŒ(๐‘ก) : Time-varying atmospheric density

๐ถ๐ท: Drag coefficient

๐‘†: Cross-sectional Area of the spacecraft

๐‘ฝ๐’“: Spacecraft-atmosphere relative velocity vector.

๐‘š : mass of the spacecraft

There exist several atmospheric models with different levels of accuracy, one of the more

complex is the semi-empirical NRLMSISE-00 model, which considers the spacecraft location,

date and solar and geomagnetic activity indices. In addition to be computationally expensive, it

relies on forecasts of some indices, limiting autonomy.

Page 5: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Choosing an Atmospheric Density Model

Variations of the atmospheric density in circular LEO are mostly due to day/night

changes and ๐ฝ2 perturbation.

Previous work from different authors has shown that the density in this orbit regime

has its principal Fourier components at zero and the (constant) orbit angular velocity ฮฉ.

Motivating the following model:

๐œŒ ๐‘ก = ๐ท1 + ๐ท2 sin ฮฉ๐‘ก + ๐ท3 cos(ฮฉ๐‘ก)

๐ท1, ๐ท2 and ๐ท3 are constants.

This model is valid for short-term maneuvers (few days).

The model is linearly parameterizable with respect to ๐ท1, ๐ท2 and ๐ท3. This is a property

that will be exploited in the controller development.

G. Gaias, J.-S. Ardaens, O. Montenbruck, โ€œModel of J2 perturbed satellite relative motion withtime-varying dierential dragโ€, Celestial Mechanics and Dynamical Astronomy 123 (2015) 441-433.

Page 6: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Spacecraft Relative Motion Dynamics

The SS model is a linear representation of the relative motion between two spacecraft valid for relatively small

distances (~tens of kilometers) in circular LEO.

It considers the influence of the Earthโ€™s oblateness (๐ฝ2 perturbation).

Given that the drag acceleration acts mostly opposite to the direction of motion, only maneuvers within the

same orbit plane can be performed with differential drag.

ฮ” แˆถ๐‘ฅฮ” แˆท๐‘ฅฮ” แˆถ๐‘ฆฮ” แˆท๐‘ฆ

=

0 1 0 0๐‘ 0 0 ๐‘Ž0 0 0 10 โˆ’๐‘Ž 0 0

ฮ”๐‘ฅฮ” แˆถ๐‘ฅฮ”๐‘ฆฮ” แˆถ๐‘ฆ

+

0001

๐‘ข๐‘ฆ

แˆถ๐‘ฟ = ๐ด๐‘ฟ + ๐‘ฉ๐‘ข๐‘ฆ

โ€ข ๐‘Ž and ๐‘ are known constantsand ๐‘ข๐‘ฆ is the differential drag.

S. A. Schweighart, R. J. Sedwick, High-fidelity linearized J2 model for satellite formation flight, Journal of Guidance, Control andDynamics 25 (6)(2002) 1073-1080.

Page 7: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Adaptive controller designed using the Integral Concurrent Learning (ICL) techniquefor online parameter estimation.

The use of an ICL-based adaptive controller results in exponential convergence of thestates and the estimates provided a verifiable condition of finite excitation.

แˆถ๐‘ฟ = ๐ด๐‘ฟ + ๐‘ฉ๐‘ข๐‘ฆ

๐‘ข๐‘ฆ is called the auxiliary control input and is defined as

๐‘ข๐‘ฆ = ๐œŒ๐‘ก ๐‘ก ๐ถ๐ท,๐‘ก๐‘‰๐‘Ÿ,๐‘ก2

๐‘†๐‘ก2๐‘š๐‘ก

โˆ’ ๐œŒ๐‘– ๐‘ก ๐ถ๐ท,๐‘–๐‘‰๐‘Ÿ,๐‘–2 เดค๐‘ข

where the subscripts ๐‘ก and ๐‘– represent the target and ๐‘–๐‘กโ„Ž chaser, respectively.

เดค๐‘ข is the actual control input that represents the area-to-mass ratio of the ๐‘–๐‘กโ„Ž chaser.

Page 8: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

The auxiliary control input ๐‘ข๐‘ฆ is linearly parameterized as

๐‘ข๐‘ฆ = ๐’€๐šฏ

where ๐’€ is a measurable regression matrix and ๐šฏ is the vector of uncertain parameters

๐šฏ = ๐ท1,๐‘–๐ถ๐ท,๐‘–๐‘‰๐‘Ÿ,๐‘–2 ๐ท2,๐‘–๐ถ๐ท,๐‘–๐‘‰๐‘Ÿ,๐‘–

2 ๐ท3,๐‘–๐ถ๐ท,๐‘–๐‘‰๐‘Ÿ,๐‘–2 ๐ท1,๐‘ก

๐ถ๐ท,๐‘ก๐‘†๐‘ก2๐‘š๐‘ก

๐‘‰๐‘Ÿ,๐‘ก2 ๐ท2,๐‘ก

๐ถ๐ท,๐‘ก๐‘†๐‘ก2๐‘š๐‘ก

๐‘‰๐‘Ÿ,๐‘ก2 ๐ท3,๐‘ก

๐ถ๐ท,๐‘ก๐‘†๐‘ก2๐‘š๐‘ก

๐‘‰๐‘Ÿ,๐‘ก2

๐‘‡

The control law is designed using the estimates (๐šฏ) of ๐šฏ as

เดค๐‘ข = เทœ๐œŒ๐‘–(๐‘ก) แˆ˜๐ถ๐ท,๐‘–๐‘‰๐‘Ÿ,๐‘–2

โˆ’1เทœ๐œŒ๐‘ก ๐‘ก

แˆ˜๐ถ๐ท,๐‘ก แˆ˜๐‘†๐‘ก2 เท๐‘š๐‘ก

๐‘‰๐‘Ÿ,๐‘ก2 +๐‘ฒ๐‘ฟ

where K is a vector of constant gains and ๐‘ฟ is the measurable state vector.

Page 9: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

The estimates are updated with the following ICL-based adaptive update law

แˆถ๐šฏ = ๐‘๐‘Ÿ๐‘œ๐‘— 2ฮ“๐’€๐‘‡๐‘ฉ๐‘‡๐‘ƒ๐‘‡๐‘ฟ + ฮ“๐พ๐ผ๐ถ๐ฟ

๐‘–=1

๐‘๐‘ 

๐“จ๐‘–๐‘‡ ๐‘ฉ๐‘‡ ๐‘ฟ ๐‘ก๐‘– โˆ’ ๐‘ฟ ๐‘ก๐‘– โˆ’ ฮ”๐‘ก โˆ’๐“ค๐’Š โˆ’๐‘ฉ๐“จ๐‘–

ฮ˜

where ฮ”๐‘ก represents an user-defined sampling time, ฮ“ is the adaptation gain, ๐พ๐ผ๐ถ๐ฟ is a

symmetric positive definite gain matrix, ๐‘ƒ is a symmetric positive definite matrix and

๐“จi = ๐‘กโˆ’ฮ”๐‘ก๐‘ก

๐’€ ๐œŽ ๐‘‘๐œŽ , ๐“คi = ๐‘กโˆ’ฮ”๐‘ก๐‘ก

๐ด๐‘ฟ ๐œŽ ๐‘‘๐œŽ.

Since ๐‘ฟ ๐‘ก๐‘– โˆ’ ๐‘ฟ ๐‘ก๐‘– โˆ’ ฮ”๐‘ก โˆ’ ๐“ค๐’Š = ๐‘ฉ๐“จ๐‘–๐šฏ. The adaptive update law can be rewritten as

แˆถ๐šฏ = ๐‘๐‘Ÿ๐‘œ๐‘— 2ฮ“๐’€๐‘‡๐‘ฉ๐‘‡๐‘ƒ๐‘‡๐‘ฟ + ฮ“๐พ๐ผ๐ถ๐ฟ

๐‘–=1

๐‘๐‘ 

๐“จ๐‘–๐‘‡๐“จ๐‘–

เทฉ๐šฏ

Page 10: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

For the Lyapunov-based analysis, the candidate Lyapunov function is

๐‘‰ = ๐‘ฟ๐‘ป๐‘ƒ๐‘ฟ +1

2เทฉ๐šฏ๐‘ปฮ“เทฉ๐šฏ

After taking the time derivative and substituting the dynamics, control and adaptiveupdate laws we get

แˆถ๐‘‰ = โˆ’๐‘ฟ๐‘‡๐‘„1๐‘ฟ โˆ’ ๐šฏ๐‘ป๐พ๐ผ๐ถ๐ฟ ฯƒ๐‘–=1๐‘๐‘  ๐“จ๐‘–

๐‘‡๐“จ๐‘–เทฉ๐šฏ

where ๐‘„1 is a positive definite matrix.

The condition of finite excitation assumes there exists a time t=T >0 such that

๐œ†๐‘š๐‘–๐‘›

๐‘–=1

๐‘๐‘ 

๐“จ๐‘–๐‘‡๐“จ๐‘– > าง๐œ†

where าง๐œ† is a user-defined positive threshold .

Page 11: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Before ๐‘ก = ๐‘‡, KICLฯƒ๐‘–=1๐‘๐‘  ๐“จ๐‘–

๐‘‡๐“จ๐‘– is at least positive semi-definite. Therefore

แˆถ๐‘‰ โ‰ค โˆ’๐‘ฟ๐‘„1๐‘ฟ

which is a negative semi-definite result. By Barbalatโ€™s Lemma we can conclude thatbefore ๐‘ก = ๐‘‡

lim๐‘กโ†’โˆž

๐‘ฟ โ†’ 0

After t=T, KICLฯƒ๐‘–=1๐‘๐‘  ๐“จ๐‘–

๐‘‡๐“จ๐‘– becomes positive definite, and ๐‘‰ ๐‘ก can be upper bounded

as

๐‘‰(๐‘ก) โ‰ค ๐‘‰ ๐‘‡ exp โˆ’๐œ† ๐‘ก โˆ’ ๐‘‡ โˆ€๐‘ก โ‰ฅ ๐‘‡

Then, the states ๐‘ฟ and the estimation error เทฉ๐šฏ is guaranteed to exponentiallyconverge to zero after ๐‘ก = ๐‘‡.

Page 12: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Results โ€“ leader follower

Numerical simulation with the physical properties of seven identical DMD-equippedCubeSats, full nonlinear individual dynamics, and NRLMSISE-00 atmospheric. Along-orbit formation maneuver with 1km inter-spacecraft separation.

Page 13: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Each maneuverable chaserestimates the unknownparameters of the target.

Affecting estimation:nonlinear dynamics anddensity approximation model

Results โ€“ leader follower

Page 14: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Results โ€“ rendezvous

Page 15: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Since all spacecraft areidentical, the cross sectionalareas converge to the samelevel.

Results โ€“ rendezvous

Page 16: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Conclusion and Future Work

Adaptive controllers have been proposed for autonomous spacecraft differential drag-based simultaneousrelative estimation and maneuvers.

The results are potentially implementable on-board small satellites.

ICL adaptive controller including natural torques is under development in collaboration with the NCR.

Future work includes networking the chasers and their estimations to enhance the performances.

Related Publications: C. Riano-Rios, R. Bevilacqua, W. E. Dixon, โ€œRelative maneuvering for multiple spacecraft via differential drag using LQR

and constrained least squaresโ€, 495 in: AAS Space Fight Mechanics Meeting, Maui, Hawaii, 2019, Paper No. AAS-19-346.please, look here for collision avoidance

C. Riano-Rios, S. Omar, R. Bevilacqua, W. Dixon, โ€œSpacecraft attitude regulation in low earth orbit using natural torquesโ€,in: 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 2019.

C. Riano-Rios, R. Bevilacqua, W. E. Dixon, โ€œAdaptive control for differential drag-based rendezvous maneuvers with anunknown targetโ€, Acta Astronautica. To appear.

C. Riano-Rios, R. Bevilacqua, W. E. Dixon, โ€œDifferential Drag-Based Multiple Spacecraft Maneuvering and On-LineParameter Estimation Using Integral Concurrent Learningโ€, Submitted to Acta Astronautica.

Others in preparationโ€ฆ

Page 17: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

End of Presentation

Page 18: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Backup Slides

Page 19: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

COLLISIONS

โ€œThe presence of multiple spacecraft maneuvering at relatively small

distances increases the risk of possible collisions, especially for

rendezvous maneuvers. Having the same controller driving each

chaser to the rendezvous state with respect to the target yields a

similar behavior in the relative path that a chaser follows to reach it,

and given the state feedback term in the control law it is expected that

the control effort is reduced as the chaser approaches the target.

Therefore, if a rendezvous maneuver is required, some chasers could

follow similar paths and will be maneuvering in close proximity to the

target for a

significant portion of the maneuver, increasing the collision risk.

To reduce the collision risk, this undesired behavior could be

addressed by introducing an along-orbit formation as an intermediate

stepโ€ฆโ€e stage where the desired separations represent \parking"

positions. Then, once the positions of the chasers are stable along the

same orbit, these separations can be sequentially reduced to drive

each chaser to the rendezvous state in a more controlled way when in

close proximity to the

targetโ€

Page 20: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

IC leader-follower formation

Page 21: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

IC rendezvous

Page 22: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Stability Analysis for ICL Adaptive controller

Candidate Lyapunov function is

๐‘‰ = ๐‘ฟ๐‘ป๐‘ƒ๐‘ฟ +1

2เทฉ๐šฏ๐‘ปฮ“เทฉ๐šฏ

For analysis purposes, express ๐‘ข๐‘ฆ as

๐‘ข๐‘ฆ = ๐‘ข๐น๐ต + ๐‘ข๐ด๐ท

where ๐‘ข๐น๐ต and ๐‘ข๐ด๐ท are feedback and adaptive terms respectively.

๐‘ข๐น๐ต = โˆ’๐‘ฒ๐‘ฟ

where ๐‘ฒ is a constant gain vector obtained from solving an LQR problem that minimizes the cost function

๐ฝ = เถฑ0

โˆž

๐‘ฟ๐‘‡๐‘„๐‘ฟ + ๐‘…๐‘ข๐น๐ต2

Page 23: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Stability Analysis for ICL Adaptive controller

The solution of the LQR problem produces the symmetric positive definite matrix ๐‘ƒby solving the Algebraic Riccati Equation. ๐‘ƒ is the matrix used in the LyapunovCandidate Function.

๐‘‰ = ๐‘ฟ๐‘ป๐‘ƒ๐‘ฟ +1

2เทฉ๐šฏ๐‘ปฮ“เทฉ๐šฏ

Since ๐‘ข๐‘ฆ = ๐’€เทฉ๐šฏ+ ๐’€๐šฏ, then

๐‘ข๐ด๐ท = ๐’€เทฉ๐šฏ + ๐’€๐šฏ + ๐Š๐—

and

๐’€๐šฏ = เทœ๐œŒ๐‘ก ๐‘ก แˆ˜๐ถ๐ท,๐‘ก ๐‘‰๐‘Ÿ,๐‘ก2 ๐‘†๐‘ก

2๐‘š๐‘กโˆ’ เทœ๐œŒ๐‘– ๐‘ก แˆ˜๐ถ๐ท,๐‘– ๐‘‰๐‘Ÿ,๐‘–

2 เดค๐‘ข

The Lyapunov derivative can be written as

แˆถ๐‘‰ = ๐‘ฟ๐‘‡ ๐‘ƒ๐ดโˆ— + ๐ดโˆ—๐‘‡๐‘ƒ ๐‘ฟ + 2๐‘ฟ๐‘‡๐‘ƒ๐‘ฉ๐‘ข๐ด๐ท โˆ’ เทฉ๐šฏ๐‘‡ฮ“โˆ’1 แˆถ๐šฏ

where ๐ดโˆ— = ๐ด โˆ’ ๐‘ฉ๐‘ฒ is Hurwitz since ๐‘ฒ is obtained by solving the LQR problem

Page 24: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Stability Analysis for ICL Adaptive controller

Substituting ๐‘ข๐ด๐ท and แˆถ๐šฏ in the Lyapunov derivative yields

แˆถ๐‘‰ = โˆ’๐‘ฟ๐‘‡๐‘„1๐‘ฟ + 2๐‘ฟ๐‘‡๐‘ƒ๐‘ฉ ๐’€เทฉ๐šฏ + เทœ๐œŒ๐‘ก ๐‘ก แˆ˜๐ถ๐ท,๐‘ก ๐‘‰๐‘Ÿ,๐‘ก2

๐‘†๐‘ก2๐‘š๐‘ก

โˆ’ เทœ๐œŒ๐‘– ๐‘ก แˆ˜๐ถ๐ท,๐‘– ๐‘‰๐‘Ÿ,๐‘–2 เดค๐‘ข + ๐Š๐— +

-เทฉ๐šฏ๐‘‡ฮ“โˆ’1 2ฮ“๐’€๐‘‡๐‘ฉ๐‘‡๐‘ƒ๐‘‡๐‘ฟ + ฮ“๐พ๐ผ๐ถ๐ฟ ฯƒ๐‘–=1๐‘๐‘  ๐“จ๐‘–

๐‘‡๐“จ๐‘–เทฉ๐šฏ

where ๐‘„1 is the symmetric positive definite matrix that satisfies the Lyapunov equation

๐‘ƒ๐ดโˆ— + ๐ดโˆ—๐‘‡๐‘ƒ = โˆ’๐‘„1

Substituting the control law เดค๐‘ข we get

แˆถ๐‘‰ = โˆ’๐‘ฟ๐‘‡๐‘„1๐‘ฟ + โˆ’เทฉ๐šฏ๐‘‡๐พ๐ผ๐ถ๐ฟ ฯƒ๐‘–=1๐‘๐‘  ๐“จ๐‘–

๐‘‡๐“จ๐‘–เทฉ๐šฏ

Page 25: April 14th, 2020 AACE review Adaptive Control and Integral ...ncr.mae.ufl.edu/aa/files/Spring2020/SlidesReport2020AFOSR.pdfFor the Lyapunov-based analysis, the candidate Lyapunov function

Stability Analysis for ICL Adaptive controller

Before t=T, แˆถ๐‘‰ can be upper bounded by

แˆถ๐‘‰ โ‰ค โˆ’๐‘ฟ๐‘ป๐‘„1๐‘ฟ

using Barbalatโ€™s Lemma results in asymptotic regulation of the state vector ๐‘ฟ.

After t=T,

แˆถ๐‘‰ = โˆ’๐‘ฟ๐‘‡๐‘„1๐‘ฟ + โˆ’เทฉ๐šฏ๐‘‡๐พ๐ผ๐ถ๐ฟ ฯƒ๐‘–=1๐‘๐‘  ๐“จ๐‘–

๐‘‡๐“จ๐‘–เทฉ๐šฏ

From this result, if can be shown that after t=T, V decreases exponentially as

๐‘‰(๐‘ก) โ‰ค ๐‘‰ ๐‘‡ exp โˆ’๐œ† ๐‘ก โˆ’ ๐‘‡ โˆ€๐‘ก โ‰ฅ ๐‘‡

where

๐œ† = min ๐œ†๐‘š๐‘–๐‘› ๐‘„1 , ๐œ†๐‘š๐‘–๐‘› ๐พ๐ผ๐ถ๐ฟ ฯƒ๐‘–=1๐‘๐‘  ๐“จ๐‘–

๐‘‡๐“จ๐‘–