An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun...

34
An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1

Transcript of An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun...

Page 1: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

1

An Introduction to Compressed Sensing

Student : Shenghan TSAI

Advisor : Hsuan-Jung Su and Pin-Hsun Lin

Date : May 02, 2014

Page 2: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

2

Outline• Introduction• Signal---Sparse and Compressible - Sparse & Compressible - Power law -The p-norm in finite dimensions

• Sensing Matrices - NSP(Null space conditions) -RIP(Restricted isometry proerty)• Sparse Signal Recovery• Conclusion

Page 3: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

3

Introduction

Page 4: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

Compressed Sensing

• Compressed sensing is a signal processing technique for efficiently acquiring and reconstructing a signal, by finding solutions to underdetermined linear systems.This takes advantage of the signal's sparseness or compressibility in some domain, allowing the entire signal to be determined from relatively few measurements.

4

Page 5: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

History

• “If we sample a signal at twice its highest frequency, then we can recover it exactly.”

Whittaker-Nyquist-Kotelnikov-Shannon

• Emmanuel Candès, Terence Tao, and David Donoho proved that given knowledge about a signal's sparsity(2004)

5

Page 6: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

Motivation

Page 7: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

Motivation

Page 8: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

8

How it work?

• Y=ΦX Sensing matrix : ,

0 0 0

^^1= =( ) ( )T Tx x

Page 9: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

9

Deterministic compressive sensingSignal---Sparse and CompressibleSensing Matrices—NSP and RIP

Page 10: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

10

Sparse & Compressible

• Sparse Model: Signals of interest are often sparse or compressible, i.e., very few large coefficients, many close to zero.• Sparse signals: have few non-zero coefficients. i.e. K-sparse mean it

has at most K nonzeros.

• Compressible signals: have few significant coefficients; coefficients decay as a power law.

0x K

0{ : }k x x K

Page 11: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

11

Power law

• A signal is compressible if its sorted coefficient magnitudes in decay rapidly. x be a signal • The signal should observe a power law decay : s=1,2,… q decay faster, more compressible

x 1| | q

s C s

Page 12: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

The p-norm in finite dimensions

• Lp mean norm p• EX: P=2 Ex: p=0 Ex: p=∞

2,X X X 0

| sup ( ) | { : 0}iX p x i x

1

1 2(| | | | .... | | )p p p pnp

X x x x

1 2max{| |,| |,...,| |}nX x x x

Page 13: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

The p-norm in finite dimensions

• The grid distance between two points is never shorter than the length of the line segment between them. Formally, this means that the Euclidean norm of any vector is bounded by its 1-norm

• Using Cauchy–Schwarz inequality.

2 1X X p a p

X X

12

XX

K

Page 14: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.
Page 15: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

15

Sensing MatricesNSP(Null space conditions)RIP(Restricted isometry proerty)

Page 16: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

16

Sensing Matrices

Page 17: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

17

Sensing Matrices

• Y=ΦX Sensing matrix : ,

Page 18: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

18

How to design Sensing Matrices

• If we sure our date is sparse and compressible, then we want to design Φ with M<<N and want it can recover• To ensure Φ can recover there are two property NSP & RIP need to

follow and we got a measurement bound

Page 19: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

19

The Null space property

• If we want it can recover K-sparse signals it is that require Φx1 ≠ Φx2 for all K-sparse x1 ≠ x2• So we necessary that Φ must have at least 2K rows otherwise there

exist K-sparse x1,x2 s.t. Φ(x1-x2)=0 • Spark are almost the same meaning• M >=2K

Page 20: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

20

The Null space property

• Null space property (NSP) of order K if there exists a constant C > 0

• holds for all and for all such that

12

chh C

K

( )h K

:RM NR

12

( )( ) K xx x C

K

^

^

( ) minK

K p Kpx

x x x

Page 21: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

21

Page 22: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

22

The restricted isometry property

• A A matrix satises the restricted isometry property (RIP) of order K if there exists a (0~ 1)

• Make sure Φx be stable

12

( )( ) K xx x C

K

2 2 2

2 2 2(1 ) (1 )k kx x x

Page 23: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

23

Page 24: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

24

The RIP and NSP(relationship between RIP & NSP)• Suppose that Φ satisfies the RIP of order 2K with . Then Φ

satisfies the NSP of order 2K with constant (接第 X幾頁 )

• Suppose that Φ satisfies the RIP of order 2K,

12

chh C

K

2

2

2

1 (1 2)k

k

C

2 2 1k

0 12

2

| , |ch h hh

hK

2

2

2

1k

k

2

1

1 k

0| | K

0 {1,2,3,..., }N

01 ch

0 1

Page 25: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

25

Sparse Signal RecoveryNSP(Null space conditions)RIP(Restricted isometry proerty)

Page 26: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

26

Sparse Signal Recovery

• with noiseless in noise^

1argmin

z

zx( ) { : }z y z z y 2

( ) { : }z y z z y

Page 27: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

27

Cont.

• When then ( ) { : }z y z z y ^

y x x 0h

^1

02 22

( )( ) K xx x x x h C

K

^

h x x

20

2

1 (1 2)21 (1 2)

k

k

C

Page 28: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

28

Page 29: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

29

Recovery in noise

20

2

1 (1 2)21 (1 2)

k

k

C

1

2

2

1 (1 2) k

C

^ ^1

0 12 22 2 2

( ) | , |( ) K x h hx x x x h x x C C

hK

0| | K 0 {1,2,3,..., }N

01 ch

0 1

2( ) { : }z y z z y

^

+y x x

Page 30: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

30

Page 31: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

31

0 0 0 0

^1( )T Tx y

0

^

0cx

0 0 0 0 0 0

^1 1

2 22

( ) ( ) ( )T T T Tx x x e x e

Page 32: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

32

Conclusion

• If signals are sparse and compressible then can use CS to compressed.

• Signals can be perfect recovered ,if satisfies NSP & RIP.

Page 33: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

References1. [E. Cand[U+FFFD] The restricted isometry property and its implications for compressed sensing. Comptes rendus de l'Acad[U+FFFD]e des Sciences, S[U+FFFD]e I, 346(9-10):5898211;592, 2008..2. [Yu TSP 11] G. Yu and Guillermo Sapiro, “Statistical Compressed Sensing of Gaussian

Mixture Models,” IEEE Trans of Signal Processing, vol. 59, no. 12, pp. 5842–5857, Dec. 2011.

3. [R. Baraniuk, M.A. Davenport, M.F. Duarte, C. Hegde], An Introduction to Compressive Sensing,

CONNEXIONS, Rice University, Houston, Texas, 2010.4. [R.G. Baraniuk,] “Compressive sensing,” IEEE Signal Processing Mag., vol. 24, no. 4, pp. 118–120, 124, 2007.5. http://en.wikipedia.org/wiki/Lp_space6. http://en.wikipedia.org/wiki/Compressed_sensing

33

Page 34: An Introduction to Compressed Sensing Student : Shenghan TSAI Advisor : Hsuan-Jung Su and Pin-Hsun Lin Date : May 02, 2014 1.

34