An pollination algorithm for optimization of distribution...

12
177 Advances in Production Engineering & Management ISSN 18546250 Volume 14 | Number 2 | June 2019 | pp 177–188 Journal home: apem‐journal.org https://doi.org/10.14743/apem2019.2.320 Original scientific paper An improved flower pollination algorithm for optimization of intelligent logistics distribution center Hu, W. a,* a School of Economics and Management, Shanghai University of Electric Power, Shanghai, P.R. China ABSTRACT ARTICLE INFO It is easy to fall into local optimal solution in solving the optimal location of intelligent logistics distribution center by traditional method and the result of optimization is not ideal. For this, the study puts forward an optimization method of intelligent logistics distribution center based on improved flower pollination algorithm. This method uses the logic self‐mapping function to carry out chaotic disturbance to the pollen grains, so that the pollen grain set lacking the mutation mechanism has strong self‐adaptability, and the conver‐ gence of the optimal solution in the later stage of the algorithm is effectively prevented. The boundary buffer factor is used to buffer the cross‐boundary pollen grains adaptively so as to prevent the algorithm from the local optimi‐ zation, and the convergence speed and the optimization accuracy of the algo‐ rithm can be improved obviously in processing the optimal location of intelli‐ gent logistics distribution center. The convergence of the algorithm is ana‐ lyzed theoretically by using the real number coding method, and the biologi‐ cal model and theoretical basis of the algorithm are given. The experimental results show that the proposed method has better performance than the traditional one, and the algorithm outperforms a genetic algorithm and parti‐ cle swarm algorithm. It provides a feasible solution for the intelligent logistics distribution center location strategy. It affords a good reference for improving and optimizing the internal logistics of the manufacturing system and the operational efficiency of the entire intelligent logistics system. © 2019 CPE, University of Maribor. All rights reserved. Keywords: Intelligent logistics; Distribution center; Optimization; Intelligent optimization algorithm; Flower pollination algorithm; Intelligent location *Corresponding author: [email protected] (Hu, W.) Article history: Received 18 October 2018 Revised 21 April 2019 Accepted 15 May 2019 1. Introduction With the increase of vehicle ownership in China, the problem of traffic jam becomes more and more serious. It’s a bottleneck to choose the optimal route of distribution center in a real time manner according to the road condition in the field of intelligent logistics [1‐2]. The traditional solution is to optimize the distribution center route under certain constraints, and realize the optimization of the distribution center route under the condition of only considering the single index such as the least cost or the shortest path [3‐4]. With the increase of road condition and distribution task complexity, it is difficult to satisfy the demand of intelligent logistics distribu‐ tion index with only single constraint condition. The optimization of distribution center's opti‐ mal route gradually evolves into a multi‐constraint optimization problem that satisfies several expectations of distribution personnel in the road network [5‐6]. Logistics distribution center is a bridge between supply and demand, its location optimization strategy is the core content of logistics network system analysis, and often determines the distribution system and mode of intelligent logistics system. Therefore, it’s theoretically and practically significant to select a rea‐

Transcript of An pollination algorithm for optimization of distribution...

Page 1: An pollination algorithm for optimization of distribution ...apem-journal.org/Archives/2019/APEM14-2_177-188.pdf · An improved flower pollination algorithm for optimization of intelligent

 

 

 

   

177 

AdvancesinProductionEngineering&Management ISSN1854‐6250

Volume14|Number2|June2019|pp177–188 Journalhome:apem‐journal.org

https://doi.org/10.14743/apem2019.2.320 Originalscientificpaper

  

An improved flower pollination algorithm for optimization of intelligent logistics distribution center  

Hu, W.a,* aSchool of Economics and Management, Shanghai University of Electric Power, Shanghai, P.R. China   A B S T R A C T   A R T I C L E   I N F OIt iseasyto fall into localoptimalsolution insolvingtheoptimal locationofintelligentlogisticsdistributioncenterbytraditionalmethodandtheresultofoptimization is not ideal. For this, the study puts forward an optimizationmethodof intelligent logisticsdistributioncenterbasedon improved flowerpollination algorithm. This method uses the logic self‐mapping function tocarryoutchaoticdisturbancetothepollengrains,sothatthepollengrainsetlackingthemutationmechanismhasstrongself‐adaptability,andtheconver‐genceoftheoptimalsolutioninthelaterstageofthealgorithmiseffectivelyprevented.Theboundarybuffer factor isused tobuffer the cross‐boundarypollengrainsadaptivelysoastopreventthealgorithmfromthelocaloptimi‐zation,andtheconvergencespeedandtheoptimizationaccuracyofthealgo‐rithmcanbeimprovedobviouslyinprocessingtheoptimallocationofintelli‐gent logistics distribution center. The convergence of the algorithm is ana‐lyzedtheoreticallybyusingtherealnumbercodingmethod,andthebiologi‐calmodelandtheoreticalbasisofthealgorithmaregiven.Theexperimentalresults show that the proposed method has better performance than thetraditionalone,andthealgorithmoutperformsageneticalgorithmandparti‐cleswarmalgorithm.Itprovidesafeasiblesolutionfortheintelligentlogisticsdistributioncenterlocationstrategy.Itaffordsagoodreferenceforimprovingand optimizing the internal logistics of the manufacturing system and theoperationalefficiencyoftheentireintelligentlogisticssystem.

©2019CPE,UniversityofMaribor.Allrightsreserved.

  Keywords:Intelligentlogistics;Distributioncenter;Optimization;Intelligentoptimizationalgorithm;Flowerpollinationalgorithm;Intelligentlocation

*Correspondingauthor:[email protected](Hu,W.)

Articlehistory:Received18October2018Revised21April2019Accepted15May2019 

  

1. Introduction 

WiththeincreaseofvehicleownershipinChina,theproblemoftraffic jambecomesmoreandmoreserious.It’sabottlenecktochoosetheoptimalrouteofdistributioncenterinarealtimemanneraccordingtotheroadconditioninthefieldofintelligentlogistics[1‐2].Thetraditionalsolution is tooptimize thedistributioncenter routeunder certain constraints, and realize theoptimizationofthedistributioncenterrouteundertheconditionofonlyconsideringthesingleindexsuchastheleastcostortheshortestpath[3‐4].Withtheincreaseofroadconditionanddistributiontaskcomplexity,itisdifficulttosatisfythedemandofintelligentlogisticsdistribu‐tionindexwithonlysingleconstraintcondition.Theoptimizationofdistributioncenter'sopti‐malroutegraduallyevolves intoamulti‐constraintoptimizationproblemthatsatisfiesseveralexpectationsofdistributionpersonnelintheroadnetwork[5‐6].Logisticsdistributioncenterisabridgebetweensupplyanddemand, its locationoptimizationstrategy is thecorecontentoflogistics network system analysis, and often determines the distribution system andmode ofintelligentlogisticssystem.Therefore,it’stheoreticallyandpracticallysignificanttoselectarea‐

Page 2: An pollination algorithm for optimization of distribution ...apem-journal.org/Archives/2019/APEM14-2_177-188.pdf · An improved flower pollination algorithm for optimization of intelligent

Hu  

178  Advances in Production Engineering & Management 14(2) 2019

sonablelogisticsdistributioncenter,achievethebestbalancebetweensupplyanddemand,andthusimprovetheoperationefficiencyoftheentireintelligentlogisticssystem[7‐8].

Inrecentyears,researchershaveadoptedalotofmethodstostudylocationstrategiesofin‐telligentlogisticsdistributioncenter,andachievedalotofinfluentialresults.Researchscholarsathomeandabroadhavedeeplystudiedthelocationoptimizationofintelligentlogisticscenter,andclassifieditintocontinuouslocationmodelanddiscretelocationmodel[9‐10].Thecontinu‐ousmethodmainlysolvesthechoiceanddecision‐makingoflogisticsnodeinplanearea.Manyscholarshave studied theuncertaintyofparameters in themodel. Literature [11] studied thestochasticprogrammingmodelofsupplychainnetworkunderuncertainconditions.Document[12] deltwith the location of commercial facilities in uncertain environments. Literature [13]established an interval nodedecision‐makingmodel of logisticsnetworkbasedonbarycentermethod,andconstructedanintervaldecision‐makingmodelofmulti‐commodityandmulti‐nodecontinuouslogisticsfacilitylocation.Literature[14]proposesalogisticsdistributioncenterloca‐tionmodelbasedonbi‐levelprogramming.Thedistributionpointsandusercostareconsideredrespectivelyintheupperandlowerlevelsofthemodel,andasimpleheuristicalgorithmisusedtooptimizethemodel.Literature[15]usedAFSandTOPSISrelatedtheoriestoexploretheloca‐tionmodeloflogisticsdistributioncenter.Literature[16]studiedthelocationissueofdistribu‐tion center based on rough set and interactive multi‐objective fuzzy decision theory. Thesemethodsabovefocusonqualitativeorquantitativeresearchontheoptimizationof locationofintelligentlogisticsdistributioncenters,andhaveachievedcertainresults,whichprovidearef‐erence for further improvingandoptimizingtheoperationalefficiencyof theentire intelligentlogisticssystem.

Fromexistingresearches,it’sfoundthattherearetwoproblemsintherouteoptimizationofintelligentlogisticsdistributioncenter:(1)Fewresearchesfocusonthespecificapplicationre‐quirementsofintelligentoptimizationalgorithmintherouteoptimizationofintelligentlogisticsdistributioncentersbuttheinfluenceofthealgorithmontheoptimizationprecisionandconver‐gence speed is ignored; (2) The setting of the route optimization constraints is too simple tomeettheoptimizationprecisionrequirementsunderthecurrentcomplexroadconditions.Aim‐ingattheproblemsinpreviousresearches,thisstudyproposesanoptimizationmethodofintel‐ligentlogisticsdistributioncentersbasedonimprovedflowerpollinationalgorithm.

Flowerpollinationalgorithm(FPA)isanewswarmintelligenceoptimizationalgorithm.Itisastochastic global optimization algorithmwhichmimics themechanism of self‐pollination andcross‐pollinationoffloweringplantsinthebiologicalworld[17].Thealgorithmhasthecharac‐teristicsofeasyimplementation,stronguniversalityandfastconvergencespeed,andhaswideapplication.Thealgorithmissimpletoimplementandhaslessparameters,thegivenconversionprobabilitycansettheconversionthresholdofglobalsearchandlocalsearch,andthealgorithmadoptsLévy flightmechanism,whichhasexcellentglobaloptimizationeffect,so thealgorithmcan be used to solvemany complicated optimization problems. On the basis of analyzing theoptimizationnatureofstandard flowerpollinationalgorithm, thisstudypresentsan improvedflowerpollinationalgorithm,analyzestheconvergenceofthealgorithm,optimizesthelocationmodeloflogisticsdistributioncenterswiththisimprovedalgorithm,andcomparestheobtainedresultswiththeresultsofgeneticalgorithmandstandardparticleswarmalgorithm.Theexper‐imentalresultsshowthatunderthepremiseofsatisfyingsupplyanddemand,themethodpro‐posedinthisstudyobtainsthebestlocationschemeforintelligentlogisticsdistributioncenters,anditsperformanceissuperiortotheothertwoalgorithms.Theschemeinthisstudyhasagoodguidingsignificancefortheconcretepractice.

2. Intelligent logistics distribution center location model 

Theproblemofthevehicletravelpathbelongstotheoptimalschedulingproblem,andthecostisreducedbysolvingtheoptimaldrivingroute.Therelatedtheoriesandsolvingalgorithmsareofgreatsignificanceforimprovingtheefficiencyof logisticstransportation,soithasalwaysbeenthefocusofrelevantexperts.Inrecentyears,researchontheproblemofvehicletravelpathshasproducedmanyresults,suchasvehicleroutingproblemswithmultiplestations,vehiclerouting

Page 3: An pollination algorithm for optimization of distribution ...apem-journal.org/Archives/2019/APEM14-2_177-188.pdf · An improved flower pollination algorithm for optimization of intelligent

An improved flower pollination algorithm for optimization of intelligent logistics distribution center 

Advances in Production Engineering & Management 14(2) 2019  179

problemswithtimewindowconstraints,andvehicleroutingproblemsforloadingandunload‐ingcargo.Atthesametime,vehicletravelrouteshaveapplicationsinallaspectsoflife,suchasproductdistribution,cargotransportation,andmitigationoftrafficjams.

Itisdifficulttochangethelocationofanintelligentlogisticsdistributioncenteronceit’sde‐termined.Therefore, in theprocessof constructing thedistributioncenter locationmodel, thefactorssuchas fixedcost,managementcostandmaximuminventorycapacityshouldbetakenintoaccount.Inthelogisticsnetworksystem,thedemandofthedemandpointsshouldbelessthanorequaltothesizecapacityofthedistributioncenter.Undertheconditionofsatisfyingthedistanceupperlimit,itisnecessarytofindoutthedistributioncenterfromtheknowndemandpointsanddistributethegoodstoeachdemandpoint.Basedontheaboveproblems,theintelli‐gentlogisticsdistributioncenterlocationmodelcanbeexpressedas:

Min 1

s.t ,( 1,2,⋯ , )(2)

1,( 1,2,⋯ , )(3)

,( 1,2,⋯ , )(4)

(5)

,( ∈ , ∈ )(6)

where,Nrepresentsasetofordinalnumbersforalldemandpoints;Misasetofdemandpointsselectedasthedistributioncenter;Cjisthecostofbuildingadistributioncenter;hj∈ 0,1 ,whenitis1,thepointjisselectedasthedistributioncenter;gjindicatestheunitmanagementcostofmaterialcirculationinthedistributioncenters;Wijrepresentsthedemandatthedemandpointi;dij represents the distance between demand point i and its nearest distribution center j;Zij∈ 0,1 representstheserviceallocationrelationshipbetweenthedemandpointandthedis‐tributioncenter,whenit’s1,itindicatesthatthedemandofthedemandpointiissuppliedbythedistribution center j, otherwiseZij=0. l indicates the upper limit of the distance between thedemandpointand thedistributioncenter.Eq.2 indicates that thedemandofusers shouldbelessthanorequaltothesizecapacityofthedistributioncenter;Eq.3representsensuringthateachdemandpointisservedbyadistributioncenterclosesttoit;Eq.4indicatesthatthereisnocustomeratalocationwithoutadistributioncenter;Eq.5showsthatpdemandpoint(s)is(are)selectedasdistributioncenter(s);Eq.6showsthatthedistributioncentersuppliesthenearbydemandpointsonlywithinalimitedrange.

Inthematerialandproductdistributionpartofthemanufacturingsystem,thismethodcanalsobeusedtoselectthedistributioncenter,andthetarget functioncanbechangedoraddedaccordingtoitsownneeds.Forexample,whendistributingthematerialsneededformanufac‐turing,ifthearrivaltimeofmaterialshasacertainlimit,youcanaddtimeconstraints,andthenuse the improved flowerpollinationalgorithmtosolve. It canbeseen that themethodcanbeusednotonlyinthemanufacturingsystembutalsoinanysystemthatneedstobedistributed.

3. Improved flower pollination algorithm 

3.1 Standard flower pollination algorithm 

Flowerpollinationalgorithmisakindofrandomsearchalgorithmconstructedbysimulatingtheprocess of flowerpollination in thenature,which embodies thepreferencemechanismof thenature[18].Thebionicprincipleisthatflowersbreedtheiroffspringbypollination.Thepollina‐

Page 4: An pollination algorithm for optimization of distribution ...apem-journal.org/Archives/2019/APEM14-2_177-188.pdf · An improved flower pollination algorithm for optimization of intelligent

Hu  

180  Advances in Production Engineering & Management 14(2) 2019

tionprocesscanbecarriedoutbyinsectsornaturalwindandwater.Butterfliesareattractedbythecolorandsmellofflowers,andflytoXbestaftercollectingnectaronthepollenXi,soastoreal‐izepollentransferbetweenflowers,whichiscalledcross‐pollinationorglobalpollination.Undertheactionofwind,thepollentransferbetweenadjacentflowersXiandXiisrealized.Thiskindofpollination is called self‐pollination or local pollination. Through global pollination and localpollination, flowers flexibly achieve theprocess of pollen transfer. The ideal conditionsof thealgorithmareassumedasfollows:

Intheprocessofcross‐pollination,pollinatorscarryoutpollinationthroughLévyflight. Self‐pollination is thepollinationprocessofadjacent flowersunder theactionofnatural

force. It is a kind of local pollination. The pollinationmode is determined randomly bytransitionprobability ∈ 0,1 .

Ingeneral, each floweringplantcanblooma lotof flowers,producingmillionsofpollengametes, and in order to simplify the problem,wemake the hypothesis that eachplantonlybloomsone flowerandeachfloweronlyproducesonepollengamete,whichmeansthataflowerorpollengametecorrespondstoasolutiontotheoptimizationproblem.

For the formal description of the flower pollination algorithm, the followingmathematicalmodelisestablished:

Inglobalpollination,pollinatorcarrypollengrains for large‐scaleand long‐distancesearch,soastoensuretheoptimalindividualpollinationandpropagation.Intheprocessofglobalpolli‐nation,theformulaforupdatingthepositionofpollenis:

∗ (7)

where, is thespatial locationcorresponding to the i‐thpollen in the t‐th iteration;g* is thespatialpositionof theoptimalsolution inthecurrent iteration(i.e., thet‐th iteration).Thepa‐rameterL>0isthestepsizeandfollowstheLevydistribution,asshowninEq.8.

~⁄

, 0 (8)

where,Г(λ)isastandardgammafunction,parameter1<λ≤ 3isλ=1.5inthisstudy.Theformulaofpollengrainpositionrenewalforlocalpollinationofadjacentflowersisasfol‐

lows:(9)

where, and arethespatialpositionsoftwopollengrainsrandomlyselected,and isaran‐domoperatoruniformlydistributedonthe[0,1]interval.

The transitionprobabilityP is theprobabilitydeterminingwhetherpollengrains arepolli‐natedgloballyorlocally,andisaconstant,with ∈ 0,1 .ThehigherthevalueofPis,thehighertheprobabilityofcarryingoutthelocalpollinationactivityis,andthelowerthechanceofcarry‐ingouttheglobalpollinationis.

Duetothefactthatadjacentflowersareeasiertopollinate,theprobabilityoflocalpollinationwillbehigherthanthatofglobalpollination.Throughthestudyofparameters, it isfoundthattheoptimizationproblemp=0.8isthebestchoiceofparameters.Theprocessofoptimizingthealgorithm:randomlydispersethepopulationofpollengrainsinsolutionspace,andbycompar‐ing the size of random production number randand transition probability P, and determinewhether each pollen grain will carry on global pollination or local pollination; after severalmovementsandupdatesofpositions,allthepollengrainswillconvergetotheplaceofoptimumfitness;so,thesuccessfulpollinationandinseminationofpollengrainscanberealized,andtheoptimizationcanbeachieved.Thestepsofthealgorithmareasfollows:

Step1:Initialize basic parameters of the algorithm. Set the number of pollen grains as n,transitionprobabilityasPandthemaximumvalueofthenumberofiterationsasMaxT;

Step2:Randomly initialize the positions of all pollen grains (i= 1,…,n), find out the pollengrain individuals with the best fitness in the initial situation, and record the currentpositionandfitnessoftheindividuals;

Page 5: An pollination algorithm for optimization of distribution ...apem-journal.org/Archives/2019/APEM14-2_177-188.pdf · An improved flower pollination algorithm for optimization of intelligent

An improved flower pollination algorithm for optimization of intelligent logistics distribution center 

Advances in Production Engineering & Management 14(2) 2019  181

Step3:Starttheiteration,andupdatethepositionsofallpollengrains.Firstgeneratearandomnumberrandbetween[0,1]andifRand>p,thepollengrainsarepollinatedgloballyac‐cordingtoEq.7;otherwise,thepollengrainsarelocallypollinatedaccordingtoEq.9.Af‐terthepositionupdateofallpollengrainsiscompletedinthisiteration,thecurrentop‐timalpositionandfitnessofeachpollengrainarecalculated,andthepositionandfitnessoftheoptimalindividualinthepopulationareupdated;

Step4:GotoStep5whenitreachesthemaximumnumberofiterations,otherwisegotoStep3andstartthenextiteration;

Step5:Gettheglobaloptimalsolutionandthetargetfunctionvalueatthistime.

3.2 Chaos optimization strategy 

The principle of chaotic search: first, the variable of chaotic space ismapped to the solutionspaceof theproblemby somerules, and then the solution space is traversedbyvirtueof thechaotic feature.Therearemanychaoticmappingmodels.Theresearchshowsthat thechaoticsequenceobtainedbyusinglogicalself‐mappingfunctionisbetterthanLogisticmapping.There‐fore, the logical self‐mapping function is used in this study to construct chaotic sequences torealizechaotictraversal,andthefollowingexpressionsaregiven:

1 2 (10)

where, isthej‐thdimensionalcomponentofachaoticvariable,kisthenumberofiterationsteps, ∈ 1,1 ,j = 1,2,…,d. When 0, the chaotic sequence obtained by logical self‐mappingmodelpossessesdynamiccharacteristicsofchaosandissensitivetoinitialvalues.Thealgorithmstepsareasfollows:

Step1:Setk=0,thedecisionvariable ismappedtothechaoticvariable between–1and1accordingtoEq.11.

2 ,

, ,1(11)

where j=1,2,…,d, , and , are the upper boundary and the lower boundary ofthej‐thdimensionalvariablesearch,respectively.

Step2:Accordingto ,thecarrieroperationisperformedwithEq.4,andthecalculationiter‐atestothenextgenerationofthechaoticvariable .

Step3:Thechaoticvariable isconvertedintodecisionvariable accordingtoEq.12.

, , , , (12)

wherej=1,2,…,d.Step4:The performance analysis and evaluation on the newly generated solution are carried

out according to decision variable . If the chaotic search has reached the presetlimitorthenewsolutionissuperiortotheinitialsolution,thenewsolutionisoutputastheresultofthechaoticsearch,otherwise,setk=k+1andreturntoStep2.

3.3 Boundary buffer factor 

Intheprocessofoptimizationwithflowerpollinationalgorithm,thepositionofpollengrainsislikely to break through its boundary value. In this case, the traditionalmethod is to limit thepositionofpollengrainstotheinterval[–xmax,xmax].Theadvantagesofthismethodaresimpleoperation and small computation, but the boundary compulsory processing method isunfavorabletotheconvergenceofthealgorithm,resultinginalotoferrors.Inordertosolvethisproblem, themethodof dynamically changing interval is adopted, the size of the boundary isscaled according to the situation, the out‐of‐boundary grains are buffered by the boundarybufferfactorandprocessedaccordingtotheout‐of‐boundarypositionofthepollengrains.Thespecificoperationisasfollows:

Whenxij(t)<aj,xij(t)canberepresentedas:

Page 6: An pollination algorithm for optimization of distribution ...apem-journal.org/Archives/2019/APEM14-2_177-188.pdf · An improved flower pollination algorithm for optimization of intelligent

Hu  

182  Advances in Production Engineering & Management 14(2) 2019

1 sgn sgn | |/ (13)

Whenxij(t)>bj,xij(t)canberepresentedas:

1 sgn sgn | |/ max (14)

InEq.13andEq.14,sgn issymbolicfunctions, ∈ 0,1 ,ajandbjarelowerandupperlimitsofthegraininthej‐thdimension,respectively.FromEq.13andEq.14,theboundarybufferfac‐torsare treatedaccordingto theactualsituationofpollengrains,andtheactualsituationandmovementofpollengrainsarefullyconsidered.Thesimulationresultsshowthattheboundarybufferfactorcaneffectivelyimprovetheconvergencespeedandoptimizationaccuracyofpollenpollinationalgorithm.

3.4 Specific steps of solution 

Thespecificstepsofoptimizingthelocationproblemof intelligent logisticsdistributioncenterbyusingtheimprovedflowerpollinationalgorithmareasfollows:

Step1:Initializebasicparametersofthealgorithm.Setthenumberofpollengrainsasn,transi‐tionprobabilityasP, themaximumvalueof thenumberof iterationsasMaxT,andthelargestnumberofiterationstepsforchaoticsearchasMaxC.

Step2:Randomly initialize the positions of all pollen grains (i = 1,…,n), find out the pollengrainindividualswiththebestfitnessinthecurrentpollengrainset,andrecordthecur‐rentpositionandfitnessoftheindividuals;

Step3:Starttheiteration,andupdatethepositionsofallpollengrains.Firstgeneratearandomnumberrandbetween[0,1]andifrand>p,thepollengrainsarepollinatedgloballyac‐cordingtoEq.1;otherwise,thepollengrainsarelocallypollinatedaccordingtoEq.3.Af‐terthepositionupdateofallpollengrainsiscompletedinthisiteration,thecurrentop‐timalpositionandfitnessofeachpollengrainarecalculated,andthepositionandfitnessoftheoptimalindividualinthepopulationareupdated;

Step4:Theindividualsofpollengrainsareevaluated,thenindividuals(inpercentage)withthebestfitnessareselectedasthebestpollenset,andtheremaining1–npoorerindividuals(inpercentage)areselectedandreplacedwithrandomlygeneratedindividualsofpollengrains.

Step5:Thecurrentoptimalsolutionoftheindividualafterchaosoptimizationisobtained,andthesearchregionisdynamicallyshrunkbyEqs.7and8.

Step6:TurntoStep7whenthenumberofiterationsisequaltoMaxTorreachesthesetsearchaccuracy;otherwise,turntoStep3toperformthenextiteration;

Step7:Outputtheglobaloptimalsolutionandthecorrespondingobjectivefunctionvalueatthistime.

4. Convergence analysis of chaotic flower pollination algorithm 

Inthechaoticflowerpollinationalgorithm,thepollinationprocessofflowersisthepremiseofconvergenceofthealgorithm,thelong‐distancesearchandLévyflightmechanismofpollinatorsin the cross‐pollination guarantee the convergence stability and global optimization, the self‐pollinationenhancesthe localoptimizationabilityof thealgorithm,andthechaosstrategyen‐hancestheswingofthealgorithmnearthelocalsolution,andreducessearchrange,getsridofthelocalinterference,andacceleratesthesearchspeed.

Ifthecomponentxi(i=1,2,…,n)ofthepollensetX=(x1,x2,…,xn)isrepresentedbytheτdimen‐sionalbinarycodedstring,thecodestringcantake2τdiscretevalues,whichisequivalenttothe2τdiscretevaluesdividingthedefinedinterval[Lbi,Ubi],withtheaccuracyofε=(Ubi–Lbi)/2τ.Therefore, according to this characteristic, the convergence of the chaotic flower pollinationalgorithmcanbeanalyzedbyrealcoding.Ifthesearchaccuracyofthesolutionspaceisassumedtobeε,thesolutionspaceMcanbeunderstoodasadiscretespace,itssizeis| |

/ ,whereeachpoint ∈ isapollengrain,sosetitsfitnessF=f(x)isafunctionoffitness,

Page 7: An pollination algorithm for optimization of distribution ...apem-journal.org/Archives/2019/APEM14-2_177-188.pdf · An improved flower pollination algorithm for optimization of intelligent

An improved flower pollination algorithm for optimization of intelligent logistics distribution center 

Advances in Production Engineering & Management 14(2) 2019  183

obviously| | ,soitcanbewrittenasF={F1,F2,…F|F|},whereF1>F2>…>F|F|.Accordingtothedifferentfitnessdegree,thesearchspaceMcanbedividedintodifferentnon‐emptysubset{Mi},whichisdefinedas:

| ∈ , (15)wherei=1,2,…,|F|,then: 

| || |; , ∀ ∈ 1,2, … , | | ;

        ∩ ; ∩ , ∀ ; | |(16)

Foranytwoelementsxi∈Miandxj∈Mj,

,      ,      ,      

(17)

ItiseasytoknowthatF1canbeconsideredaglobaloptimalsolutionF*,andthatindividualswithfitnessequaltoF*shouldbeinM1.Intheiterativeprocessofthealgorithm,thenumberNofpollenpopulationsremainsunchanged,p={x1,x2,…,xN}. SetP asa set, containingallpopula‐tions,andsincethepollengrains in thepopulationareallowedtobethesame, thenumberofpossiblepopulationsis:

| | | | (18)

Then,inordertojudgethequalityofthepopulations,thefitnessfunctionofpcanbedefinedas:

max | 1,2, . . . , (19) 

Similarly,accordingtothedifferentfitness,Pcanbedividedinto|F|non‐emptysub‐sets(i=1,2,…,|F|),where |Pi| represents the sizeof the setPi.The setP1 includesallpopulationswithfitnessF1.

Setpij(i=1,2,…,|F|;j=1,2,…,|Pi|)representsthej‐thpopulationofpi.Undertheactionoftheevolutionoperator,theprobabilityPrij,klofpijtransitingtopklrepresentsthetransitionprobabil‐ityofanyoneofthepopulationsfrompijtopk,andPri,krepresentsthetransitionprobabilityofanyoneofthepopulationsfrompitopk,then:

Pr , Pr ,

| |; Pr , 1

| |; Pr , Pr , (20) 

Asquarematrix ∈ iscalled:

anonnegativematrix,ifaij 0,∀ , ∈ 1,2, . . . , ; aprimitivematrix,ifAisnonnegative,andthereisanintegerk 1,soAk>0; arandommatrix,ifAisnonnegativeand∑ 1,then∀ ∈ 1,2, . . . , ; areduciblerandommatrixcanperformarow‐columntransformationofthesameformto

obtain 0 ,wheresisthem‐orderprimitivematrix,andRandT 0.

Definition1: If an evolutionary algorithm converges to a global optimal solution, its sufficientandnecessaryconditionsare:

lim→

Pr ∗ 1(21)

where,PrrepresentsprobabilityandPtrepresentsthet‐thgenerationpopulation.

Theorem1:SetPr 0 isareduciblerandommatrix,Sisthem‐orderprimitivematrixand

RandT 0,then

Pr lim→

Pr lim→

0 00(22)

Page 8: An pollination algorithm for optimization of distribution ...apem-journal.org/Archives/2019/APEM14-2_177-188.pdf · An improved flower pollination algorithm for optimization of intelligent

Hu  

184  Advances in Production Engineering & Management 14(2) 2019

Obviously,Pr isastablerandommatrixandPr 1,1, . . . ,1 , , . . . , , 1,

and lim→

0,when0          10      1

.  

Theorem2:Inthechaoticflowerpollinationalgorithm,for∀ , ∈ 1,2, . . . , | | ,

Pr ,0,  0,  

(23)

Prove: First, for∀ ∈ 1,2, . . . , | | ,∃ ∗ ∗, ∗, . . . , ∗ ∈ , so f(x*) = Fi,∀ ∈ ,1,2, . . . , | |, 1,2, . . . , | |,∃ , , . . . , ∈ and f(X') = Fk. Under the ac‐

tion of evolutionary operators, pij is transited to be pkl, if pij of the t‐th generation isevolvedtobepklofthe(t+1)‐thgeneration,andforconvenience,recordthemas and

.Thechaoticflowerpollinationalgorithmhastheoptimizationstrategyandthehis‐toricaloptimalsolutionF*ispreservedineachpollinationprocess.Therefore,theopti‐malpositionofpollenisF*atLt,andundertheconditionthatthepopulationremainsun‐changed,thenextgenerationLt+1isproducedthroughpollinationbehavior,andthebestpollengrainF'inLt+1iscomparedwithF*,ifF'isbetterthanF*,thepreservedhistoricaloptimalsolutionisreplacedbyF',otherwiseunchanged,then:

⇒ ⇒ ∀ , Pr , 0 ⇒ ∀ , Pr , Pr , 0| |

∀  andPr , 0.

Secondly,ineachpollinationprocess,thealgorithmisiteratedandtheoptimalsolutionisfound.Thebehaviorselectionismadeaccordingtotheprincipleofthefastestorbetterspeed.Therefore,setindividualX',withthefitnessoff(X')=Fk,k i,andX'hasrcompo‐nents( , , … , )differentfromX*,theprobabilityofx'generatedbyx*throughLevyflightoperatorisPr 1 ∗ 0,whereφ istheprobabilityden‐sity function for levy distribution. So the probability of pij evolving to be pk is greaterthanzero,so∀ andPr , Pr , 0.

Theorem3:Thechaoticflowerpollinationalgorithmisgloballyconvergent.

Prove: EachPri,i=1,2,…,|F|canbeviewedasastateonatime‐alignedfiniteMarkovchain.Ac‐cordingtoTheorem1,thetransitionprobabilitymatrixofthealgorithmisexpressedas:

Pr

Pr , 0 ⋯ 0Pr , Pr , ⋯ 0⋮ ⋮ ⋱ ⋮

Pr| |, Pr| |, ⋯ Pr| |,| |

whereR>0,T 0andS=1.AccordingtoTheorem1,

Pr lim→

Pr lim→

000 

where 1and 1,1, . . . ,1 ,soPr isastablerandommatrix,and

Pr

1 0 ⋯ 01 0 ⋯ 0⋮ ⋮ ⋱ ⋮1 0 ⋯ 0

 

Therefore,regardlessofthefitnessstateofthecurrentpopulation,itwillconvergetotheop‐timalfitnessstatewithprobability1afterinfiniteevolution,sotheimprovedflowerpollinationalgorithmisgloballyconvergent.

Page 9: An pollination algorithm for optimization of distribution ...apem-journal.org/Archives/2019/APEM14-2_177-188.pdf · An improved flower pollination algorithm for optimization of intelligent

An improved flower pollination algorithm for optimization of intelligent logistics distribution center 

Advances in Production Engineering & Management 14(2) 2019  185

5. Results and discussion 

Inthissection,theresultsofoptimizationoftheproposedmethod,geneticalgorithmandstand‐ardparticle swarmoptimization algorithmare compared inMatlabenvironment toprove theeffectivenessandfeasibilityoftheproposedmethod.Duringtheexperiment,thecoordinatesof31citiesarecollected,andthepositioncoordinatesofeachdemandpointandthematerialde‐mandaregiveninTable1.Thematerialdemandinthetableisthestandardizedvalueanddoesnotrepresenttheactualvalue.Thedimensionlessprocessisappliedto31logisticspoints.Thedimensionlessprocessusesthequotientofthemeanvalueofeachfactorvariabletoobtaindi‐mensionlessdata.

Theparametersofflowerpollinationalgorithmareasfollows:p=0.8,beta=1.5,thenumberofchaositerationsk=10,andtheratioofselectingthebestpollensetisn=20.Theimprovedflower pollination algorithm is used to optimize the locationmodel of the intelligent logisticsdistributioncenter.Thepointvalue is set tobe6,which indicates that6 logisticsdistributioncentersareselectedfrom31demandpoints.

Inthesimulationexperiment,thefinaldataistheaverageresultafterrunningtheprogramfor100times,soastoreducetheerror.Theconvergencecurveoftheimprovedflowerpollina‐tionalgorithmisshowninFig.1.

ThelocationschemeoftheintelligentlogisticsdistributioncenterisshowninFig.2.Theboxrepresents the distribution center, and the dot represents the demand point. The connectionbetweentheboxandthedotindicatesthatthelogisticsdistributioncenterisresponsibleforthedistributionof thematerials at ademandpoint.The locationmodel of the intelligent logisticsdistributioncenterisoptimizedbythemethodproposedinthisstudy,andthelocationschemeis[2217629611].

Intheprocessofsolvingthelocationoptimizationoftheintelligentlogisticsdistributioncen‐ter with the improved flower pollination algorithm, chaos optimization and boundary bufferfactorareaddedtoeffectivelyavoidthealgorithmfallingintolocaloptimization,sothatthecon‐vergencespeedandoptimizationaccuracyof thealgorithmareobviously improved, reflectingthattheflowerpollinationalgorithmneedsnoaccuratedescriptionoftheprobleminsolvingthepractical problem, but can quickly obtain the optimal solutionwithin a certain limit. Table 2shows the performance comparison between the proposed scheme, genetic algorithm andstandardparticleswarmoptimization(PSO)inoptimizingthelocationmodelofintelligentlogis‐ticsdistributioncenter.

Table1Positionofdemandpointandmaterialdemand

No. Coordinates Demand No. Coordinates Demand1 (2378,3172) 50 17 (4462,3641) 902 (1689,2623) 60 18 (2685,3252) 803 (4973,4582) 60 19 (4891,3431) 504 (2732,3452) 40 20 (2541,3964) 405 (1367,2473) 70 21 (4571,3115) 906 (3874,3994) 70 22 (2714,3574) 607 (4953,2363) 30 23 (4325,3683) 708 (3852,3372) 60 24 (4232,3231) 609 (2454,3068) 60 25 (2232,3462) 5010 (2122,1374) 80 26 (4436,3285) 5011 (4132,3879) 40 27 (3340,4112) 3012 (2244,3896) 30 28 (1203,2183) 6013 (4564,1598) 30 29 (4632,3461) 8014 (3933,4212) 80 30 (2262,3365) 5015 (3284,1475) 30 31 (3422,4316) 7016 (3433,2756) 50

Page 10: An pollination algorithm for optimization of distribution ...apem-journal.org/Archives/2019/APEM14-2_177-188.pdf · An improved flower pollination algorithm for optimization of intelligent

Hu  

186  Advances in Production Engineering & Management 14(2) 2019

Fig.1ConvergencecurveFig.2Locationscheme

Table2PerformancecomparisonofseveralalgorithmsAlgorithm Locationscheme Averagedistributioncost Numberofiterations Runningtime/s

GA 2217629611 1892 110 36.3PSO 2217629611 1363 60 15.5

ImprovedFPA 2217629611 1012 26 11

Table2showsthatwhengeneticalgorithm,standardparticleswarmoptimizationalgorithm

andthemethodinthisstudyoptimizethelocationmodeloftheintelligentlogisticsdistributioncenter, theoptimalschemecanbeobtained,Theaveragedeliverycostrequiredbythegeneticalgorithmis1892,thenumberofitsiterationsis110,anditsrunningtimeis36.3seconds.Theaveragedeliverycostrequiredbythestandardparticleswarmoptimizationalgorithmis1363,thenumberofitsiterationsis60,anditsrunningtimeis15.5seconds.Theaveragedeliverycostrequiredbytheimprovedflowerpollinationalgorithmis1012,thenumberofitsiterationsis26,anditsrunningtimeis11seconds.Therefore,theperformanceoftheimprovedflowerpollina‐tionalgorithmisgenerallybetter thantheother twoalgorithms. Inorder to furtherverify theuniversalityoftheimprovedflowerpollinationalgorithminsolvingsuchproblems,thenumberof logisticsdemandpoints ischanged,andsimulationexperimentsarecarriedoutondifferentinitialdatarespectively.Thesimulationresultsshowthatwhenthenumberoflogisticsdemandpointsislarge,theadvantagesofthealgorithmpresentedinthisstudyaremoreobvious.Atthesame time, we also find that the flower pollination algorithm has the advantages of self‐organizingability,distributedoperationandpositive feedback,andcanperceivethechangeofsurrounding road conditionparameters in real time in complex roadnetwork. It is especiallysuitableforthepathoptimizationproblemofintelligentlogisticsdistributioncenterundermul‐ti‐constraintconditions.

6. Conclusion 

Theoptimallocationmodelofintelligentlogisticsdistributioncentersisanon‐convexandnon‐smooth nonlinear model with complex constraints, which belongs to NP‐hard problem. Thisstudyusesthe intelligentoptimizationmethodtothepathoptimizationproblemof the intelli‐gent logistics distribution center, and proposes an improved flower pollination optimizationalgorithm.Accordingtotheactualcharacteristicsofthewholelogisticsnetworksystem,aloca‐tionmodeloftheintelligentlogisticsdistributioncenterisconstructed.Accordingtothebiologi‐calcharacteristicsofflowerpollination,therealizationprincipleoftheflowerpollinationalgo‐rithmisdescribedfromthemechanism,andtheconvergenceofthealgorithmisanalyzedbyrealcodingmethod. The optimization performance of the algorithm is analyzed in detail, and thebiologicalmodelandtheoreticalbasisofthealgorithmaregiven.

Inordertoavoidthelocaloptimizationandimprovetheconvergencespeedandoptimizationaccuracyofthealgorithm,thisstudyintroduceschaosoptimizationandboundarybufferfactor.

Page 11: An pollination algorithm for optimization of distribution ...apem-journal.org/Archives/2019/APEM14-2_177-188.pdf · An improved flower pollination algorithm for optimization of intelligent

An improved flower pollination algorithm for optimization of intelligent logistics distribution center

By means of logical self-mapping function, the pollen grains are disturbed by chaos, which makes the pollen grain set without mutation mechanism have strong self-adaptive ability. Meanwhile, the size of the boundary is dynamically scaled according to the actual situation, and the boundary buffer factor is used to buffer the pollen grains crossing the boundary. The exper-imental results show that compared with other methods, the method proposed in this study is more effective in solving the location optimization of the intelligent logistics distribution center, and can quickly and accurately find the best logistics distribution center for demand points.

Acknowledgement This research is supported by Humanities and Social Sciences project of the Ministry of Education of China (No.17YJCZH062).

References [1] Feng, F., Pang, Y., Lodewijks, G., Li, W. (2017). Collaborative framework of an intelligent agent system for effi-

cient logistics transport planning, Computers & Industrial Engineering, Vol. 112, 551-567, doi: 10.1016/j.cie. 2016.12.044.

[2] Kirch, M., Poenicke, O., Richter, K. (2017). RFID in logistics and production – Applications, research and visions for smart logistics zones, Procedia Engineering, Vol. 178, 526-533, doi: 10.1016/j.proeng.2017.01.101.

[3] Yang, L., Ji, X., Gao, Z., Li, K. (2007). Logistics distribution centers location problem and algorithm under fuzzy environment, Journal of Computational and Applied Mathematics, Vol. 208, No. 2, 303-315, doi: 10.1016/j.cam. 2006.09.015.

[4] Tang, X., Lehuédé, F., Péton, O. (2016). Location of distribution centers in a multi-period collaborative distribu-tion network, Electronic Notes in Discrete Mathematics, Vol. 52, 293-300, doi: 10.1016/j.endm.2016.03.039.

[5] Loree, N., Aros-Vera, F. (2018). Points of distribution location and inventory management model for post-disaster humanitarian logistics, Transportation Research Part E: Logistics and Transportation Review, Vol. 116, 1-24, doi: 10.1016/j.tre.2018.05.003.

[6] Gutjahr, W.J., Dzubur, N. (2016). Bi-objective bilevel optimization of distribution center locations considering user equilibria, Transportation Research Part E: Logistics and Transportation Review, Vol. 85, 1-22, doi: 10.1016/ j.tre.2015.11.001.

[7] Holzapfel, A., Kuhn, H., Sternbeck, M.G. (2018). Product allocation to different types of distribution center in retail logistics networks, European Journal of Operational Research, Vol. 264, No. 3, 948-966, doi: 10.1016/ j.ejor.2016.09.013.

[8] Tan, J., Jiang, G., Wang, Z. (2017). Evolutionary game of information sharing on supply chain network based on memory genetic algorithm, Journal Européen des Systèmes Automatisés, Vol. 50, No. 4-6, 507-519, doi: 10.3166/ JESA.50.507-519.

[9] Pham, T.Y., Ma, H.M., Yeo, G.T. (2017). Application of fuzzy delphi TOPSIS to locate logistics centers in Vietnam: The logisticians’ perspective, The Asian Journal of Shipping and Logistics, Vol. 33, No. 4 211-219, doi: 10.1016/ j.ajsl.2017.12.004.

[10] He, Y., Wang, X., Lin, Y., Zhou, F., Zhou, L. (2017). Sustainable decision making for joint distribution center loca-tion choice, Transportation Research Part D: Transport and Environment, Vol. 55, 202-216, doi: 10.1016/j.trd. 2017.07.001.

[11] Sun, H., Gao, Z., Wu, J. (2008). A bi-level programming model and solution algorithm for the location of logistics distribution centers, Applied Mathematical Modelling, Vol. 32, No. 4, 610-616, doi: 10.1016/j.apm.2007.02.007.

[12] Hua, X., Hu, X., Yuan, W. (2016). Research optimization on logistics distribution center location based on adap-tive particle swarm algorithm, Optik, Vol. 127, No. 20, 8443-8450, doi: 10.1016/j.ijleo.2016.06.032.

[13] Malik, S., Kumari, A., Agrawal, S. (2015). Selection of locations of collection centers for reverse logistics using GTMA, Materials Today: Proceedings, Vol. 2, No. 4-5, 2538-2547, doi: 10.1016/j.matpr.2015.07.199.

[14] Coelho, E.K.F., Mateus, G.R. (2017). A capacitated plant location model for reverse logistics activities, Journal of Cleaner Production, Vol. 167, 1165-1176, doi: 10.1016/j.jclepro.2017.07.238.

[15] Zhao, L., Li, H., Li, M., Sun, Y., Hu, Q., Mao, S., Li, J., Xue, J. (2018). Location selection of intra-city distribution hubs in the metro-integrated logistics system, Tunnelling and Underground Space Technology, Vol. 80, 246-256, doi: 10.1016/j.tust.2018.06.024.

[16] Vieira, J.G.V., Toso, M.R., da Silva, J.E.A.R., Ribeiro, P.C.C. (2017). An AHP-based framework for logistics opera-tions in distribution centres, International Journal of Production Economics, Vol. 187, 246-259, doi: 10.1016 /j.ijpe.2017.03.001.

[17] Gao, M., Shen, J., Jiang, J. (2018). Visual tracking using improved flower pollination algorithm, Optik, Vol. 156, 522-529, doi: 10.1016/j.ijleo.2017.11.155.

[18] Salgotra, R., Singh, U. (2017). Application of mutation operators to flower pollination algorithm, Expert Systems with Applications, Vol. 79, 112-129, doi: 10.1016/j.eswa.2017.02.035.

Advances in Production Engineering & Management 14(2) 2019 187

Page 12: An pollination algorithm for optimization of distribution ...apem-journal.org/Archives/2019/APEM14-2_177-188.pdf · An improved flower pollination algorithm for optimization of intelligent

Hu

[19] Yang, X.-S., Karamanoglu, M., He, X. (2014). Flower pollination algorithm: A novel approach for multiobjective optimization, Engineering Optimization, Vol. 46, No. 9, 1222-1237, doi: 10.1080/0305215X.2013.832237.

[20] Wang, C.L., Li, S.W. (2018). Hybrid fruit fly optimization algorithm for solving multi-compartment vehicle routing problem in intelligent logistics, Advances in Production Engineering & Management, Vol. 13, No. 4, 466-478, doi: 10.14743/apem2018.4.304.

[21] Hu, W., Hou, Y., Tian, L., Li, Y. (2015). Selection of logistics distribution center location for SDN enterprises, Jour-nal of Management Analytics, Vol. 2, No. 3, 202-215, doi: 10.1080/23270012.2015.1077481.

[22] Wu, Z. (2014). Optimization of distribution route selection based on particle swarm algorithm, International Journal of Simulation Modelling, Vol. 13, No. 2, 230-242, doi: 10.2507/IJSIMM13(2)CO9.

[23] McFarlane, D., Giannikas, V., Lu, W. (2016). Intelligent logistics: Involving the customer, Computers in Industry, Vol. 81, 105-115, doi: 10.1016/j.compind.2015.10.002.

188 Advances in Production Engineering & Management 14(2) 2019