Applications of early warning in the U.S. and what is needed to deliver them

21
Richard Allen Earthquake early warning summit April 5, 2011, UC Berkeley Applications of early warning in the U.S. and what is needed to deliver them

description

Applications of early warning in the U.S. and what is needed to deliver them. Richard Allen Earthquake early warning summit April 5, 2011, UC Berkeley. Warning Timeline. Realtime animation for a magnitude 8 on the San Andreas fault. Southern California: - PowerPoint PPT Presentation

Transcript of Applications of early warning in the U.S. and what is needed to deliver them

Page 1: Applications of early warning in the U.S. and what is needed to deliver them

Richard AllenEarthquake early warning summit

April 5, 2011, UC Berkeley

Applications of early warning in the U.S.

and what is needed to deliver them

Page 2: Applications of early warning in the U.S. and what is needed to deliver them

Warning Timeline

Realtime animation for a magnitude 8 on the San Andreas fault

Southern California:Rotate map 180° for a rupture up the San Andreas towards Los AngelesWashington and Oregon:Magnitude 9 rupture of the subduction zone could have a greater warning time

YouTube: http://www.youtube.com/watch?v=Qf9DeYBlwMI Download mp4: http://seismo.berkeley.edu/~rallen/research/WarningsInJapan/SanAndreasFromNorth_v2_bb.mp4

Page 3: Applications of early warning in the U.S. and what is needed to deliver them

Communicating the warningJapan

TV and radio announcements• 124 of 127 TV stations (98%)• 41 AM, 35 FM radio (75%)J-Alert messages• 226 municipalities receive the warnings• 102 announce them with public address systems

Cell phones• 3 companies (Docomo, AU, Softbank)• 52 million can receive them (47%)

Dedicated providers serve• power plants• factories• schools• hospitals• shopping malls

earthquake location and

hazard

estimated shaking in your area

Page 4: Applications of early warning in the U.S. and what is needed to deliver them

Types of application

1. Personal safety – moving to a safe zone

2. Automated control – slowing/stopping/isolating sensitive systems

3. Situation awareness – initiating response before shaking

Using seconds to tens of seconds warning for…

Page 5: Applications of early warning in the U.S. and what is needed to deliver them

Being in an earthquake…

March 11, 2011 M9 Tohoku-oki earthquake

1. Personal safety

YouTube: http://www.youtube.com/watch?v=871E8_DJ-rw Download mp4: http://seismo.berkeley.edu/~rallen/research/WarningsInJapan/CouldHaveUsedWarningToTakeCover-01.

mp4

Page 6: Applications of early warning in the U.S. and what is needed to deliver them

Schools in Japan

HomeSeismometer

Drill: British School in Tokyo courtesy Peggy Hellweg

1. Personal safety

YouTube: http://www.youtube.com/watch?v=miVBBF_Xows Download mp4: http://seismo.berkeley.edu/~rallen/research/WarningsInJapan/EEW_Exercise_Japan.mp4

Page 7: Applications of early warning in the U.S. and what is needed to deliver them

In a university lecture hall in Sendai:Just after 2:46 p.m. on Friday, March 11, an earthquake warning buzzed on the cell phone belonging to Professor Kensuke Watanabe. He knew it was time for everyone in his class to bolt under their desks. The university building in Sendai, the biggest city hit by the quake and subsequent tsunami, began to shake violently. But Watanabe and his students, with that small warning, were able to use the sturdy desks as protection against falling objects. Shortly after, they fled the building for open ground. None in the group was hurt by Japan's worst earthquake on record. "It was terrifying," says Watanabe, "but the mobile warning really helped."Extract from "Japan's Earthquake Warning System Explained”

TIME, March 18, 2011.

1. Personal safety

Page 8: Applications of early warning in the U.S. and what is needed to deliver them

Surviving Sendai, a first person account:"Our meeting was being held on the second floor of an office building near Sendai Station. Suddenly, during our discussions, our mobile phones began to ring with the distinctive earthquake alarm. ... This gave us a window of a few seconds to prepare before the shaking began. My business partner and I took shelter on the floor beneath a steel door frame and waited for the shaking to begin. Although the building we were in was fairly new, the shaking was strong enough that we were not able to stand. Dust and debris from the ceiling began to fall like snow and large cracks appeared in the walls."

– Basil Tonks, Simcoe, March 15, 2011.

Page 9: Applications of early warning in the U.S. and what is needed to deliver them

Sendai schools and universities

I've confirmed that EEW worked well Nagamachi Elementary School in Sendai City: ‘The earthquake warning was announced about 10 sec before shaking and all pupils sank under their desks. Gradually shaking became larger. One minute later a blackout occurred and after another two minutes severe shaking continued'.

The EEW at Shiroishi Junior High School, Shiroishi City was issued and staff and pupils were evacuated.

Sendai-West High School's EEW using Miyagi-SWAN (School WAN) also worked. Teachers were in a meeting and sank under desks following the EEW. Athletics club students in the gymnasium were also evacuated.

Tohoku University's EEW using the university LAN worked and issued the EEW to the broadcast systems at 5 campuses.

– report from Masato Motosaka

1. Personal safety

Page 10: Applications of early warning in the U.S. and what is needed to deliver them

1. Personal safetyIdentifying a safe zone where you live and work• Being mentally prepared for the shaking

• Protection from falling bookshelves, lighting etc•Home or office: Under a sturdy table•Outside: away from masonry and falling hazards• Industrial plants, construction sites: away from machinery and chemicals

Page 11: Applications of early warning in the U.S. and what is needed to deliver them

Types of application

1. Personal safety – moving to a safe zone

2. Automated control – slowing/stopping/isolating sensitive systems

3. Situation awareness – initiating response before shaking

Using seconds to tens of seconds warning for…

Page 12: Applications of early warning in the U.S. and what is needed to deliver them

Miyagi, Japan2003: Two damaging earthquakes• $15 million in losses• fire, equipment damage• 17 and 13 days loss of productivity

chip manufacturer

Spent $600K on early warning and shear walls in basement• Sensitive equipment set down on floor to reduce shaking and damage

Two similar earthquakes• $200K in losses• 4.5 and 3.5 days loss of productivity

2. Automated control

Page 13: Applications of early warning in the U.S. and what is needed to deliver them

Bullet trains

- from Asahi

At the time of the M9 Tohoku-oki earthquake…•24 trains were running in the Tohoku Shinkansen system• 9 seismic sensors along the coast, and 44 sensors along the train track• detected the initial tremor; automatic shutdown of power; activation of the emergency brakes•all trains stopped without derailment• they did not sustain any damage on bridges and tunnels, and could restore the operation very quickly

2. Automated control

Page 14: Applications of early warning in the U.S. and what is needed to deliver them

2. Automated controlBringing systems into a safe mode

• Slowing and stopping trains• Telling airplanes to “go-around”• Isolating hazardous chemicals and machinery• Putting sensitive equipment into a stable state• Stopping elevators and opening doors at next floor• Smart buildings: opening doors/windows, turning off gas

Page 15: Applications of early warning in the U.S. and what is needed to deliver them

Types of application

1. Personal safety – moving to a safe zone

2. Automated control – slowing/stopping/isolating sensitive systems

3. Situation awareness – initiating response before shaking

Using seconds to tens of seconds warning for…

Page 16: Applications of early warning in the U.S. and what is needed to deliver them

Soon?: AlertMapseconds to tens of seconds before shaking

Today: ShakeMap in 5-10 minutes

Current realtime earthquake information• location• magnitude• ground shaking distribution

3. Situation awareness

Page 17: Applications of early warning in the U.S. and what is needed to deliver them

3. Situation awarenessUnderstanding why systems are failing

• Re-routing power or communications• Preventing cascading failures• Initiating emergency response

Information available before communications are lost

Page 18: Applications of early warning in the U.S. and what is needed to deliver them

Path to delivery of early warning in the U.S.1. Long-term goal:

Open public system in California, Oregon and Washington similar to JapanRequires• Additional stations (white)• Upgrades to existing stations• Continuous realtime GPS• Robust telemetry•Methodology development• 24/7 operations•Warning delivery systems• Public education campaign

Cost of 5-year implementation plan$80M California$65M Washington

and Oregon

Page 19: Applications of early warning in the U.S. and what is needed to deliver them

Path to delivery of early warning in the U.S.2. Immediate steps

Make existing test software in CA robust•move the current “research” system to a “production” system• develop additional warning applications (software)

Work with potential users to start delivery of test alerts• identify necessary information and delivery mechanisms• complete demonstration projects and begin delivery testing

Develop additional and improved hazard estimation methodologies• application of realtime GPS methodologies• use of “community networks” e.g. sensors embedded in consumer electronics • realtime mapping of finite fault ruptures

Identification of warning applications in the U.S.• industry-by-industry assessment of uses for early warning• cost benefit analyses in the context of shaking risk

Others?

Targeted improvements to geophysical networks• filling crucial gaps in the network coverage

Page 20: Applications of early warning in the U.S. and what is needed to deliver them
Page 21: Applications of early warning in the U.S. and what is needed to deliver them

“Homework”

1. Is there additional information that you need to evaluate the utility of early warning for your company? 2. Has your organization been able to identify specific uses of earthquake warnings? If so, how would you use 5 seconds, 20 seconds, and 1 minute of warning? 3. Do you have an assessment of the costs and benefits of implementing warning actions within your organization? 4. Do you have suggestions for next steps to move the development of early warning forward? 5. Are there specific steps that your company would be willing to participate in?   Please email your responses to Richard Allen ([email protected]).