Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery###...

48
Analysis of Captive Cogeneration Power Plant Upset Scenarios using Dynamic Simulation Software By : Arvind Kaushik – Chemical Engineer C Nageswara Rao – Mechanical Engineer Soumya Majumdar – Mechanical Engineer Ramesh Kumar G – Mechanical Engineer Larsen & Toubro Limited – Hydrocarbon IC Research & Development Thermal Powai Works, Mumbai – 400076 India.

Transcript of Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery###...

Page 1: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Analysis of Captive Cogeneration Power Plant Upset Scenarios using Dynamic Simulation

Software By  :  Arvind  Kaushik  –  Chemical  Engineer  C  Nageswara  Rao  –  Mechanical  Engineer  Soumya  Majumdar  –  Mechanical  Engineer  Ramesh  Kumar  G  –  Mechanical  Engineer  

Larsen  &  Toubro  Limited  –  Hydrocarbon  -­‐  IC  Research  &  Development  -­‐  Thermal    Powai  Works,  Mumbai  –  400076  

India.  

Page 2: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

About  Larsen  &  Toubro  

•  Turnover  :  US  $  11.7  bn  (FY    11  

-­‐12)  

•  Employees:  50,000  

•  Ownership:  Majority  with  Public  

&  Financial  InsNtuNons  

•  Founded  in  1938  by  two  Danish  Engineers.  

•  Technology,  engineering,  construcNon  and  manufacturing  company  

•  Ranks  Among  Top  5  Companies    in  India’s  Private  Sector.  

•  Professionally  Managed  since  IncepNon.  

•  Successful  Track  Record  in  Oil  &  Gas,  Refinery,  Power,  Petrochemicals,  Cement  &  Infrastructure.  

•  Network  of  Offices  Worldwide.  

•  State-­‐of-­‐the-­‐art  Manufacturing  FaciliNes  in  India  and  Oman  .  

2  

Page 3: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

OCEAN    ENGG.  

Reforming  &    syngas  related  Processes  

Hydrogen,  Ammonia  &  Methanol  

Gas  Processing  

SeparaUon  Process  

Well  head  &  Process  plaVorms  

Water  Treatment  

DesalinaUon  

   -­‐  RO      -­‐  Thermal  

STP  /  ETP  

Recycling  

CHEMICAL  ENGG.  

WATER  TECHNOLOGIES  

Fired    Heaters  

Modular    Systems  

Super  CriUcal  Boilers  

Power  plant  SimulaUon  

CFD  

THERMAL  ENGG.  

MECHANICAL  ENGG.  

MATL.  SCI.  &  CORROSION  

Stress  Analysis  

Structural  Analysis  

Piping    Analysis  

Experi-­‐  mental    Techniques  

Machinery      &  System    Design  

Machinery  /  Structural  DiagnosUcs  

Rotor    Dynamics  &  Tribology  

ROTATING    MACHINERY  

 Equip.      Metallurgy  

 Cathodic      ProtecUon  

 Residual  Life            Assessment  

 Composites    Failure      Analysis    Corrosion      Control)  

Research  &  Development,  Hydrocarbon  IC  

Page 4: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

4  

1.  Study  the  effects  of  load  disturbances  on  the  system.  

2.  Study  the  effects  of  any  one  equipment  trip  or  mulNple  equipment  trip  .    The  trips  could  be  isolated  events  or  cascade.  

3.  To  define,  design  and  refine  the  operaNons  /  control  philosophy,  system  and  mechanism  of  a  given  power  plant  /  system.    

4.  To  test  the  plant  operaNon  under  various  modes  of  operaNon.  

5.  Tuning  and  adjustment  of    controller  parameters.    

6.  Off-­‐line  training  of  plant  operators.  

Page 5: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

5  

1.  Modular  approach  to  mathemaNcal  modeling  of  power  plants.  

2.  One  or  more  modules  represents  one  equipment  (e.g.  boiler,  turbine,  valve,  pipe,  pump,  duct  ,  fan,  motor,  transformer,  generator,  etc.,  )  

3.  The  plant/system  model  is  created  by  interconnecNng  modules  through  ports.    

4.  An  MMS  model  is  processed  through  automated  steps  that  produce  a  simulaNon  executable.  

5.  Programming  languages  –  ACSL,  Fortran  and  Visual  C++.    

6.  Library  of  various  modules  –  Electrical,  Mechanical,  BoP  and  Controls.  

Features  of  Modular  Modeling  System  (MMS)  Soiware  

Page 6: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

6  

1.  Choice  of  integraNon  algorithms  such  as  Euler,  Runge–kuja,  Gear,  Adam-­‐Smith  etc.,  

2.  AutomaNc  sorNng  and  sequencing  of  differenNal  equaNons  for  soluNon.  

3.  User  needs  to  have  understanding  of  ACSL,  to  build  and  execute  models.    

4.    Knowledge  of  Visual  C++  required  if  one  needs  to  develop  new  modules.  

5.In-­‐built  simplified  property  rouNnes  for  water,  air,  and  fuels  etc,    

6.  Vendor  –  nHance  Technologies  ,  US.  

Features  of  MMS  soiware  –  Contd.  

Page 7: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

7  

1.  Steady  state  heat  balance  diagram.  

2.  P&I  diagram.  

3.  G.A.  drawings.    

4.  Equipment  specificaNon  sheets  (Pumps,  Control  valves,  HX,  etc).  

5.  Control  system  logic  diagrams  and  descripNon.      

6.  OperaNon  and  control  philosophy.  

7.  Start-­‐up  sequence.  

8.  Shut  down  sequence.  

Dynamic  Model  PreparaNon  –  Data  Required.  

Page 8: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

8  

Modeling  Sequence  

Define the System

Boundaries and gather equipment

data

Generate model of

each equipment

and test

Link the equipment modules

Execution and

achieving the steady

state operation

Controller tunings

Generate upset

conditions Get results and analyze

Tie to a training

simulator, if desired

Page 9: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

9  

5  nos.  Boilers  –  Thermax.  

4  nos.  Steam  turbines;  Triveni  –  11.8  MWe  base  load;  Condensing    

4  nos.  Generators  –  11  kVA  .  

5  nos.  deaerators.      

5  no.  boiler  feed  water  pumps  along  with  drive  turbines  

3  nos.  power  fluid  pumps  and  3  nos.  injecNon  water  pumps  

BOP  (PRDS;  De-­‐aerators,  Pipes,  Pumps,  Valves,  condenser,  FD  fans,  etc)  

Transformers,  Electrical  network  bus,  Electrical  motors,  etc.  

Major  Equipment  Modeled  

Page 10: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

LC  

LC  

PC  

PC  

PC   PC  

Boiler  1   Boiler  2   Boiler  3   Boiler  4   Boiler  5  

STG  2   STG  4  

PC  

PC  

PC  

HP  STEAM  HEADER  

MP  STEAM  HEADER  

MP  CONDENSATE  HEADER  

STG  1  

ProducNon    Heaters   InjecNon    

Heaters   Offspec   Oil    /  Skim  Oil    Heaters  

Tank  /    Vessel    Heaters  

MP  CONDENSATE  FLASH  DRUM  

LP  CONDENSATE  FLASH  DRUM  

InjecUon  Water  Pump  Turbines   Power  Fluid  Pump  Turbines   Boiler  Feed  Water  Pump  Turbines  

D  D   D   D   D   D  

S  

ATM  

ATM  

ATM  

Deaerators  UNlity  StaNons  

600  psig  &  700F  41.4  barg  &  371°C  

100  psig  &  338F  6.9  barg  &  180°C  

7.2  psig  &  234F  0.5  barg  &  112°C  

D   D   D   D   D  PC  D  

S  ATM  

S  ATM  ATM  

S  ATM  S  S  

ATM  

STG  3  

ATM  

FC   LC  

To    Deaerator  To    Deaerator  To    Deaerator  To    Deaerator  

To  BFW  Pump  To  BFW  Pump  To  BFW  Pump  To  BFW  Pump  

To  Boiler  2  To  Boiler  3  To  Boiler  4  To  Boiler  5  

BFW  Makeup    Tank   Demineralised  

Water  Make-­‐Up  

N2  Blanket  

LC  Deaerator  

ATM  

43  psig  &  304F  3  barg  &  173°C  

Thumbli  Water  Wells    

Filter  Package  

DesalinaNon  Package  Condensate  

Polishing  Package  

SCHEMATIC  DIAGRAM:  STEAM  AND  POWER  GENERATION  SYSTEM  

AcNvated  Carbon  Filter  Package  Treated  Condensate  Storage  

Tank  

N2  Blanket  

LP  STEAM  HEADER  

LP  CONDENSATE  

ACC  

ACC  

LEGEND  

STG  Steam  Turbine    Generator  

LP      Low  Pressure  

MP    Medium  Pressure  

HP      High  Pressure  

ACC  Air  Cooled  Condenser  

ATM  Atmospheric  

PC      Pressure  Control  

LC      Level  Control  

FC      Flow  Control  

D  S  

Desuperheater  

Silencer  

ACC  

LC  

LC  

ACC   ACC   ACC  

ATM   ATM  ATM  

ATM  LC   LC   LC  

Page 11: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

G1   G2   G3   G4  

SB1   SB2   SB3   SB4   SB5   SB6  

Well  Pads   Well  Pads   OperaNons  Base  

M1  M2  

M3  M4  

M5  M6  

M7  M8  

M9  M10  

M11   M13  M12   M14  

6.6  kV  Motors  

EM8  EM1  

6.6  kV  Emergency  Motors/Loads  

SB7   SB8   SB9   SB10   SB11   SB12   SB13   SB14  

EM2  EM3  

EM4  EM5  

EM6  EM7   EM9  

EM10  EM11  

EM12  EM13  

EM14  EM15  

6.6  kV  Bus  

33  kV  Bus  

11  kV  Bus  B  

6.6  kV  Emergency  Bus  

11  /0.433  kV   11  /6.9  kV  

SS   SS  

11  /6.9  kV  

11  /6.9  kV   11  /6.9  kV  

11  /35  kV   11  /35  kV  

6.6  /0.433  kV  

415  V  Split  Bus  

415  V  Split  Bus  

GENERATORS;  15  MVA,    

12  MW,  11  kV,  3φ,  50  Hz  11  kV  Bus  A   11  kV  Bus  C  

Plant Configuration (Electrical System)

TRANSFORMERS  

EG1   EG2   EG3  

EMERGENCY  DIESEL  GENERATORS  

11  

Page 12: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

12  

Control Systems Implemented

•  UUlity  Boilers  

–  Three-­‐element    /  single  element  drum  level  control  based  

on  steam  drum  level,  Steam  flow  rate  and  the  Feed  water  

flow  rate.  

–  Firing  rate  control  based  on  HP  header  pressure.  

–  Air  fuel  raNo  control  by  FD  fans  

–  Temperature  control  of  steam  by  desuperheaNng  

Page 13: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

13  

Control Systems implemented (Contd.)

•  Steam  Turbines  

–  Turbine  Governor  Model  (vendor’s  Controller  Block  

Diagram  and  Transfer  FuncNon  Diagram)  

– Mechanical  Power  output,  MW.  

•  Generators  

–  AutomaNc  Voltage  Regulator  (AVR)  vendor’s  Transfer  

FuncNon  Diagram  

Page 14: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

14  

Control System implemented (contd..)

•   De-­‐aerator  

•   Pressure  &    Level    •   Steam  turbine  drives  for  pumps  

•     BFW  pump  rpm  is  controlled  based  on  steam  flow  

•     Discharge  pressure  of  power  fluid  pump  is  maintained  @  

203.91  bar)  by  controlling  steam  flow  to  the  PF  pump  drive  

turbine.  

•   InjecNon  water  pump  discharge  pressure  is  maintained  at  

121.02  barg  •   Soh  starter  for  start-­‐up  of  the  power  fluid  pump  motor  

Page 15: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Work Procedure Step  1  -­‐  Data  Gathering  

•  Process  flow  diagrams,  Heat  Balance  diagram  and  P&I  diagram.  

•  Equipment  specificaNons,  physical  and  Geometric  Details  data  •  OperaNng  parameters  data,  allowable  metal  temperatures.    

•  Control  Valves,  controllers  specificaNons,  and    •  Control  system  logic  descripNon.  

Step  2  -­‐  Data  Input  to  Modules  and  Individual  Module  TesUng  •  Fuel  System  

•  Boilers  complete  with  the  Boiler  feed  pumps,  economizer,  superheater  FD  fans  etc.,    

•  Steam  Turbines  with  Condensers  

•  Generators  •  Heavy  Duty  Pumps  with  motors,    •  Heat  Exchangers,  InterconnecNng  Pipes  Valves  etc.,    

15  

Page 16: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Work Procedure (Contd.)

Step  3  –  InterconnecUng  the  Modules  and  System  TesUng  •  Preliminary  runs  of  the  model  to  test  the  operaNon  performance.  

•  Achieving  trouble-­‐free  steady  state  operaNon  of  the  plant  matching  with  heat  balance  diagram.  

Step  4  –  Modeling  disturbances,  study  and  analyze  their  effects.  •  One  Boiler  trips.  •  One  steam  turbine  trips.  

•  One  steam  turbine  driven  power  fluid  pump  trips.  •  One  electric  motor  power  fluid  pump  trips.  

•  One  boiler  feed  water  pump  trips.  

•  Fuel  change-­‐over  from  Fuel  gas  to  Diesel.  

•  Plant  Start-­‐Up.  

Step  5  –  Suggest  remedial  acUon,  if  any.   16  

Page 17: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Different  Modes  of  Operation  of  Steam  Turbines  Modeled  in  the  Project.  

 MODE  -­‐  A  :  1  ST  in  Isochronous  Mode  and    3  STs  in  Droop  Mode        with  Remote  AutomaNc  Set  Point  Change.  

 MODE  -­‐  B  :  1  ST  in  Isochronous  Mode  and  3  STs  in  Droop  Mode.  

 MODE  -­‐  C  :  All  four  STs  in  Droop  Mode.  

17  

Note:    This  presentaUon  gives  results  for  all  STs  operaUng  in  MODE  C  

Page 18: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Features  Considered  for  Modeling  All  Upset  Conditions  

 All  five  boilers  operaNng  with  HP  Steam  Header  Pressure  control  on  fuel  firing  in  steady  state.  

   All  four  steam  turbines  operaNng  in  DROOP  Mode.  

   Steam  Turbine  Governor  Model  implemented  as  given  by  the  Vendor  (Triveni).  

 AutomaNc  Voltage  Regulator  (AVR)  implemented  as  given  by  Vendor  (ABB).  

 Soi  Starter  modeled  for  start-­‐up  of  Power  Fluid  Pump  Motor.  

18  

Page 19: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Operating  Parameter  Trends    When  One  Out  Of  Five  Boilers  Trips  

Case  of  Steam  Load  Shedding  To  Maintain  Plant  Frequency  

1 Boiler Trip Case Results 19  

Page 20: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Upset  Condition  –  One  Boiler  Trip  

  Steam  supply  lost  due  to  the  boiler  trip    =  110  TPH.  

  Steam  deficiency  will  be  met  by  remaining  four  Boilers  

ramping  up  @  ~30  tph/min.  

  Steam  supply  to  one  InjecNon  Water  Pump  Turbine  is  

stopped  .  

 MP  steam  header  pressure  drops.    

  Flow  through  the  HP  to  MP  steam  PRDS  will  increase  to  

maintain  MP  steam  header  pressure.  20  1 Boiler Trip Case Results

Page 21: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

List  of  Control  Actions  –  One  Boiler  Trip  

  IsolaNng  Boiler  steam  line  from  HP  steam  Header.  

  Switching  off  Fuel  supply  to  the  tripped  Boiler.  

  Closing  the  Boiler  Feed  water  valve.  

  ConNnue  1  BFW  Pump  of  tripped  boiler  in  a  minimum  recycle  mode.  

  FD  Fan  of  the  tripped  boiler  conNnues  to  operate  at  a  reduced  load.  

  IsolaNng  boiler  blow-­‐down  valve.  

  IsolaNng  Boiler  from  BFW  distribuNon  Header.  

  To  maintain  plant  frequency,    steam  load  shedding  is  done  by  stopping  one  InjecNon  water  pump  turbine  drive  and  corresponding  pump  within  a  duraNon  of  2  seconds  of  trip  of  the  boiler.  

  Closing  the  XSVs  on  sucNon  line  to  the  turbine  driven  InjecNon  Water  pump  .  

  No  Electrical  load  shedding  is  required  to  be  considered  in  this  case  21  1 Boiler Trip Case Results

Page 22: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Effect  on  other  operating    boilers  parameters-­    Flow  (-­-­-­-­-­-­-­)  kg/s,  Pressure  (-­-­-­-­-­-­-­)  Pa,    Temperature  (-­-­-­-­-­-­-­)  oC.  

1 Boiler Trip Case Results

 With  drop  in  HP  Steam  Header  pressure  the  remaining  4  Boilers  Ramp  by  approx.  30  TPH/min  

22  

Page 23: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Effect  on  MP  steam  header  pressure  &    steam  Plow  through  the  PRDS.  

1 Boiler Trip Case Results

 Flow  through  HP  to  MP  PRDS  increases  to  maintain  the  MP  Steam  Header  Pressure.  

23  

Page 24: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

1 Boiler Trip Case Results

Effect  on  steam  Plow  (-­-­-­)  kg/s  and  Power  (-­-­-­-­)  MW  of  one  boiler  trip.  

24  

Page 25: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

1 Boiler Trip Case Results

Effect  on  Plant  Frequency,  Hz  

 Plant  frequency  is  maintained  within  acceptable  limits  (>  49).  

 The  drop  is  due  to  the  fall  in  HP  Steam  Pressure  

25  

Page 26: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Observations  –  One  Boiler  Trip  

 Due  to  a  sudden  shorvall  of  110  tph  steam  the  HP  header  pressure  falls  sharply  from  43  barg  to  33-­‐34  barg.  

  It  takes  around  10  minutes  for  the  HP  header  pressure  to  stabilize  at  a  new  value  of  34  barg.  

 To  stabilize  the  HP  steam  header  pressure:      Remaining  4  boilers  are  ramped-­‐up  to  their  maximum  capacity    InjecNon  Water  Turbine  driven  Pump  is  tripped  aier  2  seconds.  

 HP  Steam  header  pressure  stabilizes  at  34  bar.  

 Plant  Frequency  is  maintained  within  acceptable  limits  so  that  there  is  no  need  for  the  load  shedding.  

26  1 Boiler Trip Case Results

Page 27: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

1 Steam Turbine Trip Results

Operating  Parameter  Trends    When  One  Out  Of  Four  Steam  Turbines  Trips  

Case  of  Electrical  Load  Shedding  To  Maintain  Plant  Frequency  

27  

Page 28: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Upset  Condition  –  One  ST  Trip  

  Power  Lost  from  Steam  Turbine  =  8.67  MW  

  The  remaining  3  operaNng  STGs  ramp  up  to  compensate  for  the  power  loss  due  to  1  Steam  turbine  trip.    

  To  maintain  plant  frequency,  electrical  load  shedding  is  done.  

28  1 Steam Turbine Trip Results

Page 29: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

List  of  Control  Actions  –  One  ST  Trip  

-­‐  IsolaNng    the  tripped  Steam  Turbine  from  the  HP  steam  Header.  

-­‐  IsolaNng  the    Generator  connected  to  the  tripped  Turbine  from  the  connected  11  kV  Bus.  

-­‐  Total  electrical  load  shedding  of  5.171  MW    is  considered  to  keep  frequency  within  a  range  of  48.5  to  51.5  Hz  by  tripping  one  motor  driven  IW  pump  and  one  export  oil  pump.    

29  1 Steam Turbine Trip Results

Page 30: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Effect  on    11  kV  Bus  Voltage,  kV  

1 Steam Turbine Trip Results

 11  kV  Bus  voltage  dips  to  a  minimum  8.98  kV.  

 DuraNon  of  voltage  dip  below  9.9  kV  is  0.8  s.  

 Thereaier  the  11  kV  Bus  Voltage  stabilizes  within  40  seconds.  

30  

Page 31: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Fig.1  Total  Plant  Power  MW  

Effect  on  Plant  Frequency,  Hz  

 The  plant  stability  is  achieved  by  ramping    remaining  STs  to  11.22  MW  &  shedding  5.17    MW  load  aier  a  Nme  interval  of  0.5  s.  

 If    the  electrical  load  shedding  of  3.8  MW  is  done  by  tripping  only  one  Motor  Driven  IW  Pump  then  the  frequency  drops  to  48  Hz.  

Min.  Frequency  is  48.54  Hz.  

31  1 Steam Turbine Trip Results

Page 32: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

1 Steam Turbine Trip Results

Effect  on  operating    boilers  parameters-­    Steam  Flow  (-­-­-­-­-­-­-­)  kg/s,  Pressure  (-­-­-­-­-­-­-­)  Pa,    Temperature  (-­-­-­-­-­-­-­)  

oC.  

32  

Page 33: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Boiler  1  Drum  level  (-­-­-­-­)  m,  Feedwater  Plow  (-­-­-­-­)  kg/s  &  Steam  generation  (-­-­-­-­-­)  kg/s  

1 Steam Turbine Trip Results 33  

Page 34: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

1 Steam Turbine Trip Results

  Tripping  of  ST  results  in  short-­‐fall  of  8.67  MW  of  power.  The  plant  stability  is  achieved  by  ramping  remaining  STs  to  11.22  MW  &  shedding  5.17  MW  of  electrical  load  within  a  Nme  interval  of  0.5  s.  

  The  maximum  drop  in  frequency  is  up  to  48.54  Hz.  

  If    Electrical  Load  Shedding  of  3.8  MW  is  done  by  tripping  only  one  Motor  Driven  InjecNon  Water  Pump  then  the  maximum  drop  in  frequency  is  upto  48  Hz.  

  Immediately  aier  the  trip  due  to  sudden  loss  of  power  generaNon  the  11  kV  Bus  voltage  dips  to  a  minimum  value  of  8.98  kV  and  the  voltage  dip  is  for  a  total  duraNon  of  0.8  s.  

  Thereaier  the  11  kV  Bus  Voltage  recovers  back  to  11  kV  and  stabilizes  within  40  seconds.  

Observations    –  One  ST  Trip  

34  

Page 35: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Operating  Parameter  Trends    When  Steam  Driven  PF  Pump  Trips  

Case  of  Additional  of  Electrical  Load  

1 Boiler Trip Case Results 35  

Page 36: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Upset  Conditions  -­  Steam  Driven  PF  Pump  Trips  

  Auto  start  of  1  Motor  driven  PF  Pump  aier  the  turbine  driven  pump  trips.  

  Power  GeneraNon  from  the  steam  turbines  ramp-­‐up  to  make  up  for  the  addiNonal  electrical  load  of  4.583  MW  to  the  Plant.  

  Soi  Starter  is  modeled  for  the  start  up  of  motor  driven  PF  Pumps  having  an  iniNal  voltage  of  0.3  Nmes  of  the  full  voltage  and  a  voltage  ramp  rate  to  achieve  the  full  voltage  within  20  seconds.  

36  1 Steam Turbine Trip Results

Page 37: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

List  of  Control  Actions  -­  Steam  Driven  PF  Pump  Trips  

-­‐  Tripping  one  Power  Fluid  Pump  Turbine  Drive.  

-­‐  IsolaNng  PF  Pump  Turbine  Drive  from  HP  Steam  Header.  

-­‐  Closing  XSV  on  sucNon  line  of  PFP.  

-­‐  Opening  XSV  on  sucNon  line  to  motor  driven  PFP.  

-­‐  Switching  on  the  motor  for  the  PFP  by  closing  the  Breaker  connecNng  it  to  the  6.6  kV  Bus.  

-­‐  No  Electrical  Load  Shedding  is  considered  in  this  case.  

37  1 Steam Turbine Trip Results

Page 38: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Fig.2    11  kV  Bus  Voltage,  kV  

Fig.1    Plant  Frequency,  Hz  

Results for 1 PFP Changeover from Turbine Drive to Motor Drive

 11  kV  Bus  Voltage  drops  to  a  minimum  of  10.24  kV,  11.7  s  aier  the  changeover.  

 At  the  instant  the  motor  achieves  its  full  speed,  11  kV  Bus  Voltage  goes  up  to  15.7  kV.  

 Voltage  stabilizes  within  90  s.  

   The  minimum  Plant  frequency  is  48.38  Hz.    

 The  dip  in  plant  frequency  below  48.5  Hz  is  for  4  s.  

 Plant  Frequency  stabilizes  at  a  lower  value  of  49.79  Hz.  

Page 39: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Fig.3    HP  Steam  Header  Pressure,  Pa  

Fig.4    MP  Steam  Header  Pressure  &  PRDS  Flow  

Results for 1 PFP Changeover from Turbine Drive to Motor Drive

 Due  to  a  sudden  reducNon  in  HP  steam          consumpNon  HP  steam  header  pressure  rises  to  43.6  bar.  

 Sudden  Loss  of  61  TPH  of  HP  Steam  results  in  MP  Steam  Header  pressure  drop.  

 57.6  TPH  of  HP  Steam  is  diverted  through  the  HP  to  MP  Header  PRDS  to  maintain  MP  Steam  Header  Pressure.  

Page 40: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Results for 1 PFP Changeover from Turbine Drive to Motor Drive

Fig.6  Total  Electrical  Load,  MW  

 Corresponding  to  11  kV  bus  voltage  reaching    a  peak  of  15.7  kV  the  total  electrical  load  also  reaches  a  peak  of  55  MW  resulNng  in  the  plant  frequency  dipping  to  a  minimum  of  48.38  Hz.  

 Increase  in  Electrical  Load  corresponding  to  the  addiNon  of  PF  Pump  Motor  of  4.583  MW.  

 The  motor  achieves  full  speed  within  28  seconds.  

 At  the  same  instant  the  motor  torque  and  the  motor  current  drops  rapidly,  hence,  the  voltage  goes  up  to  a  maximum  of  15.7  kV.  

Fig.5    PFP  Motor  Parameters  

Page 41: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

  11  kV  Bus  Voltage  drops  to  and  reaches  a  minimum  of  10.24  kV  11.7  s  aier  the  changeover.  

  At  the  instant  the  motor  achieves  its  full  speed,  11  kV  Bus  Voltage  going  up  to  a  maximum  of  15.7  kV.  

  The  11  kV  bus  voltage  exceeds  12.1  kV  in  a  single  peak  for  a  total  duraNon  of  3.5  s.  Thereaier  the  11  kV  bus  voltage  is  stable.  

  Total  electrical  load  also  reaches  a  peak  of  55  MW  resulNng  in  the  plant  frequency  dipping  to  a  minimum  of  48.38  Hz.  

  The  dip  in  plant  frequency  below  48.5  Hz  is  for  4  seconds.  

  HP  steam  header  pressure  peaks  to  a  maximum  of  43.6  bar  and  this  results  in  immediate  reducNon  in  steam  output  from  the  boilers  to  bring  the  HP  header  pressure  back  to  42.5  bar.  

  Aier  the  PFP  changeover  is  complete  the  plant  frequency  stabilizes  at  a  lower  value  of  49.79.  

  This  phenomenon  is  as  per  reducNon  in  turbine  speed  with  increase  in  load  as  per  Droop  curve.  

Observations  -­  Steam  Driven  PF  Pump  Trips  

Results for 1 PFP Changeover from Turbine Drive to Motor Drive

Page 42: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

  It  is  significant  to  note  that  steam  load  shedding  is  required  during  one  boiler  trip,  whereas  electrical  load  shedding  is  necessitated  by  the  Steam  Turbine  trip.  

  MMS  soiware  from  nHance  Technologies  Inc.,  is  a  robust,  convenient  and  powerful  tool  available  to  the  Power  Plant  equipment  and  control  systems  designers  and  analysts  to  predict  performance  of  a  given  power  plant  to  meet  a  given  duty.  

  The  power  plant  thermal  and  electrical  systems  and  the  associated  downstream  plants  can  be  designed  for  all  conNngencies  with  the  performance  predicNons  available  by  using  the  MMS  Soiware.  

Conclusions  

42  

Page 43: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

  A  complete  thermal  and  electrical  systems  modeling  was  done  using  MMS  Soiware  from  nHance  Technologies  Inc.  for  the  48  MWe  thermal  power  plant.  

  Significant  insights  were  gained  about  the  power  plant  operaNon  in  island  mode  and  the  effect  of  various  disturbances  (i.e.  equipment  trips)  

  Although  the  study  was  carried  out  for  a  large  number  of  cases  such  different  operaNng  loads  during  years  2,  4  and  6  of  operaNon,  start-­‐up  of  the  plant  and  the  fuel  change  over  etc.  and  with  various  turbine  governor  operaNng  modes,  this  presentaNon  is  for  two  trips  cases  for  year  6  (full  load)  operaNon.  

Contd.  

Conclusions  

43  

Page 44: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Author  ProPiles  

Mr.  Arvind  Kaushik  is  a  post  graduate  (M.Tech)  Chemical  Engineer  from  Indian  InsNtute  of  Technology  (IIT)  Kanpur,  India,  since  1990.  He  has  wide  experience  of  over  23  years  in  the  design  of  thermal  equipment,  process  opNmizaNon,  energy  conservaNon  in  process  plants,  dynamic  simulaNon  of  process  and  power  plants,  commissioning  and  trouble-­‐shooNng  in  India  and  overseas.    At  present,  as  Sr.  Dy.  General  Manager  (R&D)  at  Larsen  &  Toubro  Limited,  Mumbai,  India,  he  is  leading  a  team  of  Mechanical  and  Chemical  Engineers  in  the  Thermal  Engineering  Group  of  Research  &  Development  for  innovaNons  in  design  of  waste  heat  recovery  equipment.    His  areas  of  interest  include    solar  thermal  energy,  low  temperature  thermal  desalinaNon,  thermal  energy  storage  systems,  dynamic  simulaNon  of  power  plants,  energy  opNmizaNon  of  industrial  processes  and  commissioning  and  trouble-­‐shooNng  of  process  equipment.  E-­‐mail:    [email protected]  

44  

Page 45: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Author  ProPiles  (Contd.)  

Mr.  C.  Nageswara  Rao  completed  his  Masters  in  Design  &  ProducNon  of  Thermal  Power  Equipment  from  NaNonal  InsNtute  of  Technology,  Trichy  in  2004  and  has  since  been  working  with  R&D-­‐Hydrocarbon  IC  of  Larsen  &  Toubro.  His  work  experience  is  in  the  areas  of  thermal  design  of  Fired  Heaters,  Shell  &  Tube,  Air-­‐Cooled  exchangers,  Waste  Heat  Recovery  Coils.  He  has  also  used  CFD  tools  for  criNcal  troubleshooNng  acNviNes  and  has  carried  out  Dynamic  SimulaNon  studies  of  two  capNve  power  plants.  His  other  interests  include  design  of  specialized  heat  recovery  equipment  and  energy  efficiency  of  power  plants.    E-­‐mail:    [email protected]  

45  

Page 46: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Author  ProPiles  (Contd.)  

Mr.  Soumya  Majumdar  is  Master  of  Technology  in  Mechanical  Engineering  (specializaNon  in  Fluid  Mechanics  &  Thermal  Science)  from  IIT  Kanpur  in  2004.    At  present  he  is  working  as  a  Manager  in  Thermal  Engineering  group  of  Research  &  Development  -­‐  Hydrocarbon  Division  at  Larsen  &  Toubro  Limited,  Mumbai,  India.    Mr.  Majumdar  has  worked  in  the  areas  related  to  the  thermal  design,  analysis  and  troubleshooNng  of  heat  transfer  equipment  such  as  Shell  &  Tube  Heat  Exchangers,  Air  Cooled  Heat  Exchangers,  Waste  Heat  Recovery  Coils  and  Waste  Heat  Recovery  Boilers  for  various  Hydrocarbon  projects.  He  has  also  worked  in  the  area  of  thermo-­‐hydraulic  design  of  regeneraNve  type  pebble-­‐bed  and  cored-­‐brick  bed  heaters.  His  varied  work  experience  and  field  of  interest  also  includes  Dynamic  SimulaNon  of  Power  Plants  and  Process  Gas  Compression  modules.    E-­‐mail:    [email protected]  

46  

Page 47: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator

Author  ProPiles  (Contd.)  

Mr.  Gajam  Ramesh  kumar  earned  his  Masters  in  Thermal  Engineering  from  NaNonal  InsNtute  of  Technology,  Warangal.  He  did  his  thesis  work  on  “ReacNve  Flow  Field  Analysis  using  CFD”  at  Defense  Research  &  Development  Laboratory  (DRDL),  Hyderabad.  At  present  he  is  working  at  the  Research  and  Development  Department  (PRDH)  of  Larsen  &  Toubro  Limited,  Mumbai  (India).  The  areas  of  his  experNse  are  dynamic  simulaNon  of  power  plants,  thermal  design  /  analysis  /  trouble  shooNng  of  heat  transfer  equipment  such  as  S&T,  ACHE,  PFHE,  WHR  coils  etc  and  other  special  heat  transfer  and  fluid  flow  studies.    E-­‐mail:    [email protected]  

47  

Page 48: Analysis of Captive Cogeneration Power Plant Upset ... · PDF fileTechniques# Machinery### &System## Design# ... Control)# Research# ... Deaerator & To& & Deaerator & To& & Deaerator