Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann...

20
Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute
  • date post

    15-Jan-2016
  • Category

    Documents

  • view

    214
  • download

    0

Transcript of Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann...

Page 1: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

Approximating Maximum Edge Coloring in Multigraphs

Uriel Feige Eran Ofek Udi WiederWeizmann Institute

Page 2: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

2

The Problem Max Edge t-Coloring

Given a multigraph G and a number t, edge color as many edges as possible using t colors.

t = 3 Gray edges – uncoloredEvery color class is a matching

Page 3: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

3

Hardness results

For fixed t ¸ 2: Max Edge t-Coloring is NP-hard. Implicit in [Holyer ‘81, Leven Galil ’83, Papadimitriou ‘80].

Easily extends to hardness of approximation within a factor of 1 - t.

Page 4: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

4

Greedy Algorithm

Repeatedly take a maximum matching from the graph (and remove it).

The approximation ratio is at least The ratio may be as bad as ¾ (for every even t):

Greedy:

Optimum:

Page 5: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

5

The chromatic index ’(G): the least number of colors required to edge color all the edges of G.

In a simple graph:

(G) · ’(G) · (G) +1 [Vizing ‘64].

A Related Problem

Page 6: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

6

Algorithm for Simple Graphs

Find an edge subgraph with degree bounded by t, containing as many edges as possible [Edmonds and Johnson ’70].

Edge color the subgraph using at most t +1 colors (can be done using Vizing’s algorithm).

Take the t largest color classes.

Approximation ratio:

Page 7: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

7

Input: multigraph G, number of colors t = 4.

What About Multigraphs ?

Maximum subgraph with degree 4:

In each triangle only 4 edges can be colored (using 4 colors).

8 edges are colored.

Page 8: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

8

What About Multigraphs ?

Input: multigraph G, number of colors t = 4. The optimum solution has 12 edges:

The approximation is not better than (can be generalized for every even t).

Page 9: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

9

Let S be a subset of vertices of size : A matching over the edges in S has size . At least colors are needed. For odd S: it may be as large as .

Odd density:

What Went Wrong?

The maximum degree is not enough to predict the chromatic index, the chromatic index can be as large as :

Page 10: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

10

Let G be a multigraph. is the maximum degree of G and is

the odd density of G.

Lower bound: ’(G) ¸ max{, }. Upper bounds:

’(G) · max{1.1 + 0.8, } [Nishizeki, Kashiwagi ’90].

’(G) · (1 + o(1))max{, }, not constructive [Kahn ‘96].

Conjecture: ’(G) · max{ + 1, } [Seymour ‘79]

Bounds for the chromatic index ’(G)

algorithm [NK ’90]

Page 11: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

11

Modifying the Approach for Multigraphs

Find a maximum edge subgraph with , · t.

Edge color the subgraph using as few colors as possible (can be done using [NK ‘90]).

Take the t largest color classes.

This yields a approximation.

Page 12: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

12

Difficulty

The first step of finding a largest edge subgraph with , · t is NP-hard for t=2 (also for t > 2 ??).

Solution: Algorithm which “approximates” the first step:

OPT= number of edges in an optimal solution (, · t).

The algorithm outputs an edge subgraph G’ with:

(G’) · t+1, (G’) · t + O(t1/2).

The number of edges in G’ is at least OPT.

Page 13: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

13

Approximation Using a Linear Program

Every edge has value between 0 and 1.

The solution has degree and density bounded by t, however it contains fractional edges. Fractional edges are denoted by GF, integer edges denoted by GI.

Round the fractional edges of GF (in 3 steps).

Return GI plus Round(GF).

Page 14: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

14

Step 1 – Parallel Edges in GF

Handling parallel fractional edges:

The solution GF + GI remains valid. GF becomes a simple graph.

GIGF

Page 15: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

15

Steps 2 and 3: Round(GF)

Round the fractional edges of GF achieving an integral solution with the following properties:

Degrees exceed the original fractional degrees by at most 1.

The sum of weights of edges does not decrease.

Page 16: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

16

Putting All Together

Theorem: Adding Round(GF) to GI yields: Degrees are bounded by t+1. Odd densities are bounded by t + O(t1/2).

Proof: Consider S µ V : If |S| · t1/2: because GF contributes at most |S| edges

per vertex. If |S| ¸ t1/2: follows from degree bound.

Page 17: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

17

Find a fractional even length cycle in GF. Shift values from red edges to green edges until one

edge becomes integral (0/1):

The degrees of vertices in GF remain the same. Iterating this step eliminates all fractional even cycles

in GF.

Step 2 – Rounding GF

Case 1: Case 2:

GFGF

0

1

Gray edges: edges which become 0/1.

Page 18: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

18

Step 3 – Tree like structure of fractional GF

Odd cycles are vertex disjoint (otherwise an even cycle exists).

The fractional edges of GF form a tree like structure. A node of the tree is either a vertex of G or an odd cycle of G:

Page 19: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

19

LPval Gives a Good Prediction

The value of the LP predicts the optimal solution of Max Edge t-Coloring within a factor of 1+ot(1):

Round(LP) has: , · t+o(t) and value ¸ LPval . Round(LP) be colored with t+o(t) colors (Kahn ‘96). Thus there exist a solution for Max Edge t-Coloring

with value of (1-ot(1))LPval .

Page 20: Approximating Maximum Edge Coloring in Multigraphs Uriel Feige Eran Ofek Udi Wieder Weizmann Institute.

20

Summary

Red – Greedy algorithm.Blue – LP based algorithm.Green – Special algorithm for t=2

with ratio of 0.77 .

t

ratio