AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM...

234
AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON QUINONE REACTIVITY J. Roshan C. Fernando Master of Science in Chemistry Quinones are a class of naturally occurring compounds that are biologically very relevant due to their ability to participate in redox reactions. A theoretical study of a series of four benzoquinones including para-benzoquinone, 2-chloro-para-benzoquinone, 2-methyl-para-benzoquinone, and ortho-benzoquinone was carried out using the mPWB95-44 density functional theory with the 6-31+G(d,p) basis set. One part of this study was focused in calculating redox potentials. The reversible potentials of all nine relevant reactions for each of the four benzoquinone derivatives were determined, both in gas phase and aqueous phase. To properly determine the values, a conformational analysis was carried out to find minimum-energy species including quinone and anionic forms, semiquinone radical and anionic forms, and hydroquinone forms. Geometric parameters are presented and geometry changes are discussed. The highest reduction potentials were calculated for ortho-benzoquinone. The chlorine substituent enhances the reduction ability of para-benzoquinone while the methyl substituent reduces its reduction ability. The other part of the study was focused on investigating the reactivity toward N- containing nucleophiles. Nucleophilic addition reactions at the carbonyl bonds with NH 3 and CH 3 NH 2 nucleophiles were studied for all four quinones. Reactions with ethylamine and lysine amino acid nucleophiles were studied only with para-benzoquinone. A complete conformational analysis of the reaction products was carried out. Geometries of the minimum-energy conformations are presented and compared. The reactions were investigated through three distinct pathways: a direct hydrogen transfer pathway, and two pathways involving hydrogen transfer through water and methanol, respectively. The results showed that solvent-assisted pathways have lower barrier heights and are more likely to occur. Calculated barrier heights and reaction energies are given and compared. Results showed again that ortho-benzoquinone is the most reactive studied quinone and that chloro and methyl substituents increase and decrease, respectively, the reactivity of para-benzoquinone.

Transcript of AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM...

Page 1: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

AN ABSTRACT OF A THESIS

THEORETICAL STUDIES ON QUINONE REACTIVITY

J. Roshan C. Fernando

Master of Science in Chemistry

Quinones are a class of naturally occurring compounds that are biologically very

relevant due to their ability to participate in redox reactions. A theoretical study of a series of four benzoquinones including para-benzoquinone, 2-chloro-para-benzoquinone, 2-methyl-para-benzoquinone, and ortho-benzoquinone was carried out using the mPWB95-44 density functional theory with the 6-31+G(d,p) basis set.

One part of this study was focused in calculating redox potentials. The reversible

potentials of all nine relevant reactions for each of the four benzoquinone derivatives were determined, both in gas phase and aqueous phase. To properly determine the values, a conformational analysis was carried out to find minimum-energy species including quinone and anionic forms, semiquinone radical and anionic forms, and hydroquinone forms. Geometric parameters are presented and geometry changes are discussed. The highest reduction potentials were calculated for ortho-benzoquinone. The chlorine substituent enhances the reduction ability of para-benzoquinone while the methyl substituent reduces its reduction ability.

The other part of the study was focused on investigating the reactivity toward N-

containing nucleophiles. Nucleophilic addition reactions at the carbonyl bonds with NH3 and CH3NH2 nucleophiles were studied for all four quinones. Reactions with ethylamine and lysine amino acid nucleophiles were studied only with para-benzoquinone. A complete conformational analysis of the reaction products was carried out. Geometries of the minimum-energy conformations are presented and compared. The reactions were investigated through three distinct pathways: a direct hydrogen transfer pathway, and two pathways involving hydrogen transfer through water and methanol, respectively. The results showed that solvent-assisted pathways have lower barrier heights and are more likely to occur. Calculated barrier heights and reaction energies are given and compared. Results showed again that ortho-benzoquinone is the most reactive studied quinone and that chloro and methyl substituents increase and decrease, respectively, the reactivity of para-benzoquinone.

Page 2: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

THEORETICAL STUDIES ON QUINONE REACTIVITY

________________________

A Thesis

Presented to

the Faculty of the Graduate School

Tennessee Technological University

by

J. Roshan C. Fernando

________________________

In Partial Fulfillment

of the Requirements for the Degree

MASTER OF SCIENCE Chemistry

________________________

August 2009

Page 3: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

ii

CERTIFICATE OF APPROVAL OF THESIS

THEORETICAL STUDIES ON QUINONE REACTIVITY

by

J. Roshan C. Fernando

Graduate Advisory Committee:

________________________________ ___________ Titus V. Albu, Chairperson date

________________________________ ___________ David J. Crouse date

________________________________ ___________ Scott H. Northrup date

Approved for the Faculty:

___________________________________ Francis Otuonye Associate Vice President for Research and Graduate Studies ___________________________________ Date

Page 4: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

iii

DEDICATION

This thesis is dedicated to my parents, my teachers, my wife and my sisters

who have encouraged me to make the most of my life.

Page 5: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

iv

ACKNOWLEDGEMENTS

I sincerely thank to my major professor, Dr. Titus Albu, for his guidance,

advisement, and remarkable support for a successful research work. I would like to thank

my research committee members, Dr. Scott Northrup and Dr. David Crouse, for their

guidance. I would also like to thank other faculty members and staff members in the

department of Chemistry at Tennessee Technological University who deserve recognition

for their support.

I would like to thank my wife Wasana Senevirathna for all her love,

encouragement and support. I would like to thank my parents, Dayarathna Fernando and

Piyawathi Fonseka, and my two sisters, Jeewani and Deepani, for their continued support,

encouragement and being with me in most of my life.

Finally, I would like to acknowledge the funding of this project from Tennessee

Technological University through a faculty grant to Dr. Titus Albu.

Page 6: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

v

TABLE OF CONTENTS List of Acronyms ……………………………………………………………………… viii List of Tables ………………………………………………………………………… ix List of Figures ………………………………………………………………………… xi Chapter Page 1 INTRODUCTION …………………………………………………………… 1

1.1 A Brief Description of Quinones ……………………………………………… 1 1.2 Selected Experimental Studies of Quinones …………………………………… 5 1.3 Selected Theoretical Studies of Quinones……………………………………… 8 1.4 Introduction to Density Functional Theory …………………………………… 12 1.5 Research Objectives …………………………………………………………… 15

2 A THEORETICAL INVESTIGATION OF REVERSIBLE POTENTIALS FOR FOUR BENZOQUINONES ………………………………………………… 16

2.1 Introduction …………………………………………………………………… 16 2.2 Computational Methodologies ………………………………………………… 19 2.2.1 Electronic Structure Theory Method and Computational Details ……… 19 2.2.2 Electrochemical Potential Scale ……………………………………… 19 2.3 Geometry Optimization………………………………………………………… 21 2.3.1 Optimized Geometries of p-Benzoquinone Series …………………… 34 2.3.2 Optimized Geometries of 2-Chloro-p-Benzoquinone Series ………… 36 2.3.3 Optimized Geometries of 2-Methyl-p-Benzoquinone Series ………… 39 2.3.4 Optimized Geometries of o-Benzoquinone Series …………………… 41

Page 7: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

vi

Chapter Page 2.4 Reduction Potential Calculations ……………………………………………… 43 2.4.1 Reduction Potentials for p-Benzoquinone Series ……………………… 47 2.4.2 Reduction Potentials for 2-Chloro-p-Benzoquinone Series …………… 50 2.4.3 Reduction Potentials for 2-Methyl-p-Benzoquinone Series …………… 52 2.4.4 Reduction Potentials for o-Benzoquinone Series ……………………… 54 2.5 Concluding Remarks …………………………………………………………… 56

3 INVESTIGATION OF REACTIVITY OF BENZOQUINONE DERIVATIVES TOWARDS N-CONTAINING NUCLEOPHILES ……………………………………… 58

3.1 Introduction …………………………………………………………………… 58

3.2 Computational Methodologies ………………………………………………… 62 3.2.1 Electronic Structure Theory Method and Computational Details ……… 62 3.2.2 Reaction Pathways, Saddle Points and Imaginary Frequencies ……… 62 3.3 Conformational Analysis of Reaction Products ……………………………… 65 3.3.1 Reactions of Quinones with NH3 ……………………………………… 65 3.3.2 Reactions of Quinones with CH3NH2 ………………………………… 78 3.3.3 Reaction of p-Benzoquinone with C2H5NH2 ………………………… 90 3.3.4 Reaction of p-Benzoquinone with Lysine ……………………………… 92 3.4 Determining and Characterizing the Transition States ………………………… 94 3.4.1 Reactions of Quinones with NH3 ……………………………………… 95 3.4.2 Reactions of Quinones with CH3NH2 …………………………………110 3.4.3 Reaction of p-Benzoquinone with C2H5NH2 …………………………124

3.4.4 Reaction of p-Benzoquinone with Lysine ………………………………128

Page 8: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

vii

Chapter Page

3.5 Discussion ………………………………………………………………………131 3.6 Concluding Remarks ……………………………………………………………138

BIBLIOGRAPHY ……………………………………………………………………140

APPENDICES …………………………………………………………………………145

APPENDIX A – Supplementary Information for Chapter 2 …………………146 APPENDIX B – Supplementary Information for Chapter 3 …………………161 APPENDIX C – Sample Gaussian Input Files …………………………………214 VITA……………………………………………………………………………………219

Page 9: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

viii

LIST OF ACRONYMS B3LYP Becke’s gradient-corrected exchange functional and the Lee-Yang-Parr

Corelation functional method CPCM Conductor-like polarizable continuum model DFT Density functional theory FEP Free energy perturbation HDFT Hybrid density functional theory HF Hartree-Fock MP2 Moller-Plesset second order perturbation mPW1B95 modified Perdew-Wang exchange functional and Beck’s correlation

functional method MPWB1K modified Perdew-Wang exchange functional and Beck’s correlation

functional method PCM Polarized continuum model PHPMS Pulsed electron high-pressure mass spectrometer RHF Restricted Hartree-Fock UHF Unrestricted Hartree-Fock UMP2 Unrestricted Moller-Plesset second order perturbation

Page 10: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

ix

LIST OF TABLES Table Page 2-1 Selected bond distances (in angstroms) of the optimized, minimum-energy

conformations of species in the p-benzoquinone series. Aqueous solution results are in parenthesis ……………………………………………………… 26

2-2 Selected bond angles (in degrees) of the optimized, minimum-energy

conformations of species in the p-benzoquinone series. Aqueous solution results are in parenthesis ……………………………………………………… 27

2-3 Selected bond distances (in angstroms) of the optimized, minimum-energy

conformations of species in the 2-chloro-p-benzoquinone series. Aqueous solution results are in parenthesis ……………………………………………… 28

2-4 Selected bond angles (in degrees) of the optimized, minimum-energy

conformations of species in the 2-chloro-p-benzoquinone series. Aqueous solution results are in parenthesis ……………………………………………… 29

2-5 Selected bond distances (in angstroms) of the optimized, minimum-energy

conformations of species in the 2-methyl-p-benzoquinone series. Aqueous solution results are in parenthesis ……………………………………………… 30

2-6 Selected bond angles (in degrees) of the optimized, minimum-energy

conformations of species in the 2-methyl-p-benzoquinone series. Aqueous solution results are in parenthesis ……………………………………………… 31

2-7 Selected bond distances (in angstroms) of the optimized, minimum-energy

conformations of species in the o-benzoquinone series. Aqueous solution results are in parenthesis ……………………………………………………… 32

2-8 Selected bond angles (in degrees) of the optimized, minimum-energy

conformations of species in the o-benzoquinone series. Aqueous solution results are in parenthesis ……………………………………………………… 33

2-9 Reduction reactions for investigated quinones in this study …………………… 44 2-10 Calculated reversible potentials (in V) for the p-benzoquinone series ………… 49 2-11 Calculated reversible potentials (in V) for the 2-chloro-p-benzoquinone

series …………………………………………………………………………… 51 2-12 Calculated reversible potentials (in V) for the 2-methyl-p-benzoquinone

series …………………………………………………………………………… 53

Page 11: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

x

Table Page 2-13 Calculated reversible potentials (in V) for the o-benzoquinone series ………… 55 3-1 Selected dihedral angles (in degrees) of the minimum-energy

conformations of the products of reactions between quinones and NH3 ……… 77 3-2 Selected dihedral angles (in degrees) of the minimum-energy

conformations of the products of reactions between quinones and CH3NH2 … 89 3-3 Selected dihedral angles (in degrees) of the minimum-energy

conformations of the products of reactions between p-benzoquinone and four investigated nucleophiles ………………………………………………… 93

3-4 Selected bond distances (in angstroms) in reactants, saddle points and

products of the reaction between quinones and NH3……………………………132 3-5 Selected bond distances (in angstroms) in reactants, saddle points and

products of the reaction between quinones and CH3NH2 ………………………133 3-6 Calculated reaction energies and barrier heights (in kcal/mol) for the

reactions between quinones and NH3 …………………………………………136 3-7 Calculated reaction energies and barrier heights (in kcal/mol) for the

reactions between quinones and CH3NH2………………………………………136 3-8 Calculated reaction energies and barrier heights (in kcal/mol) for the

reactions between p-benzoquinone and various nucleophiles …………………136

Page 12: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

xi

LIST OF FIGURES Figure Page 1-1 Chemical structures of naturally occurring benzoquinones: a) 1,4-

benzoquinone, b) embelin, c) 2-methoxybenzoquinone, d) plastoquinone-9 and e) ubiquinone-10…………………………………………………………… 2

1-2 Chemical structures of selected naphthoquinones: a) 1,4-naphthoquinone,

b) alkanin and shikonin and c) vitamin K1 …………………………………… 3 1-3 Chemical structures of some anthraquinones; a) alizarin and b) rubiadin

and phenanthraquinones; c) denticulatol and d) tanshinone …………………… 4 2-1 The investigated quinones: p-benzoquinone (2-10), 2-chloro-p-

benzoquinone (2-20), 2-methyl-p-benzoquinone (2-30) and o-benzoquinone (2-40) …………………………………………………………… 17

2-2 Relationship between the standard hydrogen electrode scale of

electrochemical potentials and the vacuum scale of energies ………………… 20 2-3 Chemical structures of p-benzoquinone series ………………………………… 22 2-4 Chemical structures of 2-chloro-p-benzoquinone series ……………………… 23 2-5 Chemical structures of 2-methyl-p-benzoquinone series ……………………… 24 2-6 Chemical structures of o-benzoquinone series ………………………………… 25 2-7 Chemical structures for H3O+(H2O)2 (panel a) and H2O(H2O)2 (panel b) …...… 43 2-8 Reduction steps studied for p-benzoquinone series …………………………… 49 2-9 Reduction steps studied for 2-chloro-p-benzoquinone series ………………… 51 2-10 Reduction steps studied for 2-methyl-p-benzoquinone series ………………… 53 2-11 Reduction steps studied for o-benzoquinone series …………………………… 55 3-1 The investigated quinones toward nucleophilic addition reactions: p-

benzoquinone (3-1), 2-chloro-p-benzoquinone (3-2), 2-methyl-p-benzoquinone (3-3) and o-benzoquinone (3-4) ………………………………… 59

3-2 Investigated reactions between the quinones and ammonia …………………… 60 3-3 Investigated reactions between the quinones and methylamine ……………… 61

Page 13: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

xii

Figure Page 3-4 Energy profile of a bimolecular, exothermic reaction with one product ……… 64 3-5 Seven input (dotted lines) and optimized (solid lines) geometries of the 3-

5 product ……………………………………………………………………… 67 3-6 Eight input (dotted lines) and optimized (solid lines) geometries of the 3-6

product ………………………………………………………………………… 70 3-7 Eight input (dotted lines) and optimized (solid lines) geometries of the 3-7

product ………………………………………………………………………… 71 3-8 Eight input (dotted lines) and optimized (solid lines) geometries of the 3-8

product ………………………………………………………………………… 73 3-9 Eight input (dotted lines) and optimized (solid lines) geometries of the 3-9

product ………………………………………………………………………… 74 3-10 Eight input (dotted lines) and optimized (solid lines) geometries of the 3-

10 product ……………………………………………………………………… 76 3-11 Six input (dotted lines) and optimized (solid lines) geometries of the 3-11

product ………………………………………………………………………… 79 3-12 Three additional input (dotted lines) and optimized (solid lines)

geometries of the 3-11 product ………………………………………………… 80 3-13 The optimized geometries of conformations of the 3-12 product of the

reaction between 2-chloro-p-benzoquinone and CH3NH2 …………………… 82 3-14 The optimized geometries of conformations of the 3-13 product of the

reaction between 2-chloro-p-benzoquinone and CH3NH2 …………………… 83 3-15 The optimized geometries of conformations of the 3-14 product for the

reaction between 2-methyl-p-benzoquinone and CH3NH2 …………………… 85 3-16 The optimized geometries of conformations of the 3-15 product for the

reaction between 2-methyl-p-benzoquinone and CH3NH2 …………………… 86 3-17 The optimized geometries of conformations of the 3-16 product of the

reaction between o-benzoquinone and CH3NH2 ……………………………… 88 3-18 The optimized geometries of conformations of the 3-17 product of the

reaction between p-benzoquinone and C2H5NH2 ……………………………… 91

Page 14: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

xiii

Figure Page 3-19 The optimized geometries of lysine nucleophile 3-18 (panel a) and

product, 3-19 (panel b) of the reaction between p-benzoquinone and lysine ..… 92 3-20 The optimized geometries of the three saddle points leading to the 3-5

product of the reaction between p-benzoquinone and NH3 …………………… 96 3-21 The energy diagram of the reaction between p-benzoquinone and NH3

leading to the 3-5 product ……………………………………………………… 97 3-22 The optimized geometries of five saddle points leading to the 3-6 product

of the reaction between 2-chloro-p-benzoquinone and NH3 …………………… 99 3-23 The optimized geometries of five saddle points leading to the 3-7 product

of the reaction between 2-chloro-p-benzoquinone and NH3 ……………………100 3-24 The energy diagrams of the reaction between 2-chloro-p-benzoquinone

and NH3 leading to the 3-6 product (panel a) and to the 3-7 product (panel b) ………………………………………………………………………………102

3-25 The optimized geometries of five saddle points leading to the 3-8 product

of the reaction between 2-methyl-p-benzoquinone and NH3 …………………104 3-26 The optimized geometries of five saddle points leading to the 3-9 product

of the reaction between 2-methyl-p-benzoquinone and NH3 …………………105 3-27 The energy diagrams of the reaction between 2-methyl-p-benzoquinone

and NH3 leading to the 3-8 product (panel a) and to the 3-9 product (panel b) ………………………………………………………………………………107

3-28 The optimized geometries of three saddle points leading to the 3-10

product of the reaction between o-benzoquinone and NH3 ……………………109 3-29 The energy diagram of the reaction between o-benzoquinone and NH3

leading to the 3-10 product ……………………………………………………109 3-30 The optimized geometries of five saddle points leading to the 3-11 product

of the reaction between p-benzoquinone and CH3NH2 …………………………111 3-31 The energy diagram of the reaction between p-benzoquinone and CH3NH2

leading to the 3-11 product ……………………………………………………112 3-32 The optimized geometries of ten saddle points leading to the 3-12 product

of the reaction between 2-chloro-p-benzoquinone and CH3NH2 ………………113

Page 15: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

xiv

Figure Page 3-33 The optimized geometries of ten saddle points leading to the 3-13 product

of the reaction between 2-chloro-p-benzoquinone and CH3NH2 ………………114 3-34 The energy diagrams of the reaction between 2-chloro-p-benzoquinone

and CH3NH2 leading to the 3-12 product (panel a) and to the 3-13 product (panel b) ………………………………………………………………………116

3-35 The optimized geometries of ten saddle points leading to the 3-14 product

of the reaction between 2-methyl-p-benzoquinone and CH3NH2 ………………118 3-36 The optimized geometries of ten saddle points leading to the 3-15 product

of the reaction between 2-methyl-p-benzoquinone and CH3NH2 ………………119 3-37 The energy diagrams of the reaction between 2-methyl-p-benzoquinone

and CH3NH2 leading to the 3-14 product (panel a) and to the 3-15 product (panel b) ………………………………………………………………………121

3-38 The optimized geometries of six saddle points leading to the 3-16 product

of the reaction between o-benzoquinone and CH3NH2 …………………………123 3-39 The energy diagram of the reaction between o-benzoquinone and CH3NH2

leading to the 3-16 product ……………………………………………………124 3-40 The optimized geometries of two α saddle points leading to the 3-17

product of the reaction between p-benzoquinone and C2H5NH2 ………………125 3-41 The optimized geometries of six β saddle points leading to the 3-17

product of the reaction between p-benzoquinone and C2H5NH2 ………………126 3-42 The optimized geometries of six γ saddle points leading to the 3-17

product of the reaction between p-benzoquinone and C2H5NH2 ………………127 3-43 The energy diagram of the reaction between p-benzoquinone and

C2H5NH2 leading to the 3-17 product …………………………………………128 3-44 The optimized geometries of three saddle points leading to the 3-19

product of the reaction between p-benzoquinone and lysine …………………129 3-45 The energy diagram of the reaction between p-benzoquinone and lysine

leading to the 3-19 product ……………………………………………………130

Page 16: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

1

CHAPTER 1

INTRODUCTION

1.1 A Brief Description of Quinones

Quinones are a class of organic compounds that feature the presence of a

cyclohexadienedione system. According to this structural feature, quinones can be

basically categorized into three main classes: benzoquinones, naphthoquinones, and

anthraquinones. Quinones are very good electron acceptors, for example, 1,4-

benzoquinone and chloranil, the common name of 2,3,5,6-tetrachloro-1,4-benzoquinone,

are industrially used as polymerization inhibitors [Rudin, 2006]. Quinones are widely

distributed in nature as pigments in plants and bacteria, are involved in the redox

chemistry of virtually all living organisms and fulfill important biological functions

[1Wass et al., 2006]. Moreover, quinones are medicinally important as antifungal,

anticancer, and antibacterial agents [1Wass et al., 2006].

Benzoquinone, the simplest compound in the quinone family, has two major

isomers: 1,2-benzoquinone, also called ortho-benzoquinone, and 1,4-benzoquinone, also

called para-benzoquinone. These isomers are commonly found as fungal pigments but

rarely encountered in higher plants in noticeably high concentrations [Robinson, 1967].

The chemical structure of 1,4-benzoquinone as well as four naturally occurring 1,4-

benzoquinone derivatives are shown in Figure 1-1. Embelin, which is found in dried fruit

of Embelia ribes, has been used for treatment of tapeworm and skin diseases in India

[Robinson, 1967]. 2-Methoxybenzoquinone appears as a pink coloration as a result of

Page 17: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

2

hydrolysis and oxidation of a glucoside present in wheat germ, after long standing of

whole-wheat flour. Ubiquinone-10 acts as an electron carrier of the electron transport

chain in the mitochondrion and also acts as a redox component for the coupling of

electron and proton transfer for the generation of pH gradients across the mitochondrial

membrane. Finally, plastoquinone-9 in chloroplast, acts as a redox carrier in

photosynthesis.

Naphthoquinones are bicyclic compounds having one cycle with a dienedione

system. Like in benzoquinones, naphthoquinones also exist in two isomers as 1,2 and

1,4-naphthoquinone, respectively. In nature, these are commonly found as yellow-red

plant pigments [Robinson, 1967].

O

O

O

O

CH2(CH2)9CH3

OH

HO

O

O

OCH3

O

O

H3C

H3C (CH2CH=CCH2)9H

CH3

O

O

H3CO

H3CO (CH2CH=CCH2)10H

CH3

CH3

a) b) c)

d) e)

Figure 1-1 Chemical structures of naturally occurring benzoquinones: a) 1,4-benzoquinone, b) embelin, c) 2-methoxybenzoquinone, d) plastoquinone-9 and e) ubiquinone-10

Page 18: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

3

O

O

O

O

OH

OH

OH

O

O

(CH2CH2CHCH2)3H

CH3

a) b)

c)

*

Figure 1-2 Chemical structures of selected naphthoquinones: a) 1,4-naphthoquinone, b) alkanin and shikonin and c) vitamin K1

Figure 1-2 shows the chemical structures of 1,4-naphthoquione and two naturally

occurring naphthoquinones. Vitamin K and related compounds are all naphthoquinones

and the most common and widespread is the Vitamin K1. Alkanin and shikonin, which

are enantiomers, are two other very important naphthoquinones and are found in

traditional medicinal plants of the Boraginaceae family. Both of them are red dyes and

display wound healing, anti-inflammatory, antibacterial, antirhombotic, topoisomerase

inhibition, and antitumor properties.

The largest family of natural quinones contains three rings and they can be

anthraquinones or phenanthraquinones. These compounds differ in the relative location

of the rings, the carbonyl groups, and the ene groups. They are important as dyestuffs

Page 19: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

4

and purgatives. Figure 1-3 shows chemical structures for several anthraquinones and

phenanthraquinones.

Quinone compounds have been studied for their importance in biological

functions mainly due to the ability to form charge transfer complexes and ability of

reversible reduction to form hydroquinone, also called the quinol form. Since the current

study is focused on calculating the reduction reversible potentials and reactivity aspects

of quinones, the next two sections will present some of the more recent experimental and

theoretical studies of quinones reported in the literature.

O

O

O

O

OH

OH

OH

CH3

OH

H3C

OO

OH

OH

H3C

OO

O

CH3

a) b)

c) d)

Figure 1-3 Chemical structures of some anthraquinones; a) alizarin and b) rubiadin and phenanthraquinones; c) denticulatol and d) tanshinone

Page 20: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

5

1.2 Selected Experimental Studies of Quinones

Several research groups have studied the reactivity of quinones. Fischer and

Handerson [1983] have demonstrated nucleophilic addition of carbanions to the carbonyl

carbon of various p-benzoquinones. For this purpose they have examined reactions with

various functionalized organolithium reagents as carbanion sources. The reactions have

been successfully completed with very good yields at very low temperatures.

Paul Kebarle and his research group have extensively studied electron affinities of

gas-phase quinones using a pulsed electron high-pressure mass spectrometer (PHPMS)

technique [Grimsrud et al., 1985, Chowdhury et al., 1986, and Heinis et al., 1988]. Their

study shows that the introduction of electron withdrawing groups increases the electron

affinity of benzoquinones. On the other hand, electron-donating groups such as methyl

decrease the electron affinity. They have also studied the effect of multiple substitutions

on electron affinities. In addition to that, these studies show that the electron affinities of

unsubstituted 1,4-benzoquinone, 1,4-naphthoquinone, and 9,10-anthraquinone decrease

with the increasing number of aromatic rings.

Cenas et al. [1994] have studied a number of quinones and their reduction by

Trypanothione reductase, which is an enzyme responsible for the protection of

trypanosomes against oxidative stress. The study has been carried out using steady-state

kinetic studies and rapid reaction studies. The results suggest that the reduction of

quinone to quinol occurs through a semiquinone intermediate. The quinone, semiquinone

intermediate and the quinol as well as the reduction process are investigated theoretically

in Chapter 2 of this thesis.

Page 21: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

6

Titulaer et al., [2000] have demonstrated a new synthetic route to prepare p-

hydroxyphenylglycine, an important antibiotic drug, starting from p-benzoquinone. The

first step of this synthesis is an organolithium addition to the carbonyl carbon of

benzoquinone, which has been done at -78°C in tetrahydrofuran. These studies, as well

as previous ones, show evidence that quinones are potentially reactive towards

nucleophilic addition at carbonyl carbon.

Ohtsuki et al., [2001] have used quinone reduction as a voltammetric method to

determine total acid content in wine. This method uses a pre-peak on the voltammogram

because the current intensity of this pre-peak is dependent on the acidity of the solution.

The peak corresponds to the one-electron reduction of quinone-to-quinone radical anion,

which can be readily reduced further to quinol in the presence of protons.

Lehmann and Evans [2001] have also done a cyclic voltammetric study but they

focus on the reduction of 3,5-di-tert-butyl-1,2-benzoquinone in acetonitrile with glassy

carbon electrodes in the absence and presence of hydrogen-bond and proton donating

additives. Based on their results, they have suggested that in the presence of protons, the

reduction of quinones to quinol is a one-step, two-electron reduction, while in the

absence of protons, or in an aprotic media, it is a single-electron, two-step mechanism via

a radical anion. However, the authors found the presence of mono-protonated quinone

anion (semiquinone anion), hence the possibility of forming a semiquinone anion from

the quinone radical anion or from the quinone dianion.

Aponick et al., [2002] have studied the regioselective and chemoselective nature

of organocadmium–quinone alkylation reactions. They investigated a series of

unsymmetrical mono-, di-, tri- and tetra- substituted quinones, in order to get steric and

Page 22: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

7

electronic differences between the two carbonyl groups. The authors found that the

conjugate addition reaction is a result from a competition between steric and electronic

factors. The electron-donating effects of substituents decrease the electrophilicity of

conjugated carbonyl group and hence favor addition to the carbonyl near substituents.

An opposite effect was found, however, for the steric effects between substituents and the

bulk of the approaching reagent, which restrain the addition to the carbonyl near the

substituent.

More recently, Katritzky et al. [2008] have reported reactions of p-benzoquinone

with various sulfur and nitrogen containing nucleophiles. The various products of these

reactions with nucleophiles have been discussed. The one-pot reaction of

p-benzoquinone with alkanethiols has been given 2-, 2,6- and 2,5-bis(alkylsulfanyl)-,

2,3,5-tris(alkylsulfanyl)-, and 2,3,5,6-tetrakis(alkylsulfanyl)- p-benzoquinones and their

corresponding hydroquinones in good yields. This study shows the ability of quinone

toward nucleophilic substitutions at the alkene carbon centers.

Page 23: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

8

1.3 Selected Theoretical Studies of Quinones

The standard redox potential of a molecule is the measure of its ability to donate

or accept an electron in solution and it is fundamental to understand numerous chemical

and biological electron-transfer reactions. Although, it is possible to experimentally

determine standard redox potentials of reversible reactions by using common cyclic

voltammetry methods with an error range of 0.01-0.02 V, sophisticated techniques such

as pulse radiolysis must be used for irreversible reactions. In addition, the experimental

measurements can be very difficult with unstable species such as organic radicals [Fu et

al., 2005]. Therefore, experimental methods are not always possible or very reliable. To

overcome this and to get a molecular picture of the electron-transfer processes,

researchers have developed and applied theoretical methods for predicting standard redox

potentials [Wheeler, 1994; Fu et al., 2005]. Within the past years, many theoretical

investigations have been done to understand the electrochemistry of benzoquinones in

many systems including both aqueous and non-aqueous solutions [Reynolds, 1990;

O’Malley, 1997; Kim et al., 2001; Wass et al., 2006; Namazian and Coote, 2007].

Reynolds [1990] has calculated electrode potentials for the reduction of several

quinones to their quinol forms, including 2-chloro-1,4-benzoquinone, 2-hydroxy-1,4-

benzoquinone, 1,2-benzoquinone, 1,4-naphthoquinone and 1,2-naphthoquinone in

aqueous media. He used restricted Hartree-Fock (RHF) and Moller-Plesset second order

perturbation (MP2) theories, and his results are in fairly good agreement with the

experimental data with an error range of 10 – 26 mV. For the solution calculations, a free

Page 24: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

9

energy perturbation (FEP) method in conjunction with molecular dynamics has been

used.

Wheeler [1994] has studied single-electron reduction of p-benzoquinone to form

benzoquinone radical anion in gas phase and in water at 300 K, using ab initio and

density functional theories methods: UHF/6-31G(d), UMP2/6-31G(d), B3LYP/6-31G(d),

and B3LYP/6-311G(d,p). However, only the B3LYP/6-311G(d,p) level of theory has

produced results that agree with experimental values from Heinis et al. [1988]. The

solvation calculations use a methodology similar to the one in Reynolds’ study [Reynolds

1990].

O’Malley [1997] has studied two electronic reduction steps of 1,4-benzoquinone

in vacuum for two hydrogen-bonded models, using B3LYP level of theory together with

double and triple zeta basis sets. According to his results, as reduction proceeds, 1,4-

benzoquinone shows a gradual change in structure from quinonoid to benzenoid form,

and also, a progressive decrease in the hydrogen bonding length of the quinone carbonyl

oxygen to nearby hydrogen-bonded water molecules. Therefore, he suggested that these

changes lead to the preparation of quinone by ultimate acceptance of two hydrogen-

bonded donors to form the quinol form.

Boesch and Wheeler [1997] have investigated π-donor substituent effects on

calculated structures, spin properties, and vibrational frequencies of quinone forms and

radical anions of 1,4-benzoquinone and its fluorine and chlorine substituted analogous (p-

fluoranil and p-chloranil). This study has been done using several local, gradient-

corrected, and hybrid density functional theories. According to their calculations, using

the B3P86/6-31G(d) level of theory, the structures of all three molecules have agreed

Page 25: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

10

with the published electron diffraction structure. When reducing the structures to the

radical anions, bond distances have changed to a more phenolic structure, which in turn

indicates an easier further reduction to the quinol form.

Wass et al. have studied redox properties of six quinones using B3LYP/6-

311G(d,p) density functional level of theory [1Wass et al., 2006]. The reduction of 1,2-

and 1,4- isomers of benzoquinone and naphthoquinone, 9,10-anthraquinone and 9,10-

phenanthraquinone to the corresponding hydroquinones and to semiquinone radicals have

been investigated both in gas phase and water. Reduction potentials, for direct reduction

to quinols, and for the two-step reduction via the neutral semiquinones have been

calculated. The solvation by water has been investigated using polarized continuum

model (PCM). In this study, the convergence of the calculated thermodynamic functions

with increasing size of the basis set, in particular the addition of polarization functions to

the 6-311+G(d,p) basis set, has been investigated in great detail for the reduction of 1,4-

benzoquinone to quinol. Diffuse functions were included in the basis sets used for 1,4-

benzoquinone and 1,4-naphthoquinone, i.e., 6-311+G(d,p) but the reduction of 9,10-

anthraquinone has been investigated using the smaller but more affordable 6-311G(d,p)

basis set.

Another study by Wass et al. has been carried out to determine the rate-

determining step of oxygen reduction on quinones [2Wass et al., 2006]. In this study, the

authors have investigated the quinone-mediated reduction of molecular oxygen to form

hydrogen peroxide. The reduction mechanisms have been determined for 9,10-

anthraquinone and 9,10-phenanthraquinone and eventually they explained the

experimentally observed pH dependence of the rate of oxygen reduction on quinone-

Page 26: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

11

functionalized electrodes. This study has been done with the B3LYP/6-311G(d) level of

theory.

Finally, Namazian and Coote [2007] have calculated one-electron redox potentials

of some 1,4-quinone derivatives of benzoquinones, naphthoquinones, and anthraquinones

in acetonitrile. They have used the high-level composite method of G3(MP2)-RAD for

the gas-phase electronic wavefunction calculations and the solvation energies has been

calculated using conductor-like polarizable continuum model (CPCM) at the levels of

theories HF/6-31+G(d) and B3LYP/6-31+G(d). They have also calculated the reduction

potentials relative to the saturated calomel electrode, for the comparison with the

experimental values. The average error for the calculated reduction potentials using the

proposed method is small at 0.07 V.

Page 27: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

12

1.4 Introduction to Density Functional Theory

Density functional theory (DFT) is thought to be the most widely used method for

calculating electronic energy of a molecule [Atkins, 2006]. DFT has its start in 1964,

when Hohenberg and Kohn showed that the electron density uniquely defines the ground

state energy and other properties of a system [Hohenberg and Kohn, 1964; Kohn and

Sham, 1965; Leach, 2001]. Therefore in DFT the energy is considered as a function of

the electron density, ρ, rather than the electron wave function as in Hartree-Fork theory.

Since the electron density is itself a function of electron position, ρ(r), the term functional

is used. A functional is function of a function. In this method, the exact ground state

energy of an n-electron molecule is given by the following equation [Atkins, 2006]:

][][ XCee,P;Ne,P;K ρρ EEEEE +++= (1-1)

where EK is the total electron kinetic energy, EP;e,N is the electron-nucleus potential

energy, EP;e,e is the electro-electron potential energy and EXC[ρ] is the exchange-

correlation energy which accounts for the quantum behavior of electrons including the

effect of the spin.

The equation above can be used with any electron density, however, in typical

DFT computations, the electron density is obtained as a combination of orbitals [Atkins,

2006]:

∑=

=N

ii rr

1

2|)(|)( ψρ (1-2)

where these orbitals are calculated using the Kohn-Sham equations [Kohn and Sham,

1965; Atkins, 2006]:

Page 28: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

13

)()()(4

)(42 111XC

12

120

22

10

221

2rrrVdr

rer

reZ

m iiiN

j j

j

eψεψ

περ

πε=

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

++−∇ ∑ ∫=

(1-3)

There are four energy terms (appearing inside the parenthesis) in this equation. The first

term is the kinetic energy operator, the second term accounts for the electron-nucleus

attraction energy, the third term represents the electron-electron repulsion energy, and the

final term is the exchange-correlation potential, which is the functional derivative of the

exchange-correlation energy. This last term is given by:

δρρδ

ρ][

][ XCXC

EV = (1-4)

By solving the Kohn-Sham equations, a set of orbitals is obtained. This set of orbitals is

then used to get the electron density that further gives the exchange-correlation energy.

The exchange-correlation functional is the key to the success of DFT, because

even relatively simple approximations to the exchange-correlation functional can give

fairly good results. The original applications of DFT used the local-density

approximation, which is based upon the uniform electron gas model in which the electron

density is constant throughout all space. Although this approximation is simple the

results were not quantitative for some problems, so gradient-corrected functionals have

been introduced [Leach, 2001]. In many of these gradient-corrected methods, exchange

and correlation contributions are treated separately. In one such case, Becke’s gradient-

corrected exchange functional and the Lee-Yang-Parr correlation functional are used

along a Hartree-Fock exchange contribution to give a commonly used method named

B3LYP. This method has three parameters and is a hybrid DFT (HDFT) method (not a

pure DFT one) because it uses contributions calculated using the Hartree-Fock method,

which is an ab initio method and not a DFT one.

Page 29: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

14

In HDFT methods, the exchange-correlation energy (EX-C) is given as:

CgCgClClXgXgSlaterSlaterX(HF)HFCX EcEcEcEcEcE ++++=− (1-5)

where, EX(HF) is the Hartree-Fork exchange energy, ESlater is the Slater exchange energy,

EXg is the gradient-corrected exchange energy, ECl is the local correlation energy and ECg

is the gradient-corrected correlation energy. All c-terms are coefficients.

The HDFT method used in the studies presented in this thesis is labeled as

mPW1B95-44. This method uses the modified Perdew-Wang (mPW) exchange

functional [Adamo and Barone, 1998], the B95 correlation functional [Becke, 1996], and

a Hartree-Fock exchange contribution of 44%. The method was developed by Truhlar

and coworkers [Zhao and Truhlar, 2004] specifically to provide accurate results in

determining barrier heights but it is very accurate in calculating a wide range of

properties including geometries, vibrational frequencies, enthalpies of formation and

NMR chemical shifts [De Silva and Albu, 2007]. The method was originally labeled by

Truhlar and coworkers as MPWB1K and it can be found under this name in literature

[Zhao and Truhlar, 2004].

Page 30: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

15

1.5 Research Objectives

This thesis presents the results of two different studies. The first is the study of

reversible potentials of a series of quinones and the second is the study of reactivity of

these quinones towards nitrogen-containing nucleophiles. In both of these studies we

investigated four quinones: 1,4-benzoquinone, 1,2-benzoquinone, 2-chloro-1,4-

benzoquinone, and 2-methyl-1,4-benzoquinone. Chloro- and methyl-substituted 1,4-

benzoquiones were chosen to study the electronic effects of the substituent, and the 1,2-

benzoquinone was chosen to compare the effect on reactivity of carbonyl position on the

ring.

The purpose of the first study is to determine the standard reduction potentials of

nine possible reduction steps that are or can be involved in the process of reduction of

quinones to quinol in order to better understand the role of quinones as electron acceptors

in biological systems. These determinations were carried out both in gas-phase and

aqueous media. Although there are some studies presented in the literature on similar

topics, none of those studies have focused on all of the steps and quinones presented here.

The purpose of the second study is to investigate the reactivity of quinones toward

nucleophiles such as NH3, RNH2 and R2NH. This study looks at the reactive positions on

the quinone ring, the effect of substituents and the effect of solvent molecules on the

reactions. The study focuses on identifying the transition states of the reactions and on

analyzing the various conformations of the products of these reactions. To our

knowledge, there are no investigations reported in the literature on these issues.

Page 31: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

16

CHAPTER 2

A THEORETICAL INVESTIGATION OF REVERSIBLE POTENTIALS FOR

FOUR BENZOQUINONES

2.1 Introduction

The standard redox potential of a molecule is the measure of its ability to donate

or accept an electron in solution and it is fundamental to understanding various chemical

and biological electron transfer reactions [Fu et al., 2005]. Although it is possible to

obtain standard redox potentials of reversible reactions [Fu et al., 2005], experimental

methods are not always possible and reliable. To overcome this shortcoming, scientists

have developed and applied theoretical methods for predicting standard potentials

[Wheeler, 1994; Fu et al., 2005]. Since quinone derivatives have gained considerable

attention due to their remarkable electrochemical properties, more theoretical

investigations have been recently carried out to understand their electrochemistry

[Reynolds, 1990; O’Malley, 1997; Kim et al., 2001; 1,2Wass et al., 2006; Namazian and

Coote, 2007]. However, as described in previous chapter, there is no theoretical study on

quinone electrochemistry that gives a detailed discussion on the reduction mechanisms

for the quinones of interest here.

The four benzoquinones investigated here include para- or 1,4-benzoquinone,

ortho- or 1,2-benzoquinone, 2-chloro-para-benzoquinone or 2-chloro-1,4-benzoquinone,

and 2-methyl-para-benzoquinone or 2-methyl-1,4-benzoquinone. A ball and stick

representation of these quinones is given in Figure 2-1. In this figure, black balls

Page 32: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

17

represent carbon atoms, red balls represent oxygen atoms, green balls represent chlorine

and ash balls represent hydrogen atoms. The p-benzoquinone is the major compound of

this study. In order to compare the effects of electron withdrawing and releasing

substituents on reduction of p-benzoquinone, respectively, 2-chloro-p-benzoquinone and

2-methyl-p-benzoquinone were chosen. The o-benzoquinone was investigated to look at

the influence of the carbonyl group location on the reduction potentials.

2-30

2-10

1

2-40

2-20

23

65

4

1

23

65

4

1

23

65

4

1

23

65

4

Figure 2-1 The investigated quinones: p-benzoquinone (2-10), 2-chloro-p-benzoquinone (2-20), 2-methyl-p-benzoquinone (2-30) and o-benzoquinone (2-40)

Page 33: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

18

In order to gain a better understanding of reduction processes of these

benzoquinones, nine reduction reactions that are possible for quinones are investigated.

To our knowledge, there are no previous studies that report results on all these nine

reactions. These nine reactions involve six different chemical forms for each quinone as

they are presented in greater detail in Section 2.3. The first form is quinone itself, the

second is the single-electron reduced form and the third is the two-electron reduced form

of quinone. The fourth is a semiquinone radical which is a reduced form of quinone with

an electron and a proton. The fifth is a semiquinone anion that has an extra electron

compared to the semiquinone radical. The semiquinone anion can be formed from

quinone by addition of two electrons and one proton. The sixth and the last form is the

hydroquinone (also known as quinol), which is a completely reduced form obtained from

quinone by adding two electrons and two protons.

Page 34: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

19

2.2 Computational Methodologies

2.2.1 Electronic Structure Theory Method and Computational Details

The electronic structure theory method used in the entire study is mPW1B95-

44/6-31+G(d,p), which is a hybrid density functional theory level of theory. The

optimizations of all of the required structures were carried out both in gas phase and

aqueous phase. The polarizable continuum model (PCM) was used to calculate the

solvation energy in aqueous phase. The gas-phase optimizations were carried out using

very tight convergence criteria and an ultrafine grid to properly define the molecular

geometries. The aqueous phase optimizations were done using the optimized geometries

of gas-phase calculations as the input geometries and a normal convergence criterion.

The optimized geometries are stationary points that can be either a local minimum or a

saddle point. We carried out a vibrational analysis to determine the nature of the

stationary points knowing that an energy minimum gives all positive frequency while the

saddle point gives one or more imaginary frequencies. All calculations were performed

in Gaussian03 [Gaussian 03, Revision B.02, 2003] software.

2.2.2 Electrochemical Potential Scale

Reversible reduction potentials were calculated by using the method described in

the literature [Albu and Mikel, 2007]. Electrochemical potentials (U) were calculated on

the standard hydrogen electrochemical scale as:

Page 35: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

20

6.4)V( e −−

=nE

U (2-1)

where Ee is the energy of an electron (or electrons) on the vacuum scale expressed in eV,

n is the number of electrons involved in the reaction, and 4.6 eV is the average value of

the thermodynamic work function of the standard hydrogen electrode. Figure 2-2 shows

the relationship between the electrochemical potential scale and the vacuum scale of the

energies. According to this scale, an electrode at 0 V on the standard electrochemical

scale will have a thermodynamic work function of 4.6 eV, while on the other hand, an

electrode having a thermodynamic work function of 0 eV will have an electrochemical

potential of – 4.6 V on the standard hydrogen electrode scale. The electron energy Ee can

be approximated by the difference in electronic energy (or free Gibbs energy, or other

energies) between the reduced form (product) and the oxidized form (reactant) of the

electrochemical half reaction.

Electron Energies

EVAC (eV)

Electrochemical PotentialUSHE (V)

─ 4.6

─ 4.6─ 5

─ 5

─ 6

─ 4

─ 3

─ 2

─ 1

0─ 4

─ 3

─ 2

─ 1

0

+ 1

Figure 2-2 Relationship between the standard hydrogen electrode scale of electrochemical potentials and the vacuum scale of energies

Page 36: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

21

2.3 Geometry Optimization

The structural representations of all benzoquinone derivatives that were subjected

to geometry optimization in this study and their numbering scheme are given in Figures

2-3 through 2-6. The quinone form (BQ) and its single and double anionic forms (BQ-

and BQ2-, respectively) have similar structures for all four investigated series of quinones.

The semiquinone radicals (BQH) and anions (BQH-) have same structures as well. The

anionic forms are represented by giving the charge to the upper right of the number. For

example, single and double anions of p-benzoquinone are denoted as 2-10_ and 2-102_

,

respectively. For species where more than one distinct conformation or for which the

existence of isomers is possible, Roman numerals are used as superscripts to denote the

distinct conformations or isomers. For example, the two conformations of p-

hydroquinone are denoted as 2-12i and 2-12ii.

Tables 2-1 through 2-8 show some selected bond distances and bond angles of

optimized, minimum-energy conformations of each investigated species for the each of

the four quinone series. In these tables the species are denoted by the numbering scheme

defined in Figures 2-3 to 2-6 (e.g., 2-10, 2-20, etc.) and bond distances and angles are

defined using the atom numbering scheme presented in Figures 2-1 and 2-3 through 2-6.

Cartesian coordinates for all optimized geometries are given in Appendix A. A number

of sample input files are presented in Appendix C. Following sections will discuss and

compare these optimized geometries for all four quinone series.

Page 37: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

22

Quinone and anionic forms

O

O

O

O

O

O

Semiquinones and anionic forms

O

O

H

H

O

O

H

H

Hydroquinone forms

O

O

H

H

O

O

H

H Figure 2-3 Chemical structures of p-benzoquinone series

: :

: :

: :

: :

: :

: :

.

: : :

_

_

_

2-10 2-10_ 2-102_

2-11 2-11_

2-12i 2-12ii

: : : : :

: : :

: : :

. _

:

:

:

:

: :

1 2

345

6

7

8

1 2

345

6

7

8

1 2

345

6

7

8

Page 38: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

23

Quinone and anionic forms

O

O

Cl

O

O

Cl

O

O

Cl

Semiquinones and anionic forms

O

O

Cl

H

H

O

O

Cl

H

H

O

O

Cl

H

H

O

O

Cl

H

H

O

O

Cl

H

H

O

O

Cl

H

H

O

O

Cl

H

H

O

O

Cl

H

H

Hydroquinone forms

O

O

Cl

H

H

O

O

Cl

H

H

O

O

Cl

H

H

O

O

Cl

H

H Figure 2-4 Chemical structures of 2-chloro-p-benzoquinone series

: :

: :

: :

: :

: :

: :

.

: : :

_

_

_

2-20 2-20_ 2-202_

2-21i 2-21ii 2-21iii 2-21iv

2-21i_ 2-21ii_ 2-21iii_ 2-21iv_

2-22i 2-22ii 2-22iii 2-22iv

: : : :

: : : :

: : : :

: : : :

: :

: :

: : :

: :

: :

: :

: : : :

:

: :

. .

. .

_ _

_ _

:

:

:

:

:

: :

:

:

:

:

: :

: :

:

1 2

345

6

7

8

1 2345

6

7

8

1 2345

6

7

8

1 2345

6

7

8

Page 39: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

24

Quinone and anionic forms

O

O

H H

H

O

O

CH3

O

O

CH3

Semiquinones and anionic forms

O

O

CH3

H

H

O

O

CH3

H

H

O

O

CH3

H

H

O

O

CH3

H

H

O

O

CH3

H

H

O

O

CH3

H

H

O

O

CH3

H

H

O

O

CH3

H

H Hydroquinone forms

O

O

CH3

H

H

O

O

CH3

H

H

O

O

CH3

H

H

O

O

CH3

H

H Figure 2-5 Chemical structures of 2-methyl-p-benzoquinone series

: :

: :

: :

: :

: :

: :

.

: : :

_

_

_

2-30 2-30_ 2-302_

2-31i 2-31ii 2-31iii 2-31iv

2-31i_ 2-31ii_ 2-31iii_ 2-31iv_

2-32i 2-32ii 2-32iii 2-32iv

: :

: : : :

: : : :

: : : :

: :

: :

: : :

: :

: :

: :

: : : :

:

: :

. .

. .

_ _

_ _

:

:

:

:

:

: :

:

:

:

:

: :

: :

:

: :

1 2345

6

7

8

1 2

345

6

7

8

1 2345

6

7

8

1 2345

6

7

8

Page 40: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

25

Quinone and anionic forms

OO

OO

OO

Semiquinones and anionic forms

OO

H

OO

H

OO

H

OO

H

Hydroquinone forms

OOH

H

OO

H

H

OOH

H

Figure 2-6 Chemical structures of o-benzoquinone series

: :

: :

: : : :

: : : : . :

:

:

_ _ _

2-40 2-40_ 2-402_

2-41i 2-41i_

2-42i 2-42iii

: :

:

:

: : :

. _

: :

::

: :: : : :

: : :

.

: :

: :

: :

_

2-41ii 2-41ii_

:

: : :

2-42ii

1 2345

6

7

8

1 2345

6

7

8

1 2345

6

7

8

Page 41: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

26

Table 2-1 Selected bond distances (in angstroms) of the optimized, minimum-energy conformations of species in the p-benzoquinone series. Aqueous solution results are in parenthesis

Structure 2-10 2-10─ 2-102─ 2-11 2-11─ 2-12i

C1–C2 1.475 (1.437)

1.438 (1.435)

1.419 (1.409)

1.401 (1.406)

1.384 (1.385)

1.385 (1.387)

C2–C3 1.331 (1.331)

1.361 (1.360)

1.396 (1.391)

1.365 (1.362)

1.385 (1.387)

1.383 (1.385)

C3–C4 1.475 (1.437)

1.438 (1.435)

1.419 (1.409)

1.438 (1.438)

1.429 (1.414)

1.383 (1.386)

C4–C5 1.475 (1.437)

1.438 (1.435)

1.419 (1.409)

1.439 (1.438)

1.431 (1.416)

1.385 (1.387)

C5–C6 1.331 (1.331)

1.361 (1.360)

1.396 (1.391)

1.361 (1.360)

1.382 (1.385)

1.383 (1.385)

C6–C1 1.475 (1.437)

1.438 (1.435)

1.419 (1.409)

1.402 (1.407)

1.384 (1.385)

1.383 (1.386)

C1–C4 2.858 (2.844)

2.908 (2.880)

2.986 (2.927)

2.809 (2.809)

2.878 (2.857)

2.779 (2.784)

C2–C5 2.853 (2.856)

2.781 (2.788)

2.733 (2.742)

2.797 (2.802)

2.751 (2.756)

2.758 (2.765)

C3–C6 2.853 (2.856)

2.781 (2.788)

2.733 (2.742)

2.799 (2.800)

2.760 (2.757)

2.766 (2.766)

C1–O7 1.210 (1.216)

1.256 (1.264)

1.299 (1.312)

1.338 (1.325)

1.389 (1.371)

1.356 (1.356)

C4–O8 1.210 (1.216)

1.256 (1.264)

1.299 (1.312)

1.245 (1.251)

1.264 (1.295)

1.356 (1.356)

O7–H — — — 0.956 (0.979)

0.953 (0.970)

0.954 (0.972)

O8–H — — — — — 0.954 (0.972)

Page 42: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

27

Table 2-2 Selected bond angles (in degrees) of the optimized, minimum-energy conformations of species in the p-benzoquinone series. Aqueous solution results are in parenthesis

Structure 2-10 2-10─ 2-102─ 2-11 2-11─ 2-12i

C6–C1–C2 117.6 (118.2)

114.9 (116.0)

111.8 (113.9)

120.8 (120.6)

118.4 (118.7)

119.4 (119.4)

C1–C2–C3 121.2 (120.9)

122.5 (122.0)

124.1 (123.0)

119.9 (119.9)

121.2 (120.7)

120.5 (120.3)

C2–C3–C4 121.2 (120.9)

122.5 (122.0)

124.1 (123.0)

121.3 (121.3)

122.9 (122.6)

120.1 (120.3)

C3–C4–C5 117.6 (118.2)

114.9 (116.0)

111.8 (113.9)

116.8 (117.0)

113.3 (114.7)

119.4 (119.4)

C4–C5–C6 121.2 (120.9)

122.5 (122.0)

124.1 (123.0)

121.4 (121.3)

123.4 (122.7)

120.5 (120.3)

C5–C6–C1 121.2 (120.9)

122.5 (122.0)

124.1 (123.0)

119.8 (120.0)

120.8 (120.7)

120.1 (120.3)

C6–C1–O7 121.2 (120.9)

122.5 (122.0)

124.1 (123.0)

116.9 (117.0)

119.0 (118.3)

117.7 (117.8)

C3–C4–O8 121.2 (120.9)

122.5 (122.0)

124.1 (123.0)

121.5 (121.4)

123.4 (122.7)

117.7 (117.8)

C1–O7–H — — — 111.0 (112.2)

107.5 (110.1)

110.2 (110.9)

C4–O8–H — — — — — 110.2 (110.9)

Page 43: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

28

Table 2-3 Selected bond distances (in angstroms) of the optimized, minimum-energy conformations of species in the 2-chloro-p-benzoquinone series. Aqueous solution results are in parenthesis

Structure 2-20 2-20─ 2-202─ 2-21i (2-21iv)

2-21i─

(2-21iv─) 2-22i

(2-22iv)

C1–C2 1.491 (1.489)

1.444 (1.440)

1.414 (1.407)

1.407 (1.448)

1.383 (1.417)

1.388 (1.389)

C2–C3 1.332 (1.330)

1.359 (1.358)

1.393 (1.390)

1.360 (1.360)

1.377 (1.384)

1.380 (1.381)

C3–C4 1.471 (1.470)

1.438 (1.434)

1.417 (1.407)

1.439 (1.404)

1.431 (1.382)

1.382 (1.385)

C4–C5 1.474 (1.472)

1.438 (1.435)

1.421 (1.413)

1.439 (1.407)

1.432 (1.387)

1.386 (1.386)

C5–C6 1.329 (1.329)

1.358 (1.357)

1.388 (1.385)

1.360 (1.359)

1.378 (1.383)

1.381 (1.384)

C6–C1 1.474 (1.470)

1.439 (1.436)

1.423 (1.414)

1.402 (1.438)

1.378 (1.416)

1.384 (1.386)

C1–C4 2.867 (2.855)

2.920 (2.894)

3.003 (2.947)

2.820 (2.821)

2.894 (2.874)

2.791 (2.796)

C2–C5 2.853 (2.850)

2.771 (2.775)

2.708 (2.719)

2.785 (2.794)

2.726 (2.736)

2.744 (2.753)

C3–C6 2.854 (2.859)

2.777 (2.787)

2.728 (2.739)

2.802 (2.799)

2.762 (2.753)

2.766 (2.761)

C1–O7 1.204 (1.209)

1.247 (1.255)

1.285 (1.299)

1.327 (1.243)

1.374 (1.283)

1.345 (1.347)

C4–O8 1.209 (1.214)

1.253 (1.260)

1.292 (1.306)

1.242 (1.321)

1.259 (1.366)

1.353 (1.350)

O7–H — — — 0.961

0.956

0.958 (0.974)

O8–H — — — (0.980)

(0.971)

0.954 (0.974)

C2–Cl 1.704 (1.707)

1.740 (1.735)

1.783 (1.760)

1.730 (1.714)

1.767 (1.746)

1.731 (1.730)

Page 44: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

29

Table 2-4 Selected bond angles (in degrees) of the optimized, minimum-energy conformations of species in the 2-chloro-p-benzoquinone series. Aqueous solution results are in parenthesis

Structure 2-20 2-20─ 2-202─ 2-21i (2-21iv)

2-21i─

(2-21iv─) 2-22i

(2-22iv)

C6–C1–C2 116.7 (117.0)

113.4 (114.4)

109.5 (111.7)

119.4 (115.6)

116.2 (112.7)

117.9 (117.8)

C1–C2–C3 121.4 (121.6)

123.8 (123.4)

126.5 (125.3)

121.2 (122.2)

123.7 (124.5)

121.9 (121.7)

C2–C3–C4 121.0 (120.4)

121.9 (121.2)

122.8 (121.9)

120.5 (119.4)

121.5 (119.8)

119.3 (119.7)

C3–C4–C5 118.0 (118.5)

115.2 (116.3)

112.0 (114.0)

117.0 (120.9)

113.5 (118.7)

119.6 (119.6)

C4–C5–C6 121.0 (120.9)

122.2 (121.8)

123.7 (122.9)

121.3 (119.6)

123.2 (120.5)

120.3 (119.9)

C5–C6–C1 121.9 (121.6)

123.6 (123.0)

125.4 (124.2)

120.5 (122.2)

121.9 (123.7)

120.9 (121.3)

C6–C1–O7 121.5 (121.6)

122.8 (122.5)

124.2 (123.5)

118.1 (122.1)

119.9 (123.3)

118.8 (123.5)

C3–C4–O8 120.9 (120.4)

122.1 (121.5)

124.0 (122.9)

121.0 (116.5)

123.0 (118.0)

117.3 (117.2)

C1–O7–H — — — 110.3

107.5

109.7 (110.8)

C4–O8–H — — — (112.3)

(110.5)

110.3 (111.1)

C1–C2–Cl 116.1 (116.2)

116.8 (117.0)

116.9 (117.5)

117.5 (117.6)

117.1 (117.7)

118.3 (119.1)

Page 45: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

30

Table 2-5 Selected bond distances (in angstroms) of the optimized, minimum-energy conformations of species in the 2-methyl-p-benzoquinone series. Aqueous solution results are in parenthesis

Structure 2-30 2-30─ 2-302─ 2-31iii (2-31iv)

2-31iv─

(2-31ii─) 2-32iii

(2-32iv)

C1–C2 1.487 (1.486)

1.447 (1.445)

1.422 (1.418)

1.449 (1.450)

1.437 (1.392)

1.390 (1.395)

C2–C3 1.335 (1.336)

1.362 (1.363)

1.396 (1.392)

1.369 (1.365)

1.382 (1.387)

1.386 (1.385)

C3–C4 1.469 (1.467)

1.438 (1.434)

1.420 (1.411)

1.399 (1.404)

1.386 (1.416)

1.386 (1.388)

C4–C5 1.475 (1.473)

1.437 (1.433)

1.418 (1.406)

1.402 (1.405)

1.381 (1.412)

1.381 (1.383)

C5–C6 1.329 (1.330)

1.361 (1.360)

1.396 (1.393)

1.361 (1.361)

1.387 (1.387)

1.384 (1.388)

C6–C1 1.474 (1.472)

1.434 (1.433)

1.414 (1.406)

1.437 (1.436)

1.421 (1.383)

1.382 (1.383)

C1–C4 2.847 (2.836)

2.897 (2.872)

2.971 (2.920)

2.801 (2.802)

2.863 (2.847)

2.768 (2.774)

C2–C5 2.881 (2.882)

2.805 (2.815)

2.753 (2.770)

2.826 (2.829)

2.771 (2.783)

2.793 (2.793)

C3–C6 2.845 (2.849)

2.774 (2.778)

2.729 (2.729)

2.789 (2.791)

2.757 (2.744)

2.747 (2.754)

C1–O7 1.211 (1.215)

1.257 (1.263)

1.301 (1.312)

1.243 (1.250)

1.267 (1.372)

1.359 (1.357)

C4–O8 1.211 (1.217)

1.255 (1.265)

1.297 (1.314)

1.338 (1.327)

1.388 (1.296)

1.357 (1.356)

O7–H — — — — (0.970)

0.954 (0.972)

O8–H — — — 0.956 (0.979)

0.953

0.954 (0.972)

C2–C (CH3)

1.484 (1.483)

1.491 (1.490)

1.495 (1.495)

1.484 (1.486)

1.490 (1.496)

1.492 (1.493)

Page 46: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

31

Table 2-6 Selected bond angles (in degrees) of the optimized, minimum-energy conformations of species in the 2-methyl-p-benzoquinone series. Aqueous solution results are in parenthesis

Structure 2-30 2-30─ 2-302─ 2-31iii (2-31iv)

2-31iv─

(2-31ii─) 2-32iii

(2-32iv)

C6–C1–C2 118.6 (119.0)

115.9 (116.8)

113.0 (114.8)

117.6 (117.8)

114.4 (119.6)

120.5 (120.3)

C1–C2–C3 119.1 (119.0)

120.8 (120.1)

122.6 (121.2)

119.4 (119.4)

121.8 (118.9)

118.2 (118.5)

C2–C3–C4 122.5 (122.1)

123.5 (123.1)

124.7 (124.2)

121.0 (121.1)

121.4 (123.8)

121.5 (121.4)

C3–C4–C5 117.9 (118.4)

115.1 (116.2)

112.1 (114.0)

121.0 (120.8)

118.7 (114.8)

119.6 (119.6)

C4–C5–C6 120.7 (120.5)

122.0 (121.4)

123.6 (122.4)

119.3 (119.3)

120.8 (122.0)

119.5 (119.6)

C5–C6–C1 121.3 (121.1)

122.6 (122.3)

124.0 (123.4)

121.6 (121.6)

122.8 (120.9)

120.6 (120.6)

C6–C1–O7 120.7 (120.6)

122.7 (121.8)

124.6 (123.1)

121.6 (121.3)

124.0 (122.8)

122.8 (122.7)

C3–C4–O8 121.3 (121.0)

122.3 (121.8)

123.9 (122.7)

122.0 (116.8)

118.7 (122.4)

122.5 (117.4)

C1–O7–H — — — — (109.9)

110.1 (110.7)

C4–O8–H — — — 110.8 (112.1)

107.4

110.1 (110.8)

C1–C2–CH3

116.4 (116.9)

116.7 (117.8)

116.6 (118.5)

117.7 (118.2)

116.5 (119.5)

119.6 (119.8)

Page 47: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

32

Table 2-7 Selected bond distances (in angstroms) of the optimized, minimum-energy conformations of species in the o-benzoquinone series. Aqueous solution results are in parenthesis

Structure 2-40 2-40─ 2-402─ 2-41i 2-41i─ 2-42i

C1–C2 1.542 (1.545)

1.494 (1.480)

1.496 (1.458)

1.451 (1.451)

1.433 (1.421)

1.391 (1.394)

C2–C3 1.464 (1.455)

1.436 (1.429)

1.415 (1.403)

1.430 (1.431)

1.404 (1.402)

1.380 (1.382)

C3–C4 1.337 (1.338)

1.368 (1.365)

1.409 (1.400)

1.361 (1.360)

1.394 (1.393)

1.386 (1.388)

C4–C5 1.456 (1.458)

1.412 (1.416)

1.380 (1.380)

1.412 (1.414)

1.382 (1.384)

1.383 (1.384)

C5–C6 1.337 (1.338)

1.368 (1.365)

1.409 (1.400)

1.381 (1.380)

1.403 (1.398)

1.387 (1.388)

C6–C1 1.464 (1.455)

1.436 (1.429)

1.415 (1.403)

1.380 (1.383)

1.369 (1.374)

1.378 (1.382)

C1–C4 2.855 (2.844)

2.859 (2.840)

2.887 (2.851)

2.782 (2.789)

2.748 (2.752)

2.759 (2.773)

C2–C5 2.855 (2.844)

2.859 (2.840)

2.887 (2.851)

2.797 (2.802)

2.846 (2.839)

2.774 (2.776)

C3–C6 2.888 (2.900)

2.790 (2.800)

2.743 (2.738)

2.835 (2.827)

2.789 (2.778)

2.772 (2.769)

C1–O7 1.203 (1.209)

1.244 (1.257)

1.273 (1.301)

1.317 (1.319)

1.353 (1.359)

1.361 (1.352)

C2–O8 1.203 (1.209)

1.244 (1.257)

1.273 (1.301)

1.245 (1.248)

1.278 (1.294)

1.346 (1.351)

O7–H — — — 0.970 (0.977)

0.981 (0.973)

0.954 (0.974)

O8–H — — — — — 0.958 (0.968)

Page 48: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

33

Table 2-8 Selected bond angles (in degrees) of the optimized, minimum-energy conformations of species in the o-benzoquinone series. Aqueous solution results are in parenthesis

Structure 2-40 2-40─ 2-402─ 2-41i 2-41i─ 2-42i

C6–C1–C2 117.4 (117.7)

116.8 (117.5)

116.1 (117.1)

121.5 (121.1)

123.2 (122.8)

120.5 (120.0)

C1–C2–C3 117.4 (117.7)

116.8 (117.5)

116.1 (117.1)

117.5 (117.4)

115.5 (115.8)

119.5 (119.7)

C2–C3–C4 120.3 (119.7)

122.9 (122.0)

124.9 (123.8)

120.0 (120.4)

121.4 (121.6)

120.0 (120.3)

C3–C4–C5 122.4 (122.6)

120.3 (120.5)

118.9 (119.0)

120.8 (120.5)

121.4 (120.9)

120.3 (120.0)

C4–C5–C6 122.4 (122.6)

120.3 (120.5)

118.9 (119.0)

121.8 (121.5)

119.0 (119.1)

119.8 (119.9)

C5–C6–C1 120.3 (119.7)

122.9 (122.0)

124.9 (123.8)

118.5 (119.0)

119.6 (119.8)

119.8 (120.2)

C6–C1–O7 123.0 (123.6)

121.7 (122.0)

122.4 (122.0)

122.5 (120.6)

123.7 (121.4)

124.6 (124.3)

C3–C2–O8 123.0 (123.6)

121.7 (122.0)

122.4 (122.0)

125.1 (124.1)

127.8 (126.2)

120.3 (119.3)

C1–O7–H — — — 105.6 (110.1)

99.8 (104.3)

111.1 (111.6)

C2–O8–H — — — — — 108.7 (111.1)

Page 49: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

34

2.3.1 Optimized Geometries of p-Benzoquinone Series

The chemical structures of the p-benzoquinone series are given in Figure 2-3. All

structures have planar geometries. The quinone form (2-10), the single anion (2-10_) and

double anion (2-102_) forms have D2h point group of symmetry. The semiquinone radical

(2-11), and its anion (2-11_) belong to the Cs symmetry group. The hydroquinone form

has two conformations that are represented in Figure 2-3 as 2-12i and 2-12ii. The lower-

energy conformation of these two (2-12i) has C2h point group of symmetry while the

other has C2v. The electronic energy difference of these two conformations is very small,

and it is 0.11 kcal/mol in vacuum and 0.02 kcal/mol in water. This implies that the two

conformations are almost equally populated in water and very close to that in vacuum.

When investigating the bond distances given in Table 2-1 for the p-benzoquinone

series, several features can be observed. The first such feature is the decreasing of the C–

C single bond distances (see C1–C2, C3–C4, C4–C5 and C5–C6 distances) as reduction

occurs. One the other hand, the two formal double bond distances (see C2–C3 and C5–C6

distances) show an increasing pattern. For example, the C3–C4 distance in 2-10 is 1.475

Å in gas phase, but in the single and double anions, 2-10_ and 2-102_

, which are two

reduced forms, this distance is found to be shorter at 1.438 Å and 1.419 Å, respectively.

Likely, both semiquinone radical and semiquinone anion, which are the other reduced

forms of benzoquinone, but with an additional H present in the system, also show shorter

C3–C4 distance. In the semiquinone radical, 2-11, it is 1.438 Å and in the semiquinone

anion, 2-11_, it is 1.429 Å. Eventually in the most reduced form, hydroquinone, 2-12i,

the distance is 1.383 Å. On the other hand, C2–C3 formal double bond, which is 1.331 Å

Page 50: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

35

in 2-10 decreases as reduction proceeds. This distance changes to 1.361 Å in 2-10_ and

1.396 Å in 2-102_. Likely, in 2-11, 2-11

_ and 2-12i, the distance changes respectively to

1.365, 1.385 and 1.383 Å. Similarly, same trends can be observed for the geometries

optimized in aqueous medium.

The second feature observed looking at the bond lengths is the changing behavior

of the carbon–oxygen bonds. In the structures 2-10, 2-10_, 2-102_

and 2-12i both C–O

bonds are equal, and respectively these distances are 1.210, 1.256, 1.299 and 1.356 Å in

gas phase. But, in the semiquinone structures, 2-11 and 2-11_, these two distances are not

equal. In 2-11, C1–O7 bond is 1.338 Å and C4–O8 is 1.245 Å, while in 2-11_, those are

1.389 and 1.264 Å. So, the distance increases as the reduction occurs and it is observed

that in the two anions and in the semiquinones both C–O distances are neither C═O

formal double bonds nor C–O formal single bonds, they are in between. Hence, this

implies that in the two anionic forms, the extra electron (or electrons) is truly delocalized

in order to keep both carbon–oxygen bonds equal. However, in the semiquinones,

delocalization cannot make them equal due to the presence of the proton at one end.

Although, similar trends are observed in aqueous solution geometries, C–O bond

distances are typically longer than the gas-phase calculations, except for 2-12i, which

shows same length in both cases.

The third feature is the O–H bond lengths which appear longer in solution

compared to the gas phase. This is probably a result of the interaction with solvent

molecules.

Another interesting geometric feature is the irregular hexagon observed for the 6-

member carbon ring in all forms of quinones. This can be understood by the three

Page 51: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

36

diagonal distances, C1–C4, C2–C5 and C3–C6 internuclear distances. These distances must

be equal for a regular hexagon, but these distances are not equal in these species.

However, in 2-10, 2-10_and 2-102_

, C2–C5 and C3–C6 distances are equal and are smaller

than the C1–C4. For example, in the gas-phase optimized 2-102_ geometry, the C2–C5 and

C3–C6 distances are 2.733 Å and the C1–C4 distance is 2.986 Å. Another feature

observed with these distances is that as the reduction proceeds the C1–C4 distance

increases, while the C2–C5 and C3–C6 distances decrease, therefore elongation of the

quinone hexagon occurs along the O7–C1–C4–O8 axis. This property is further confirmed

with the bond angles data given in Table 2-2. It can be seen that, as the reduction

progress, the angle C6–C1–C2 and C6–C1–C2 are decreasing while the other four inner

angles of the hexagon increase. As a consequence, the two outer angles, C6–C1–O7 and

C3–C4–O8 are increased with the reduction. The C6–C1–O7 and C3–C4–O8 angles seem to

be smaller when hydrogen atoms are attached to oxygen atoms. For example, the C6–C1–

O7 angle in 2-10, 2-10_and 2-102_

is respectively 121.2, 122.5 and 124.1 degrees, while in

2-11, 2-11_ and 2-12i, this angle is respectively 116.9, 119.0 and 117.7 degrees.

However, there is a deviation in this pattern, because the angle in 2-11_ is higher than the

angle of 2-12i. Similar trends are observed with aqueous solution distances and angles.

2.3.2 Optimized Geometries of 2-Chloro-p-Benzoquinone Series

The chemical structures for 2-chloro-p-benzoquinone series are given in Figure 2-

4. All the quinone, semiquinone and hydroquinone species of this series have Cs point

Page 52: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

37

group of symmetry in gas phase and in water except the structure 2-21i_ which showed

no symmetry (i.e, C1 point group of symmetry) in water.

Among the four investigated conformations of semiquinone radicals, 2-21i has the

lowest electronic energy in gas phase. Compared to this global minimum, 2-21ii, 2-21iii

and 2-21iv conformations are higher in energies respectively by 3.42, 1.56 and 1.65

kcal/mol. All these conformations were identified as minimum energy conformation and

not saddle points by the vibrational analysis. In the gas phase calculations of

semiquinone anions, the 2-21i_ conformation is the global minimum. The 2-21ii_ and 2-

21iv_ conformations were identified as saddle points having imaginary frequencies of 59i

and 46i cm-1. The electronic energies of 2-21ii_ , 2-21iii_

and 2-21iv_ with respect to the

global minimum, 2-21i_, are 3.69, 2.20 and 2.33 kcal/mol, respectively. Among the four

investigated conformations, the global minimum of the hydroquinone form of this series

is the 2-22i conformation. The other three conformations are higher in electronic energy

by 0.12, 3.10 and 3.29 kcal/mol respectively for 2-22ii, 2-22iii and 2-22iv conformations.

None of the conformations have imaginary frequencies.

In aqueous calculations, all investigated conformations have no imaginary

frequencies, i.e., there are minimum-energy conformations. It was found, however, that

the minimum-energy conformations were sometimes different that those found in the gas

phase. For example, the global minimum of semiquinone radical is the 2-21iv

conformation while the 2-21iv_ conformation in the minimum-energy one for

semiquinone anion and the 2-22iv conformation is the most stable one for the

hydroquinone. The reason for this difference is probably the higher dipole moment for

these conformations, which, in polar solvents like water, are stabilized more by the

Page 53: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

38

interactions with the solvent. The other investigated conformations of semiquinone

radicals, 2-21i, 2-21ii and 2-21iii, are higher in energy by 3.38, 1.91 and 0.10 kcal/mol

respectively. The 2-21i_, 2-21ii_ and 2-21iii_ conformations of semiquinone anions are

2.45, 1.90 and 0.04 kcal/mol, respectively, higher in energy compared to the 2-21iv_

conformation. Similarly, the 2-22i, 2-22ii and 2-22iii conformations of hydroquinone

forms are 1.16, 1.18 and 0.07 kcal/mol, respectively, higher in energy compared to the 2-

22iv conformation.

Tables 2-3 and 2-4 show respectively selected bond lengths and bond angles of

the optimized minimum energy conformations of this series obtained both in gas-phase

and in aqueous phase calculations. These parameters show similar characteristics and

trends to the one already presented and discussed for the p-benzoquinone series. In

addition to that, the C2–Cl bond is considered here. In the quinone form, 2-20, this

distance is 1.704 Å in gas phase while in the reduced quinol form, 2-22i, it is 1.731 Å.

Among quinone and its anions, the distance increases when the quinone is reduced from

2-20 to 2-20_and 2-202_

. The C2–Cl bond distance is 1.740 and 1.783 Å for 2-20_and 2-

202_, respectively. Same behavior was observed when 2-20 gets reduced to 2-21i and 2-

21i_ for with the C2–Cl bond distance is 1.740 and 1.783 Å, respectively. It must be

noted that the distance in the ionic species is longer than the distance in 2-22i. A higher

bond distance is an indication of a larger electron density around the C-Cl bond, which

would populate an anti-bonding orbital and therefore reduce the bond order. The

geometric parameters obtained in aqueous calculations show similar trends.

Page 54: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

39

2.3.3 Optimized Geometries of 2-Methyl-p-Benzoquinone Series

The chemical structures for 2-methyl-p-benzoquinone series are shown in Figure

2-5. Since the presence of methyl group allow for rotation around the C–C bond, two

different conformations were first investigated for the quinone to determine the

minimum-energy conformation, i.e., to find the best orientation of the methyl group.

There are two possible conformations in which a hydrogen atom of the methyl group

make a H–C2–C1–O7 dihedral angle of 180 or 0 degrees. The conformation with the

dihedral angle of 0 degrees is identified as a saddle point having an imaginary frequency

at 152i cm-1, while the conformation with a dihedral angle of 180 degrees is a minimum-

energy structure. Consequently, the latter orientation of methyl group was selected for

the other investigated species including ionic, semiquinone and hydroquinone

conformations. Therefore, it should be noted that the orientation of the methyl group in

all structures shown in Figure 2-5 is similar to the one in structure 2-30.

In gas phase, all the quinone, semiquinone and hydroquinone species have Cs

symmetry. In water solution, the 2-31i_, 2-32i and 2-32ii conformations have no

symmetry while all the other conformations are Cs.

Among the four investigated conformations of semiquinone radicals, 2-31iii has

the lowest electronic energy in gas phase. Compared to this minimum, 2-31i, 2-31ii and

2-31iv conformations are higher in energies respectively by 1.73, 1.40 and 0.06 kcal/mol.

The global minimum for the semiquinone anion is 2-31iv_ among the four studied

conformations. The electronic energies of the other conformations, 2-31i_, 2-31ii_ and 2-

31iii_, are 1.63, 1.29 and 0.01 kcal/mol, respectively, higher than the global minimum.

Page 55: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

40

The 2-31i_ conformation was identified as a saddle point having an imaginary frequency

of 174i cm-1. Among the four investigated conformations, the global minimum of the

hydroquinone form is the 2-32iii conformation. The other three conformations are higher

in energy by 0.44, 0.67 and 0.05 kcal/mol, respectively, for 2-32i, 2-32ii and 2-32iv

conformations.

In aqueous calculations, all investigated conformations are minimum-energy

conformations, i.e. conformations having no imaginary frequencies. Among the four

investigated conformations of the semiquinone radical, the global minimum is 2-31iv

conformation. The other three conformations are higher in energy by 4.26, 0.59 and 0.02

kcal/mol for 2-31i, 2-31ii and 2-31iii, respectively. The 2-31ii_ conformation is the lowest

in energy among the four semiquinone anion conformations studied. The 2-31i_, 2-31iii_

and 2-31iv_ conformations are higher in energies by 1.21, 0.86 and 0.82 kcal/mol,

respectively. Among the four investigated hydroquinone conformations, the global

minimum is the 2-32iv. Conformations 2-32i, 2-32ii and 2-32iii are higher in energies by

2.51, 2.50 and 0.07 kcal/mol, respectively. This result, different conformations being

lowest in energy in gas-phase than is solution, was also observed for 2-chloro-p-

benzoquinone series.

Tables 2-5 and 2-6 show selected bond distances and bond angles of the

optimized minimum energy conformations for this series obtained both in gas-phase and

in aqueous-phase calculations. These parameters show similar characteristics and trends

to the already discussed p-benzoquinone and 2-chloro-p-benzoquinone series. In addition

to that, the C2–C(CH3) bond is considered here. This distance increases slightly as the

reduction occurs. In 2-30, the distance is 1.484 Å in gas phase and in the ionic forms, 2-

Page 56: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

41

30_and 2-302_

, those distances are 1.491 Å and 1.495 Å, respectively. In the semiquinone

radical, 2-31iii, the distance is 1.484 Å and it is equal to the distance in the quinone form,

whereas in the semiquinone radical, 2-31iv_, it is 1.490 Å. However, in the hydroquinone

form, 2-32iii, the distance is slightly longer at 1.492 Å. In this case too, the geometries

obtained in aqueous phase calculations show similar trends.

2.3.4 Optimized Geometries of o-Benzoquinone Series

Figure 2-6 shows the chemical structures of the o-benzoquinone series. The

symmetry point groups for all structures are the same in gas phase and in solution. The

quinone form and its two anions (2-40, 2-40_ and 2-402_

) have C2v point group of

symmetry. All conformations of semiquinone radicals and anions have Cs point group of

symmetry. Among the hydroquinone conformations, the structure 2-42i is Cs point group

while the other two conformations are C2v point group.

Between the two conformations investigated for the semiquinone radical, the

structure 2-41i has the lowest energy in both gas and aqueous phases. The other

semiquinone radical, 2-41ii is 9.47 kcal/mol higher in energy in gas phase, and just 1.96

kcal/mol higher in aqueous phases. On the other hand, the 2-41i_ conformation is the

minimum-energy conformation of semiquinone anions. The other conformation, 2-41ii_

is 15.45 kcal/mol higher in energy in gas phase and 4.54 kcal/mol higher in aqueous

phases. Among the three conformations of hydroquinone form investigated, the global

minimum is 2-42i in both gas and aqueous phases. The 2-42ii and 2-42iii conformations

Page 57: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

42

are higher in energy by 4.64 and 7.83 kcal/mol, respectively, in gas phase and by 0.35

and 4.01 kcal/mol, respectively, in aqueous phase.

Tables 2-7 and 2-8 respectively show the selected bond distances and bond angles

for this series. Here, the trends are similar to the p-benzoquinone series. However, in

this case, C═C double bonds and C–C single bonds are located at different positions.

Namely, C1–C2, C2–C3, C4–C5 and C6–C1 are single bonds in 2-40, while C3–C4 and C5–

C6 are double bonds. The formal single bond lengths are similar in length with single

bond length in the p-benzoquinone series, except for the C1–C2 bond, the bond between

the carbonyl carbons, which is longer at 1.542 Å. As reduction occurs, single bonds

decrease in length while double bonds increase in length. In the hydroquinone form, 2-

40i, all C–C bonds lie between single and double bond distances.

Page 58: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

43

2.4 Reduction Potential Calculations

For the calculation of electrochemical potentials involving also a proton transfer,

a model for the proton or hydronium ion in solution is necessary. The model employed

here is the same one used in previous studies [1,2Anderson and Albu, 1999; Anderson and

Albu, 2000; Albu and Anderson, 2001; Albu and Mikel, 2007] and is presented in Figure

2-7. In this model, the hydronium ion is hydrated with two water molecules leading to

the three-water cluster after the proton is transferred. The solvated hydronium ion

(structure A in Figure 2-7) was optimized within Cs symmetry, but the water cluster

(structure B) was not, it was maintained with the same geometry as in the solvated

hydronium. Only the electronic energies of these structures were used for calculating the

reversible potentials.

With the use of this model for the hydronium ion, the following reaction (or

similar ones) was used to get the energy defined as Ee in the 2-1 equation and to

determine the reversible potentials for the reduction of quinone to quinol:

BQ + 2 H3O+(H2O)2 + 2e– → BQH2 + 2 H2O(H2O)2 (2-2)

The nine redox reactions that are investigated for each of the four quinones series

are given in Table 2-9.

A B

Figure 2-7 Chemical structures for H3O+(H2O)2 (panel a) and H2O(H2O)2 (panel b)

Page 59: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

44

Table 2-9 Reduction reactions for investigated quinones in this study

p-benzoquinone series 2-10 + e– + H+ → 2-11 R2-1 2-11 + e– + H+ → 2-12 R2-2 2-10 + 2e– + 2H+ → 2-12 R2-3 2-10– + e– + H+ → 2-11– R2-4 2-10 + 2e– + H+ → 2-11– R2-5 2-10 + e– → 2-10– R2-6 2-10– + e– → 2-102– R2-7 2-10 + 2e– → 2-102– R2-8 2-11 + e– → 2-11– R2-9

2-chloro-p-benzoquinone series 2-20 + e– + H+ → 2-21 R2-11 2-21 + e– + H+ → 2-22 R2-12 2-20 + 2e– + 2H+ → 2-22 R2-13 2-20– + e– + H+ → 2-21– R2-14 2-20 + 2e– + H+ → 2-21– R2-15 2-20 + e– → 2-20– R2-16 2-20– + e– → 2-202– R2-17 2-20 + 2e– → 2-202– R2-18 2-21 + e– → 2-21– R2-19

2-methyl-p-benzoquinone series 2-30 + e– + H+ → 2-31 R2-21 2-31 + e– + H+ → 2-32 R2-22 2-30 + 2e– + 2H+ → 2-32 R2-23 2-30– + e– + H+ → 2-31– R2-24 2-30 + 2e– + H+ → 2-31– R2-25 2-30 + e– → 2-30– R2-26 2-30– + e– → 2-302– R2-27 2-30 + 2e– → 2-302– R2-28 2-31 + e– → 2-31– R2-29

o-benzoquinone series 2-40 + e– + H+ → 2-41 R2-31 2-41 + e– + H+ → 2-42 R2-32 2-40 + 2e– + 2H+ → 2-42 R2-33 2-40– + e– + H+ → 2-41– R2-34 2-40 + 2e– + H+ → 2-41– R2-35 2-40 + e– → 2-40– R2-36 2-40– + e– → 2-402– R2-37 2-40 + 2e– → 2-402– R2-38 2-41 + e– → 2-41– R2-39

Reaction Number

Page 60: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

45

Reactions R2-1 to R2-9 are for the p-benzoquinone series, reactions R2-11 to R2-

19 are for the 2-chloro-p-benzoquinone series, reactions R2-21 to R2-29 are for the 2-

methyl-p-benzoquinone series, and reactions R2-31 to R2-39 are for the o-benzoquinone

series. The last digit in these numbers describe similar reactions but for different

compounds. For example, reactions R2-1, R2-11, R2-21 and R2-31 are the same one-

electron, one-proton reductions but for different quinones. The first five reactions

involve addition of both electron (or electrons) and proton (or protons) while the latter

four reactions are reductions without proton transfer. The first reaction of each series

(R2-1, R2-11, R2-21 and R2-31) is the reduction of the quinone to the semiquinone

radical. The second reaction is an abstraction of another electron and a proton by the

semiquinone radical to produce the fully reduced hydroquinone form (quinol). The third

reaction involves an addition to quinone of two electrons and two protons together to

fully oxidize to give quinol, and it is the sum of the first two reactions. The fourth

reaction is the addition of an electron and a proton to the quinone single anion to give

semiquinone anion. The fifth reaction is the addition to the quinone molecule of two

electrons and a proton to give the semiquinone anion. The sixth reaction is the one-

electron reduction of quinone to quinone single anion, the seventh reaction is the one-

electron reduction of quinone single anion to quinone double anion, the eighth reaction is

the two-electron reduction of quinone to quinone double anion, and the last (ninth)

reaction is the addition of an electron to semiquinone radical to give semiquinone anion.

The number given for each reaction in this table will be further used in the text.

Electrochemical reduction potentials were calculated with respect to the standard

hydrogen electrode using Equation 2-1, which is explained in Section 2.2.2. The Ee in

Page 61: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

46

that equation was approximated by five different energies as described further. When Ee

is determined using electronic energies obtained in gas-phase calculations, the reduction

potential is denoted UΔE(gas). When Ee is determined using thermal Gibbs energy in gas

phase, the reduction potential is denoted UΔG(gas). When Ee is determined using

electronic energy in aqueous phase and thermal Gibbs energy in aqueous phase, then the

reduction potentials are denoted as UΔE(sol) and UΔG(sol), respectively. Finally, when Ee

is determined using total free energy in solution, including the free energy of quinone

species and the free energy of solvation, the reduction potential is denoted as UΔG(sol)*.

The reactant and product conformations or isomers used in calculating Ee are the

minimum-energy ones as determined at the same level of theory. For example, for

calculations in gas-phase, the minimum-energy conformations determined in gas phase

were used while for calculation in aqueous solutions, the minimum-energy conformations

determined in aqueous phase were used. These minimum-energy conformations were

presented and discussed in Section 2.3.

The following sections will discuss separately the results of reduction potentials

for each quinone series. In these sections, the calculated electrochemical potentials using

the five types of energies are given in Tables 2-10 to 2-13, and graphical representations

of some of these results are shown in Figures 2-8 to 2-11. In these figures, only the

reduction potentials calculated using the electronic energies both in gas phase and in

solution phase are given. The molecules are arranged in order of decreasing their

oxidation state, with quinone forms located on top, the semiquinone radical and the single

anion form of quinone located below the quinone, and finally, the most reduced forms,

quinone double anion, semiquinone anion and quinol forms, located at the bottom. Also,

Page 62: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

47

the reactions on the right hand side are the reduction process involving addition of both

proton and electron, while on the left hand side the reductions involve only addition of

electrons.

2.4.1 Reduction Potentials for p-Benzoquinone Series

The reduction reactions for the p-benzoquinone series are given in Table 2-9, as

reactions R2-1 through R2-9. These reactions are also presented in Figure 2-8, and the

calculated electrochemical potentials for these reactions are given in Table 2-10. The

reversible potentials calculated in aqueous solution (e.g., the reactant and the product are

optimized in aqueous solution calculation but not the solvated hydronium) are higher than

those obtained in gas phase calculations for all nine reactions. The calculated values

using electronic energies in solution (third column in Table 2-10) and total free energies

in solution (sixth columns in Table 2-10) are almost equal. For the first five reactions,

which involves also proton transfer, the reversible potentials calculated using only

electronic energy are larger than the values calculated using Gibbs free energy. This

trend occurs in both solution and in gas phase. For example, the reversible potential for

reaction R2-1 is 1.19 V when calculated using electronic energies in gas phase and is

0.93 V when calculated using Gibbs free energy. In solution these values are 1.48 V and

1.23 V respectively. However, this is not true for the reductions in the absence of

protons, and, in this case, the values are almost equal. For example, for reversible

potential for the R2-6 reaction calculated using gas-phase electronic energies is –2.56 V

Page 63: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

48

and is –2.51 V using gas-phase Gibbs free energies. Similarly, the values are –0.46 V

and –0.43 V for solution calculations.

According to the calculated reversible potential for p-benzoquinone in the absence

of protons, addition of a single electron to the quinone (R2-6) has a higher potential,

although negative, than the abstraction of two electrons (R2-8) at once. In other words

addition of a single electron by quinone is more likely than the addition of two electrons.

As expected, the addition of the second electron by the quinone single anion (R2-7) is

less likely, i.e., more negative reduction potential. Although we present these results as

reduction reactions, R2-6 is actually the reaction defining the electron affinity of the

quinone. This value is experimentally known and is –0.52 V [Namazian and Coote,

2007]. Our results in aqueous solution are very similar to this experimental value.

The reduction of p-benzoquinone to hydroquinone (or quinol) is a two-electron,

two-proton reduction as described in R2-3. In this case, the addition of the second

electron and proton (R2-2) has a higher potential than the addition of the first one (R2-1).

This implies a harder first reduction step and an easier second one. Also, the addition of

both electrons and protons at once (R2-3) has higher potential than the addition of first

(R2-1) suggesting that, in the presence of protons, a single step, two-electron reduction is

more likely for p-benzoquinone.

Page 64: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

49

O

O

O

O

O

O

O

O

H

O

O

HO

O

H

H

: :

: :

: :

: :

: :

: :

: :

: :

::

:

:

: :

:: :

::

:

. .

_

_

_ _

-5.30 V(-1.07 V)

1.62 V(1.77 V)

-2.56 V(-0.46 V)

1.19 V(1.48 V)

-2.90 V(-0.63 V)

2.05 V(2.06 V)

-8.04 V(-1.67 V)

0.85 V(1.32 V)

-0.86 V(0.43 V)

VacuumWaterVacuumWater

Figure 2-8 Reduction steps studied for p-benzoquinone series

Table 2-10 Calculated reversible potentials (in V) for the p-benzoquinone series

Reaction U∆E (gas) U∆E (sol) U∆G (gas) U∆G (sol) U∆G (sol)*

R2-1 1.19 1.48 0.93 1.23 1.49 R2-2 2.05 2.06 1.68 1.69 2.07 R2-3 1.62 1.77 1.30 1.46 1.78 R2-4 0.85 1.32 0.61 1.04 1.33 R2-5 -0.86 0.43 -0.95 0.30 0.43 R2-6 -2.56 -0.46 -2.51 -0.43 -0.46 R2-7 -8.04 -1.67 -8.00 -1.67 -1.64 R2-8 -5.30 -1.07 -5.25 -1.05 -1.05 R2-9 -2.90 -0.63 -2.83 -0.63 -0.63

Page 65: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

50

2.4.2 Reduction Potentials for 2-Chloro-p-Benzoquinone Series

The studied reduction reactions for 2-chloro-p-benzoquinone series are described

in Table 2-1 as reactions R2-11 through R2-19. A molecular representation of the

reduction steps are shown in Figure 2-9 and the calculated potentials are given in Table

2-11.

The calculated potentials for this series have a similar trend as the potentials of p-

benzoquinone series. Nevertheless, the values are slightly higher than the p-

benzoquinone series for all cases. This means that the 2-chloro-p-benzoquinone is easier

to reduce compared to the p-benzoquinone. In the absence of protons in this case, the

two steps, R2-16 and R2-17 have potentials of –0.28 V and –1.46 V respectively in

aqueous solution, calculated using the electronic energies. In the presence of protons, the

reduction, R2-13 has a potential of 1.80 V. This indicates that the chloro substituent, an

electron-withdrawing group, increases the ability of accepting an electron. Like in the

case of p-benzoquinone, 2-chloro-p-benzoquinone is expected to follow two single-

electron reduction steps in the absence of protons and one two-electron reduction step in

the presence of protons. In addition, 2-chloro-p-benzoquinone shows the highest

reduction potentials in the absence of protons among the studied four quinones.

Page 66: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

51

O

O

Cl

O

O

Cl

O

O

Cl

O

O

Cl

H

O

O

Cl

HO

O

Cl

H

H

: :

: :

: :

: :

: :

: :

: :

: :

::

:

:

: :

:: :

::

:

. .

_

_

_ _

-4.93 V(-0.87 V)

1.69 V(1.80 V)

-2.26 V(-0.28 V)

1.29 V(1.54 V)

-2.53 V(-0.42 V)

2.09 V(2.06 V)

-7.60 V(-1.46 V)

1.02 V(1.41 V)

-0.62 V(0.56 V)

VacuumWaterVacuumWater

Figure 2-9 Reduction steps studied for 2-chloro-p-benzoquinone series

Table 2-11 Calculated reversible potentials (in V) for the 2-chloro-p-benzoquinone series

Reaction U∆E (gas) U∆E (sol) U∆G (gas) U∆G (sol) U∆G (sol)*

R2-11 1.29 1.54 0.99 1.26 1.55 R2-12 2.09 2.06 1.72 1.73 2.07 R2-13 1.69 1.80 1.36 1.49 1.81 R2-14 1.02 1.41 0.69 1.10 1.42 R2-15 -0.62 0.56 -0.76 0.42 0.57 R2-16 -2.26 -0.28 -2.21 -0.25 -0.29 R2-17 -7.60 -1.46 -7.56 -1.46 -1.47 R2-18 -4.93 -0.87 -4.89 -0.85 -0.88 R2-19 -2.53 -0.42 -2.51 -0.41 -0.42

Page 67: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

52

2.4.3 Reduction Potentials for 2-Methyl-p-Benzoquinone Series

The reduction reactions for the 2-methyl-p-benzoquinone series are described in

Table 2-9 as reactions R2-21 to R2-29 and respective molecular conformations are given

in Figure 2-10 along with the reduction steps. The calculated reduction potential values

are given in Table 2-12.

The calculated reduction potentials for this series show the same trends as the two

series above but, in this case, the calculated potentials are lower than the values of p-

benzoquinone series for all reduction steps. Therefore, 2-methyl-p-benzoquinone is

predicted to be harder to reduce than p-benzoquinone. This finding is consistent with an

electron-donating substituent decreasing the ability to accept an electron. Here also, it is

predicted that, the two-electron reduction occurs in two steps in the absence of protons

and in one step in the presence of protons. In the absence of protons, R2-26 and R2-27

reactions have potentials of –0.56 V and –1.77 V, respectively, calculated using the

electronic energies in aqueous solution. In the presence of protons, the R2-23 reduction

has a potential of 1.72 V, slightly lower than the value of 1.77 V calculated for p-

benzoquinone.

Page 68: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

53

O

O

CH3

O

O

CH3

O

O

CH3

O

O

CH3

H

O

O

CH3

H O

O

CH3

H

H

: :

: :

: :

: :

: :

: :

: :

: :

::

:

:

: :

:: :

::

:

. .

_

_

_ _

-5.33 V(-1.16 V)

1.57 V(1.72 V)

-2.66 V(-0.56 V)

1.16 V(1.44 V)

-2.96 V(-0.71 V)

1.98 V(2.00 V)

-8.01 V(-1.77 V)

0.86 V(1.29 V)

-0.90 V(0.36 V)

VacuumWaterVacuumWater

Figure 2-10 Reduction steps studied for 2-methyl-p-benzoquinone series

Table 2-12 Calculated reversible potentials (in V) for the 2-methyl-p-benzoquinone series

Reaction U∆E (gas) U∆E (sol) U∆G (gas) U∆G (sol) U∆G (sol)*

R2-21 1.16 1.44 0.87 1.17 1.45 R2-22 1.98 2.00 1.63 1.67 2.01 R2-23 1.57 1.72 1.25 1.42 1.73 R2-24 0.86 1.29 0.56 0.99 1.30 R2-25 -0.90 0.36 -1.02 0.23 0.37 R2-26 -2.66 -0.56 -2.61 -0.52 -0.56 R2-27 -8.01 -1.77 -7.95 -1.75 -1.77 R2-28 -5.33 -1.16 -5.28 -1.13 -1.17 R2-29 -2.96 -0.71 -2.91 -0.70 -0.71

Page 69: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

54

2.4.4 Reduction Potentials for o-Benzoquinone Series

The reduction reactions for the o-benzoquinone series are described in Table 2-9

as reactions R2-31 through R2-39. Figure 2-11 shows the nine investigated reduction

reactions using structural formulas. The calculated reduction potential values are given

in Table 2-13.

As in other three quinones, o-benzoquinone also showed similar trends in

reversible potentials. However, calculated potential values for o-benzoquinone in the

presence of protons are highest among four quinones. Also, in the absence of protons,

the values for o-benzoquinone series are only lower when compared to the 2-chloro-p-

benzoquinone potential values. Therefore, o-benzoquinone is the most reducible species

in the presence of protons among studied quinones. Similarly to the other three quinones,

in the absence of protons, two one-electron reduction steps are likely, and one two-

electron reduction step is more likely in the presence of protons. In the absence of

protons, the two steps, R2-36 and R2-37 have potentials of –0.32 V and –1.53 V

respectively, calculated using the electronic energies in aqueous solution. In the presence

of protons, the R2-33 reduction has a calculated reduction potential of 1.89 V.

Page 70: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

55

: : : :

: :

: : ::

:

:

: :

:

:

:

:

:

. .

_

_

_

-5.28 V(-0.93 V)

1.86 V(1.89 V)

-2.54 V(-0.32 V)

1.82 V(1.72 V)

-2.53 V(-0.37 V)

1.90 V(2.06 V)

-8.03 V(-1.53 V)

1.83 V(1.67 V)

-0.35 V(0.67 V)

OO

OO

: :

OO

: :

OO

H

OO

H

OOH

H

: :

:_: :

VacuumWaterVacuumWater

Figure 2-11 Reduction steps studied for o-benzoquinone series

Table 2-13 Calculated reversible potentials (in V) for the o-benzoquinone series

Reaction U∆E (gas) U∆E (sol) U∆G (gas) U∆G (sol) U∆G (sol)*

R2-31 1.82 1.72 1.50 1.44 1.73 R2-32 1.90 2.06 1.55 1.74 2.07 R2-33 1.86 1.89 1.53 1.59 1.90 R2-34 1.83 1.67 1.47 1.34 1.70 R2-35 -0.35 0.67 -0.51 0.52 0.68 R2-36 -2.54 -0.32 -2.48 -0.30 -0.34 R2-37 -8.03 -1.53 -7.96 -1.52 -1.55 R2-38 -5.28 -0.93 -5.22 -0.91 -0.94 R2-39 -2.53 -0.37 -2.52 -0.39 -0.37

Page 71: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

56

2.5 Concluding Remarks

Reversible potentials in gas phase and in aqueous phase for four quinone series

were calculated using the hybrid density functional theory level mPW1B95-44 in

association with the 6-31+G(d,p) basis set. Calculations were performed using

Gaussian03 software. Selected quinones were p-benzoquinone, 2-chloro-p-

benzoquinone, 2-methyl-p-benzoquinone and o-benzoquinone.

Conformational analyses were carried out for the molecules whenever necessary

to find the lowest-energy structure of the molecule. Geometries were optimized and

electronic energy and Gibbs free energies were calculated. Saddle points were identified

by frequency calculations on the optimized structures.

Electrochemical potentials relative to the standard hydrogen electrode were

calculated for a total of nine possible reduction reactions for each quinone series using

both electronic and Gibbs free energy for gas phase as well as electronic energy, Gibbs

free energy, and total free energy in aqueous phase.

In the presence of protons, all quinones studied have shown preference to be

reduced by addition of two electrons and two protons to give hydroquinone in a single

step both in gas phase and in solution rather than two successive steps. In the absence of

protons however, the results suggested that the reduction proceed through two single-

electron reduction steps in both gas and aqueous phases. An electron-withdrawing group

has the tendency to increase the reducing ability of quinone, while electron-donating

groups decrease this reducing ability.

Page 72: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

57

In the presence of protons, o-benzoquinone is the most powerful oxidizing agent.

Among p-benzoquinone derivatives, 2-chloro-p-benzoquinone is more likely to be

reduced than p-benzoquinone, with 2-methyl-p-benzoquinone the least likely. In the

absence of protons, 2-chloro-p-benzoquinone is more susceptible for reduction, while the

o-benzoquinone is the second most likely. p-benzoquinone and 2-methyl-p-

benzoquinone take the third and fourth positions, respectively.

The methodology developed and applied here can be extended to investigations

on reduction reactions of other benzoquinone derivatives having different substituents.

Some multi-substituted systems that are naturally occurring benzoquinone derivatives

would be helpful for further understanding of quinone chemistry in nature. In addition,

investigation of reduction reactions in different solvent systems would also be of possible

interest in conjunction with experimental studies.

Page 73: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

58

CHAPTER 3

INVESTIGATION OF REACTIVITY OF BENZOQUINONE DERIVATIVES

TOWARDS N-CONTAINING NUCLEOPHILES

3.1 Introduction

Quinones are electrophilic substances and have ability to undergo nucleophilic

addition reactions [Titulaer et al., 2000; Fischer and Handerson, 1983] as well as

nucleophilic substitution reactions [Katritzky et al., 2008]. According to studies

published in the literature, the addition reactions occur at the carbonyl centers and the

substitution reactions occur at the alkene centers.

This chapter presents the results of a theoretical investigation on the reactivity of

four quinones towards simple N-containing nucleophiles. The investigated quinones are

p-benzoquinone (3-1), 2-chloro-p-benzoquinone (3-2), 2-methyl-p-benzoquinone (3-3),

and o-benzoquinone (3-4). Figure 3-1 shows a ball and stick representation of the

optimized geometries of these four quinones along with numbering scheme used in this

chapter. In these structures, black balls are used to represent carbon, red is for oxygen,

blue is for nitrogen, green is for chlorine and small ash colored balls represent hydrogen.

The simple nucleophiles investigated here include NH3 and CH3NH2, and their reactions

with all four quinones were studied. These reactions are presented in Figure 3-2 and

Figure 3-3, respectively. In addition to those two nucleophiles, C2H5NH2 and the lysine

amino acid were studied in reactions with p-benzoquinone only. The theoretical study

here focuses on the first step of the nucleophilic addition reaction at the carbonyl centers.

Page 74: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

59

This chapter gives the results of a conformational analysis of the products of the

studied reactions (3-5 to 3-10 in Figure 3-2 and 3-11 to 3-16 in Figure 3-3) and the

transition states for few possible reaction pathways of each of the investigated reactions.

The geometries of the quinone reactants are not presented here as they are already

described in Chapter 2 of this thesis. A discussion on the geometry of the products and

the transition states as well as the energetic of the investigated reactions is presented.

3-3

3-1

1

3-4

3-2

23

65

4

1

23

65

4

1

23

65

4

1

23

65

4

Figure 3-1 The investigated quinones toward nucleophilic addition reactions: p-

benzoquinone (3-1), 2-chloro-p-benzoquinone (3-2), 2-methyl-p-benzoquinone (3-3) and o-benzoquinone (3-4)

Page 75: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

60

O

O O

HO NH2

NH3

O

O O

HO NH2

+ NH3

O

HO NH2

+

Cl Cl

Cl

O

O O

HO NH2

+ NH3

O

HO NH2

+

CH3 CH3

CH3

+

OHO NH2

NH3+

OO

3-1

3-2

3-3

3-4

3-5

3-6 3-7

3-8 3-9

3-10

1 2

345

6

7

8

9

12

345

6

7

8

9

1 2

345

6

7

8

9

12

345

6

7

8

9

1 2

345

6

7

8

9

12

345

6

7

8

9

Figure 3-2 Investigated reactions between the quinones and ammonia

Page 76: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

61

O

O O

HO NHCH3

CH3NH2

O

O O

HO NHCH3

+ CH3NH2

O

HO NHCH3

+

Cl Cl

Cl

O

O O

HO NHCH3

+ CH3NH2

O

HO NHCH3

+

CH3 CH3

CH3

+

OHO NHCH3

CH3NH2+

OO

3-1

3-2

3-3

3-4

3-11

3-12 3-13

3-14 3-15

3-16

1 2

345

6

7

8

9

12

345

6

7

8

9

1 2

345

6

7

8

9

12

345

6

7

8

9

1 2

345

6

7

8

12

345

6

7

8

9

9

Figure 3-3 Investigated reactions between the quinones and methylamine

Page 77: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

62

3.2 Computational Methodologies

3.2.1 Electronic Structure Theory Method and Computational Details

The study was carried out using the hybrid density functional electronic theory

method mPW1B95-44 in conjunction with the 6-31+G(d,p) basis set. Calculations were

performed using Gaussian03 software [Frisch et al., 2003]. Most of the geometry

optimizations of the reaction products were carried out using very tight convergence

criterion, except for the various conformations of the product of the reaction between p-

benzoquinone and ethylamine, which were carried out using normal convergence

criterion. Overall, some product conformations were optimized using a very tight, a tight

or a normal convergence criterion but none of the presented results will be changed by

this choice. Nevertheless, all the transition states (or saddle points) were investigated

using a very tight convergence criterion. Spin multiplicity is 1 for all molecules, and the

electron density was obtained from a restricted wavefunction. Frequency calculations

were carried out to characterize optimized geometries as saddle points or as the minima

of all product and reactant molecules. All of the calculations presented in this chapter are

in vacuum and not in solution.

3.2.2 Reaction Pathways, Saddle Points and Imaginary Frequencies

A reaction pathway involves movement of atoms (to a greater extent for the

reactive center atoms) leading the reactant molecules (and/or atoms) to rearrange and

Page 78: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

63

form product molecules (and/or atoms) by breaking and making of chemical bonds.

Complex reactions involve several elementary steps to transform the reactants into the

products. This set of elementary steps gives the mechanism of the reaction. In an

elementary step of a reaction, as the reaction proceeds, the geometry of the reactant

molecule (or molecules) changes to the geometry of the product molecule (or molecules),

and the energy of the system changes as well. A typical energy profile for a bimolecular

reaction is given in Figure 3-4. The starting energy is the energy associated with the

reactant molecules when they are at infinite distance apart from each other. Reactants

make a van der Waals complex with a particular strength of intermolecular interaction.

The energy typically increases as the reaction proceeds and reaches a maximum value

before it decreases to the energy of the product. The complex at the maximum energy

along the reaction coordinate is known as the transition state of the reaction. The

geometry corresponding to this complex shows some features (some distances and to a

less degree angles) that are in between the values in the reactant and in the product

molecules. The energy difference between the transition state and the reactants is defined

as the barrier height of the reaction.

A saddle point is a stationary point (i.e., a zero-gradient point) on a potential

energy surface. It is a minimum-energy point in some (actually in most) dimensions and

a maximum-energy point in other dimensions. If a saddle point is a maximum in only

one of the dimensions and a minimum in the rest of the dimensions, then it is called a

first-order saddle point. Likewise, a saddle point is said to be second order, when it is a

maximum in two dimensions. The order of the saddle point can be determined by the

number of imaginary frequencies found in the vibrational analysis of the optimized (i.e.,

Page 79: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

64

zero-gradient) geometry. First-order saddle points have one imaginary frequency while

second-order saddle points have two. Transition states of chemical reactions are first-

order saddle points [Foresman and Frisch, 1996] because they are maximum along the

reaction coordinate and minimum in all other dimensions. Typically, the value of the

imaginary frequency determines the width of the barrier and is correlated with the barrier

height of a reaction. Higher imaginary frequency implies a narrower barrier, which is

typically associated with a higher barrier height while a lower imaginary frequency is

associated with a lower barrier height.

Reactants

Products

Transition State

Barrier Height

ReactionEnergyE

nerg

y

Reaction Coordinate

Van der Waals Complex

Reactants

Products

Transition State

Barrier Height

ReactionEnergyE

nerg

y

Reaction Coordinate

Van der Waals Complex

Figure 3-4 Energy profile of a bimolecular, exothermic reaction with one product

Page 80: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

65

3.3 Conformational Analysis of Reaction Products

3.3.1 Reactions of Quinones with NH3

Nucleophilic addition of ammonia to the carbonyl carbon of the four investigated

quinones was studied first. Although these reactions may not be experimentally very

interesting, they are computationally more affordable and can be used as a benchmark for

more relevant reactions. The studied reactions are given in Figure 3-2. As shown in the

Figure 3-2, the symmetric molecules, p-benzoquinone and o-benzoquinone, both react to

form only one single product (3-5 and 3-10, respectively) while the other two, substituted

chloro- and methyl-benzoquinones, which have two distinct carbonyl centers, will yield

two isomeric products. Therefore, for the latter two cases, both possibilities were

examined. The molecules 3-6 and 3-8 are the product of the addition reaction to the

carbonyl 1 position (as defined in Figures 3-1, 3-2 and 3-3) while 3-7 and 3-9 molecules

refer to the product of the addition at the carbonyl in position 4. Molecules 3-5 to 3-10

will be referred to further as the “products.”

To correctly determine the energetics of the investigated reactions, a complete

conformational analysis of the products was carried out to find the minimum-energy

conformations for each product molecule. Although they can be easily interchangeable,

in this chapter, the term “conformer” is used to describe any geometry of a molecule,

especially the one used as initial geometry in the optimization process while the term

“conformation” is used to describe a stationary point (i.e., an optimized geometry), which

can be either an energy minimum, or a saddle point.

Page 81: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

66

To determine all the conformations of 3-5, the product of the reaction between p-

benzoquinone (3-1) and NH3, a total of seven geometry optimizations were carried out

starting from seven (i.e., all possible) distinct conformers that were different in terms of

the rotation around the C1–O7 bond and rotation around the C1–N9 bond. Each of these

optimizations were carried out with very tight convergence criterion and took about

somewhere between one to three days of running time on a Unix Dell workstation to be

completed. The optimizations gave five stationary points including a saddle point and

four minima. Figure 3-5 shows all input geometries (i.e., the conformers) and all

optimized geometries (i.e., the conformations). These structures are arranged with the

input geometries in dotted line boxes above the optimized geometries in solid line boxes,

with the same color for the two boxes associated with a particular optimization

calculation. The label, however, is based on the relative energy of the conformation (i.e.,

optimized structure) with letter a used for the lowest-energy conformation, b for the

second-lowest-energy conformation, etc. A similar scheme is used in the other figures of

this section. The Cartesian coordinates for optimized geometries are given in the

Appendix B. A number of sample input files are presented in Appendix C.

Page 82: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

67

Input geometry

Optimized geometry

Input geometry

Optimized geometry

3-5g 3-5c 3-5e 3-5f

3-5d3-5a 3-5b

Figure 3-5 Seven input (dotted lines) and optimized (solid lines) geometries of the 3-5 product

Page 83: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

68

In the first three conformers (3-5g, 3-5c and 3-5e), the orientation of the NH2

group is fixed while rotating the OH group around the C1–O7 bond. For these

conformers, two H-N9-C1-O7 dihedral angles were set to +60 and –60 degrees while the

H-O7-C1-N9 dihedral angle was changed and the original values were 0, 180 and 60

degrees, respectively. In the conformers leading to 3-5f, 3-5a and 3-5d conformation, the

H-O7-C1-N9 dihedral angle is 60 degrees and the two H-N9-C1-O7 dihedral angles are

changed. In 3-5f and 3-5a conformer one of the H-O7-C1-N9 dihedral angle is set for 0

degrees, while the other two are –120 and +120 degrees, respectively. The two H-N9-C1-

O7 dihedral angles of the 3-5d and 3-5b conformers are –30 and –150 degrees, while the

H-O7-C1-N9 dihedral angles are +60 and –60 degrees, respectively. A similar procedure

of creating the input geometries was carried out for the other quinones and will not be

explained in this much detail there.

The 3-5g, 3-5c and 3-5e conformations have no significant change in the atom

orientation compared to the input geometries. The other conformers have changed the

atom orientation while optimization by rotating along either C1–N9 or C1–O7 bond. The

minimum energy conformation is the 3-5a structure. The 3-5g conformation is a first

order saddle point having an imaginary frequency at 260i cm-1 and it is 3.65 kcal/mol

higher in energy with respect to 3-5a. Structure 3-5c is the second lowest-energy

conformation and it is only 0.07 kcal/mol higher in energy than 3-5a. The 3-5e and 3-5f

conformations are essentially identical in optimized geometries although the input

geometries are different and they are 2.54 kcal/mol higher in energy. The conformation

3-5d is 1.78 kcal/mol higher in energy. The last conformation 3-5b is identical in energy

to 3-5a and it is actually the mirror image (i.e., enantiotopic conformation) of 3-5a.

Page 84: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

69

The conformers and conformations of the 3-6 and 3-7 molecules, the products of

the reaction between 2-chloro-p-benzoquinone are NH3, are given in Figures 3-6 and 3-7,

respectively. Similar to previous cases both input and optimized geometries are given in

the figures. They are arranged in order to more easily understand the input geometries

but the alphabetical letters follow the increasing energy of the optimized geometries. For

each of these two cases, eight different conformers were optimized to find conformations.

These optimizations took approximately four to twelve days to complete using very tight

convergence criterion. An additional conformation was included in this case than is

absent in p-benzoquinone case due to the asymmetry of the molecule when chloro group

is present. Cartesian coordinates for the optimized conformations of these two products

are given in Appendix B.

As shown in Figure 3-6, the eight conformers of the 3-6 product gave six

conformations because the optimized geometries labeled 3-6e and 3-6f are not distinct

(they are mirror images of each other) as are the conformations labeled 3-6a and 3-6b.

The minimum energy conformation of product 3-6 is 3-6a (or 3-6b). There are no saddle

points among these conformations. Conformation 3-6e (and 3-6f) is 0.62 kcal/mol higher

in energy than the minimum and 3-6d and 3-6g are 0.32 and 2.92 kcal/mol higher in

energy, respectively. The conformation 3-6h shows the highest energy and it is 3.60

kcal/mol higher with respect to 3-6a, while 3-6c is closer to the minimum and it is only

0.06 kcal/mol higher in energy.

Page 85: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

70

3-6e 3-6d 3-6g 3-6f

3-6a3-6h 3-6c

Input geometry

Optimized geometry

Input geometry

Optimized geometry

3-6b

Figure 3-6 Eight input (dotted lines) and optimized (solid lines) geometries of the 3-6 product

Page 86: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

71

3-7f 3-7c 3-7h 3-7g

3-7d3-7e 3-7a

Input geometry

Optimized geometry

Input geometry

Optimized geometry

3-7b

Figure 3-7 Eight input (dotted lines) and optimized (solid lines) geometries of the 3-7

product

Page 87: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

72

The eight conformers shown in Figure 3-7 for the 3-7 product, obtained in the

reaction of 2-chloro-p-benzoquinone and NH3, were optimized into seven different

conformations. In this case also conformers 3-7f and 3-7g are not distinct as they are

mirror images of each other. These are 2.47 kcal/mol higher in energy than the global

minimum of the conformations, which is 3-7a. Conformations 3-7b and 3-7h are

respectively 0.14 and 2.67 kcal/mol higher in energy while 3-7e and 3-7d are 1.84 and

1.70 kcal/mol higher in energy. Conformation 3-7b is somewhat similar to the geometry

of the minimum, 3-7a and it is only 0.04 kcal/mol higher in energy.

The conformational analysis of the products of 2-methyl-p-benzoquinone with

NH3 was carried out similar to the case of 2-chloro-p-benzoquinone. Input geometries

were created by replacing the chlorine atom of each conformer with a methyl group.

Optimization of each of these conformers took around one week to complete using very

tight convergence criterion. The conformers and conformations of the product 3-8 and

product 3-9 of this particular reaction are given in Figures 3-8 and 3-9, respectively.

Cartesian coordinates of optimized geometries are given in Appendix B. In both cases,

alphabetical order is the order of increasing energy of conformations. Optimization

yielded six different conformations with no saddle points for product 3-8. The input

conformers 3-8f and 3-8g were optimized to the same conformation as did 3-8c and 3-8d

conformers. The minimum energy conformation of the product is 3-8a. The 3-8f

conformation is 2.55 kcal/mol higher in energy with respect to 3-8a, while 3-8c is just

0.33 kcal/mol higher in energy. Conformations 3-8b, 3-8h and 3-8e are 0.25, 3.55 and

1.45 kcal/mol higher in energy than 3-8a, respectively.

Page 88: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

73

3-8f 3-8b 3-8g 3-8h

3-8c3-8e 3-8a

Input geometry

Optimized geometry

Input geometry

Optimized geometry

3-8d

Figure 3-8 Eight input (dotted lines) and optimized (solid lines) geometries of the 3-8

product

Page 89: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

74

3-9g 3-9b 3-9h 3-9f

3-9e3-9d 3-9a

Input geometry

Optimized geometry

Input geometry

Optimized geometry

3-9c

Figure 3-9 Eight input (dotted lines) and optimized (solid lines) geometries of the 3-9

product

Page 90: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

75

On the other hand, product 3-9 of 2-methyl-p-benzoquinone reaction ended up

with seven conformations after optimization of the eight conformers without saddle

points. In this case conformers 3-9g and 3-9h were optimized to the same conformation.

The minimum energy conformation for this set is 3-9a. Conformation 3-9g (and 3-9h) is

2.64 kcal/mol higher than the minimum. Other conformations 3-9b, 3-9c, 3-9d, 3-9e and

3-9f are respectively 0.09, 0.14, 1.84, 1.88 and 2.43 kcal/mol energetic than the

minimum-energy one.

The conformers and conformations of product 3-10 of the reaction between o-

benzoquinone and NH3 are given in Figure 3-10. As in previous cases, the alphabetical

order is the increasing order of energy of conformations. The Cartesian coordinates of

the optimized geometries are given in Appendix B. In this case, a total of eight

conformers were made simply by replacing the chlorine atom of the eight conformers of

product 3-6 of 2-chloro-p-benzoquinone reaction, with an oxygen atom and replacing the

oxygen atom at the fourth carbon position with a hydrogen atom. Three to four days of

running time on a single processor machine were required for an optimization of each of

these conformers. The optimization gave six different conformations. There are no

saddle points among these conformations. The minimum-energy conformation is 3-10a

and it is exactly same as the 3-10b. The 3-10f and 3-10g conformations are also identical

and are 3.69 kcal/mol higher in energy with respect to the lowest-energy conformation.

On the other hand, the other four conformations 3-10c, 3-10d, 3-10e and 3-10h are

different and are 2.60, 2.66, 3.44 and 6.60 kcal/mol higher in energy, respectively.

Page 91: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

76

3-10a 3-10f 3-10b 3-10g

3-10e3-10c 3-10h

Input geometry

Optimized geometry

Input geometry

Optimized geometry

3-10d

Figure 3-10 Eight input (dotted lines) and optimized (solid lines) geometries of the 3-

10 product

Page 92: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

77

Table 3-1 summarizes three interesting dihedral angles of the minimum-energy

conformation of all products investigated in this section. It can be observed that for all

products except 3-10a, all three dihedral angles are in the same range. The two H-N9-C1-

O7 angles are around –70 and +170 degrees while the H-O7-C1-N9 dihedral angles are

around –40 degrees. The structural representations of these conformations, given in the

figures above, support this observation. This indicates that there is no significant

influence from the substituent in determining the main features of the geometry of the

global minimum among the studied products. It should be pointed out that in all of these

cases, the hydrogen bonded to the oxygen is oriented towards the nitrogen atom

suggesting that intramolecular hydrogen bonding might be a determining factor of

stabilizing this arrangement. However, the conformation 3-10a, which is obtained in the

reaction between o-benzoquinone and NH3, is completely different due to closer carbonyl

groups compared to p-benzoquinone derivatives. In this case, the hydrogen atom of the

OH group is oriented towards (i.e., form hydrogen bonds with) the carbonyl oxygen,

which is closer in this case and also more electronegative than nitrogen.

Table 3-1 Selected dihedral angles (in degrees) of the minimum-energy conformations of the products of reactions between quinones and NH3

Structure H-N9-C1-O7 H-N9-C1-O7 H-O7-C1-N9

3-5a –68.8 169.9 –41.4

3-6a –70.2 167.9 –34.9

3-7a –68.3 170.0 –41.5

3-8a –68.5 171.3 –38.9

3-9a –68.6 170.0 –42.6

3-10a 58.0 –63.5 79.1

Page 93: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

78

3.3.2 Reactions of Quinones with CH3NH2

The reactions between quinones and CH3NH2 form the same kind of products as

in the case of NH3. A scheme of the investigated reactions is shown in Figure 3-3. The

product of the reaction starting from p-benzoquinone (3-1) is 3-11. The two isomeric

products of the reaction of 2-chloro-p-benzoquinone (3-2) are denoted as 3-12 and 3-13,

respectively, for addition at the carbon 1 and carbon 4 while the two products of 2-

methyl-p-benzoquinone (3-3) are numbered as 3-14 and 3-15 in the same way. Finally,

the product of o-benzoquinone (3-4) is labeled as 3-16.

A total of nine conformations were investigated for the 3-11 product. The input

and optimized geometries for this product are given in the Figures 3-11 and 3-12.

Optimized conformations are abbreviated alphabetically in order of increasing energy.

The conformers were obtained by rotation of OH group around the C1–O7 bond axis and

rotation of NH2 group around the C1–N9 bond axis. As it is shown in Figure 3-11, the

first three conformers were made by keeping the H-O7-C1-N9 dihedral angle at +60

degrees while changing the H-N9-C1-O7 dihedral angle in 120-degree increments. As a

result, the H-N9-C1-O7 dihedral angle of the first three conformers, 3-11i, 3-11a and 3-

11c were +60, –60 and 180 degrees, respectively. For the second three conformers, 3-

11d, 3-11e and 3-11f, the H-O7-C1-N9 dihedral angle is 180 degrees while for the last

three conformations, 3-11h, 3-11b and 3-11g (see Figure 3-12), it is –60 degrees. The

dihedral angle of H-N9-C1-O7 is changed similarly for the latter two cases as it is done for

the first three conformers. Time required for the successful optimization of these product

conformers varied between 4 to 15 days using very tight convergence criterion.

Page 94: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

79

3-11i 3-11a 3-11c

3-11e3-11d 3-11f

Input geometry

Optimized geometry

Input geometry

Optimized geometry

Figure 3-11 Six input (dotted lines) and optimized (solid lines) geometries of the 3-11

product

Page 95: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

80

3-11h 3-11b 3-11g

Input geometry

Optimized geometry

Figure 3-12 Three additional input (dotted lines) and optimized (solid lines)

geometries of the 3-11 product

There is no significant change in atom orientations in the optimized geometries

compared to the input geometries for any of the conformers except 3-11a and 3-11g.

These conformers changed their orientations of atoms during the optimization to

configurations identical to 3-11b and 3-11f, respectively. As a result, seven distinct

conformations with no saddle points were found. The global minimum-energy

conformation is 3-11a (or 3-11b). The determined energies of the other conformations

with respect to this minimum are as follows: 0.77 kcal/mol for 3-11c, 1.23 kcal/mol for 3-

11d, 1.78 kcal/mol for 3-11e, 2.39 kcal/mol for 3-11f (and 3-11g), 3.40 kcal/mol for 3-

11h, and 3.46 kcal/mol for 3-11i.

Page 96: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

81

Conformational analysis of the products of reactions of 2-chloro-p-benzoquinone

and 2-methyl-p-benzoquinone with methylamine was done by optimizing 36 conformers

in each case. These conformers consist of both isomeric products, each having 18

different conformers. Conformers were obtained by replacing hydrogen atoms on the

benzoquinone ring of each of the nine p-benzoquinone product conformers (see Figures

3-11 and 3-12) with either chlorine atom for products 3-12 and 3-13 or methyl group for

products 3-14 and 3-15, respectively. Cartesian coordinates of the optimized geometries

of all conformations obtained from these conformers are given in Appendix B.

Out of 18 conformers of the 3-12 product, 16 distinct conformations with no

saddle points were found. The optimized geometries of these conformations are given in

Figure 3-13. The conformations are arranged in order of increasing electronic energies

with the minimum-energy conformation of the 3-12 product being 3-12a. The calculated

energy (in kcal/mol) relative to 3-12a, of the remaining conformations 3-12b through 3-

12p are as follows: 0.60 (3-12b), 1.64 (3-12c), 1.83 (3-12d), 2.38 (3-12e), 2.39 (3-12f),

2.48 (3-12g), 3.73 (3-12h), 3.95 (3-12i), 4.81 (3-12j), 5.00 (3-12k), 5.09 (3-12l), 5.23 (3-

12m), 5.29 (3-12n), 5.31 (3-12o) and 7.23 (3-12p).

The product 3-13 of this reaction gave 14 distinct conformations from

optimization of the 18 conformers. The optimized geometries of these conformations are

shown in Figure 3-14. The minimum energy conformation is 3-13a. The energies (in

kcal/mol) relative to 3-13a are as follows: 0.12 (3-13b), 0.83 (3-13c), 0.86 (3-13d), 1.31

(3-13e), 1.42 (3-13f), 1.75 (3-13g), 1.87 (3-13h), 2.32 (3-13i), 2.55 (3-13j), 3.45 (3-13k),

3.46 (3-13l), 3.56 (3-13m) and 3.72 (3-13n). Each of these conformers needed around 6–

12 days to complete optimization.

Page 97: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

82

3-12e 3-12f 3-12g 3-12h

3-12n3-12m 3-12o 3-12p

3-12a 3-12b 3-12c 3-12d

3-12i 3-12j 3-12k 3-12l

Figure 3-13 The optimized geometries of conformations of the 3-12 product of the reaction between 2-chloro-p-benzoquinone and CH3NH2

Page 98: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

83

3-13e 3-13f 3-13g 3-13h

3-13m 3-13n

3-13a 3-13b 3-13c 3-13d

3-13i 3-13j 3-13k 3-13l

Figure 3-14 The optimized geometries of conformations of the 3-13 product of the reaction between 2-chloro-p-benzoquinone and CH3NH2

Page 99: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

84

Conformational analysis of products 3-14 and 3-15 of the reaction between 2-

methyl-p-benzoquinone and CH3NH2 were done in a similar way as done for 2-chloro-p-

benzoquinone reactions mentioned earlier. The investigated 18 conformers for 3-14 gave

16 different conformations (see Figure 3-15) with no saddle points while the 18

conformers of 3-15 gave 13 different conformations (see Figure 3-16) without any saddle

points after optimizations. These conformers required 3-10 days of running time for the

optimization.

The optimized 16 conformations of 3-14 are given in Figure 3-15. The minimum

energy conformation for this product is 3-14a and all the other conformations are

arranged in order of increasing their electronic energies relative to 3-14a. The relative

energies (in kcal/mol) of these conformations are as follows: 0.78 (3-14b), 1.60 (3-14c),

1.61 (3-14d), 2.21 (3-14e), 2.33 (3-14f), 2.91 (3-14g), 3.59 (3-14h), 4.45 (3-14i), 5.09 (3-

14j), 5.31 (3-14k), 5.53 (3-14l), 5.66 (3-14m), 6.63 (3-14n), 7.20 (3-14o) and 8.07 (3-

14p). It is interesting to point out the large difference in energy that can be observed

between various minimum-energy conformations and the need for a careful analysis of

the lowest-energy one that will be used in determining the energy of reaction.

The optimized 13 conformations of 3-15 are given in Figure 3-16. The minimum

energy conformation for this product is the structure 3-15a and all the other

conformations are arranged in order of increasing their electronic energies relative to the

3-15a. The relative energies (in kcal/mol) of these conformations are as follows: 0.15 (3-

15b), 0.80 (3-15c), 0.94 (3-15d), 1.28 (3-15e), 1.31 (3-15f), 1.85 (3-15g), 1.86 (3-15h),

2.49 (3-15i), 2.53 (3-15j), 3.32 (3-15k), 3.54 (3-15l) and 3.56 (3-15m).

Page 100: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

85

3-14e 3-14f 3-14g 3-14h

3-14n3-14m 3-14o 3-14p

3-14a 3-14b 3-14c 3-14d

3-14i 3-14j 3-14k 3-14l

Figure 3-15 The optimized geometries of conformations of the 3-14 product for the reaction between 2-methyl-p-benzoquinone and CH3NH2

Page 101: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

86

3-15e 3-15f 3-15g

3-15l 3-15m

3-15a 3-15b 3-15c 3-15d

3-15h 3-15i 3-15j

3-15k

Figure 3-16 The optimized geometries of conformations of the 3-15 product for the reaction between 2-methyl-p-benzoquinone and CH3NH2

Page 102: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

87

Conformers for the product of the reaction between o-benzoquinone and CH3NH2

were made by using the 18 conformers of the 3-12 product by replacing the chlorine atom

with an oxygen atom and the oxygen atom at the carbonyl group with a hydrogen atom.

However, the optimization of theses conformers produced only 11 distinct conformations

for this product. There were no saddle points among these conformations. The

optimizations of these conformers took around 12 days for a successful completion. The

optimized geometries of these conformations are shown in Figure 3-17 and Cartesian

coordinates of the optimized geometries are given in Appendix B.

In Figure 3-17, the structures are arranged in order of increasing electronic

energies with respect to the minimum-energy conformation, 3-16a. The relative energies

(in kcal/mol) of these conformations relative to the global minimum are as follows: 0.58

(3-16b), 1.33 (3-16c), 1.80 (3-16d), 2.59 (3-16e), 2.59 (3-16f), 3.33 (3-16g), 3.94 (3-

16h), 5.21 (3-16i), 5.97 (3-16j) and 7.36 (3-16k).

Selected dihedral angles of the lowest-energy conformations for all products of

quinone reactions with CH3NH2 are shown in Table 3-2. Similar to the products of the

reaction with NH3, the dihedral angles of the products of p-benzoquinone derivatives are

not significantly different. The H-N9-C1-O7 dihedral angle is around –60 degrees, the C-

N9-C1-O7 dihedral angle is around +175 degrees, and the H-O7-C1-N9 dihedral angle is

around 40 degrees. All the products minima of p-benzoquinone derivatives have a

similar arrangement of atoms at the reactive carbon center. Comparing the

benzoquinones (substituted or not), it can be noted that a substituent in position 2 modify

to a greater extend the most stable conformation than a substituent in position 3. For

example, in the 3-12a conformation which has a chloro substituent on carbon 2, the H-

Page 103: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

88

O7-C1-N9 and C-N9-C1-O7 dihedral angles are –48.8 and +172.8 degrees, respectively,

whereas those of 3-13a, which has the chloro substituent on carbon 3 are –43.1 and

+174.2 degrees, respectively, which are closer to the values in 3-11a. The same trend is

observed for the product of methyl-p-benzoquinone. Similar to the case of NH3 products,

the 3-16a conformation of the o-benzoquinone product has completely different

orientation (i.e., dihedral angles).

3-16e 3-16f 3-16g 3-16h

3-16a 3-16b 3-16c 3-16d

3-16i 3-16j 3-16k

Figure 3-17 The optimized geometries of conformations of the 3-16 product of the

reaction between o-benzoquinone and CH3NH2

Page 104: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

89

Table 3-2 Selected dihedral angles (in degrees) of the minimum-energy conformations of the products of reactions between quinones and CH3NH2

Structure H-N9-C1-O7 C-N9-C1-O7 H-O7-C1-N9

3-11a –60.3 174.5 –43.2

3-12a –60.3 172.8 –48.8

3-13a –60.2 174.2 –43.1

3-14a –62.8 172.0 –39.3

3-15a –60.1 174.5 –44.4

3-16a 66.4 –59.7 –79.3

3.3.3 Reaction of p-Benzoquinone with C2H5NH2

To determine the influence of the N-containing nucleophile, the reaction between

p-benzoquinone and C2H5NH2 was investigated. The product of this reaction is

numbered as 3-17. The reactions of C2H5NH2 with other quinones were not carried out

due to time limitation. Conformational analysis of the product of this reaction was more

difficult than the previous cases due to the inclusion of an additional C–C bond suitable

for rotation. A total of 27 input conformers were created for the conformational analysis.

These conformers were made starting with the nine input conformers of the product of

the reaction between p-benzoquinone and CH3NH2 (see Figures 3-11 and 3-12). Each of

these nine conformers led to three input conformers of the 3-17 product by replacing each

of the hydrogen atoms of the methyl group attached to the amine nitrogen with another

methyl group. All of these conformers were optimized using normal convergence

Page 105: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

90

criterion. The optimization of a conformer took around 4–10 days. These conformers

yielded 19 different conformations after optimization, without any saddle points.

Ball and stick structural representation of these optimized conformations are

given in Figure 3-18 and the conformations are arranged in increasing order of relative

electronic energies. The minimum-energy conformation of the product is 3-17a. The

relative energies (in kcal/mol) of the other conformations with respect to 3-17a are as

follows: 0.70 (3-17b), 1.26 (3-17c), 1.52 (3-17d), 1.68 (3-17e), 1.75 (3-17f), 1.89 (3-

17g), 2.11 (3-17h), 2.34 (3-17i), 2.50 (3-17j), 3.40 (3-17k), 3.44 (3-17l), 3.78 (3-17m),

3.83 (3-17n), 4.28 (3-17o), 4.41 (3-17p), 4.78 (3-17q), 6.10 (3-17r) and 6.78 (3-17s).

The Cartesian coordinates of these products conformations are given in Appendix B.

Page 106: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

91

3-17f 3-17g 3-17h 3-17i

3-17q3-17p 3-17r 3-17s

3-17a 3-17b 3-17c 3-17d

3-17k 3-17l 3-17m 3-17n

3-17j

3-17e

3-17o

Figure 3-18 The optimized geometries of conformations of the 3-17 product of the reaction between p-benzoquinone and C2H5NH2

Page 107: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

92

3.3.4 Reaction of p-Benzoquinone with Lysine

The reaction of p-benzoquinone with lysine, which is an amino acid containing

two amino groups, was investigated. Only the reaction of the terminal amino group of

lysine was considered. A complete conformational analysis of the product was not

carried out because of the large amount of time necessary for optimizing one

conformation and the large number of conformations that need to be considered. In this

situation, only one conformer was optimized at very tight convergence limits and it took

42 days for the completion. Also, analysis of optimization cycles suggested that even

using a normal convergence criterion, the optimization would need over 30 days of

running time. This single conformer was created starting from the minimum-energy

conformation of the reaction with C2H5NH2 by extending the hydrocarbon chain and

attaching the amino acid moiety at the end of the chain. The optimized geometries of the

product and the nucleophile agent lysine are shown in Figure 3-19. The product is

numbered as 3-19.

3-193-18

A B

Figure 3-19 The optimized geometries of lysine nucleophile 3-18 (panel a) and product, 3-19 (panel b) of the reaction between p-benzoquinone and lysine

Page 108: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

93

A comparison of selected dihedral angles of the products of reactions of p-

benzoquinone with NH3, CH3NH2, C2H5NH2 and lysine are given in Table 3-3. The four

product conformations are 3-5a, 3-11a, 3-17a and 3-19, respectively. The H-N9-C1-O7

dihedral angles are in the range –60 to –69 degrees and the maximum angle of this is

found in the product 3-5a (–68.8 degrees). The C-N9-C1-O7 dihedral angles (or H-N9-C1-

O7 for 3-5a) are in the range of +169 to +175. In this case, all the products with alkyl

amines are quite similar while for 3-5a the angle is +169.9 degrees. While the H-O7-C1-

N9 dihedral angle for all alkyl amine products are around –43 the product of reaction with

NH3 has a slightly smaller dihedral angle at –41.4 degrees.

Table 3-3 Selected dihedral angles (in degrees) of the minimum-energy conformations of the products of reactions between p-benzoquinone and four investigated nucleophiles

Structure H-N9-C1-O7 C-N9-C1-O7 H-O7-C1-N9

3-5a –68.8 169.9 –41.4

3-11a –60.3 174.5 –43.2

3-17a –61.3 173.7 –42.3

3-19 –60.4 174.8 –42.8

Page 109: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

94

3.4 Determining and Characterizing the Transition States

The investigated reactions, even though they are elementary, can be seen as

having two steps occurring simultaneously: the forming of a new C1–N9 bond and the

hydrogen transfer from N9 to O7. Therefore, the transition states of these reactions,

which will be called, more correctly, saddle points herein, can be therefore seen as proton

transfer processes. For all reactions except the one with lysine, we examined three

different ways of proton transfer as the reaction progresses. In other words, there are

three different pathways considered leading to the products. The first saddle point

considered is the direct transfer of hydrogen from the nitrogen atom to the oxygen. The

second saddle point includes a water molecule (seen as the solvent) to produce an indirect

hydrogen transfer through a water molecule. The third transition state is similar to the

one with water but a methanol molecule replaces the water molecule to give an indirect

hydrogen transfer through a methanol molecule. In the following sections, these three

saddle points are labeled as α (direct transfer), β (through a water molecule) or γ (through

a methanol molecule), respectively. In these latter two cases, the water or the methanol

molecule takes hydrogen from the nucleophile and simultaneously giving hydrogen of its

own to the oxygen atom to form the product and regenerate the solvent molecule.

Therefore, the process of these two transition states can also be seen as a pseudo-catalytic

process.

The optimizations of all saddle points reported here were carried out using very

tight convergence limits. All saddle point were characterized as first-order saddle points

with only one imaginary frequency, associated with the reaction coordinate.

Page 110: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

95

In a number of figures below showing the saddle points for all the investigated

reactions, the α saddle points are always presented in purple boxes, the β saddle points

are in red boxes, and the γ saddle points are in yellow boxes. The number part of the

label is the same number as the product that the saddle point forms. For example, the

three saddle points, describing three different reaction pathways, leading to the 3-5

product are denoted as 3-5α, 3-5β and 3-5γ. When more than one conformation is

possible and determined, Roman numerals are used to define them in increasing order of

energy. Cartesian coordinates of the optimized saddle points are given in Appendix B.

An energy diagram for each reaction is also presented below, and in these figures

the saddle points are enclosed in boxes of same color as described above while the

reactant molecules are in blue colored boxes and the products are in green colored boxes.

The relative energies given in these diagrams are calculated with respect to the (sum of

the) energies of reactants.

3.4.1 Reactions of Quinones with NH3

The optimized geometries of the three investigated saddle points of the reaction

between p-benzoquinone and NH3 leading to the 3-5 product are given in Figure 3-20.

The optimization of these three saddle points took 1, 4 and 7 days respectively for the 3-

5α, 3-5β and 3-5γ. The imaginary frequencies of the 3-5α, 3-5β and 3-5γ were found to

be at 1550i, 1156i and 1187i cm-1, respectively. These frequencies are associated with

normal modes that involve a large contribution of vibration of the hydrogen between the

N and O atoms. For example, in the 3-5α saddle point, hydrogen is moving between the

Page 111: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

96

N9 and O7 atoms. In the other two cases, the imaginary frequency is associated with

simultaneous movements of two hydrogen atoms. For example, in the 3-5β saddle point,

when the hydrogen from the N9 move towards the oxygen atom of the water molecule,

the hydrogen in the water molecule which is oriented towards the O7 atom of the quinone

ring moves toward O7.

The energy diagram of this reaction is given in Figure 3-21. In this case, the

energies of the saddle points and the 3-5 product are relative to the sum of the energies of

3-1 and NH3. According to the calculations, the reaction is an exothermic process with

the reaction energy of –6.95 kcal/mol. This energy of reaction is determined based on the

3-5a product conformation. The barrier height of the reaction through the 3-5α saddle

point is high at 33.95 kcal/mol, and is dramatically decreased when the reaction occurs

through either of the other two saddle points (3-5β and 3-5γ). The values for the latter

two are 7.58 and 7.71 kcal/mol, respectively. It can be concluded that the reaction will be

faster in protic solvents. Water showed a slight preference compared to methanol.

3-5β3-5α 3-5γ

Figure 3-20 The optimized geometries of the three saddle points leading to the 3-5 product of the reaction between p-benzoquinone and NH3

Page 112: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

97

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

33.9

7.77.6

–7.0

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

33.9

7.77.6

–7.0

Figure 3-21 The energy diagram of the reaction between p-benzoquinone and NH3 leading to the 3-5 product

The transition states studied for the reaction between 2-chloro-p-benzoquinone

and NH3 involves finding transition states for both 3-6 and 3-7 products. Figures 3-22

and 3-23 show the investigated transition states leading to these two products,

respectively. Two possible conformations for the β and γ saddle points were

investigated. One conformation has the solvent molecule residing on the side of the

chloro- group while the other conformation has the solvent molecule on the opposite side

to the substituent. In the Figures 3-22 and 3-23, these conformations are denoted by

using superscripted Roman numbers, in which i represents the lowest-energy

conformation. For example, the two conformations of 3-6β are given as the 3-6βi and 3-

6βii. The optimization of these transition states took around 5 to 8 days. The input

Page 113: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

98

geometries of these saddle points were made by replacing relevant hydrogen atoms on the

quinone ring with a chlorine atom.

The imaginary frequencies of the saddle points leading to the 3-6 product (see

Figure 3-22) are as follows: 1572i (3-6α), 1223i (3-6βi), 1315i (3-6βii), 1258i (3-6γi) and

1254i (3-6γii) cm-1. In the 3-6β and 3-6γ saddle points, the conformation with the solvent

molecule residing on the opposite side (3-6βi and 3-6γi, respectively) has lower energy

than the other. The energy differences between the 3-6βi and 3-6βii conformations is 2.70

kcal/mol while between the 3-6γi and 3-6γii conformations is 2.12 kcal/mol. It can be

observed that the saddle points with lower imaginary frequencies are lower in energy

than the saddle points with higher imaginary frequencies.

The imaginary frequencies of the saddle points leading to the 3-7 product (see

Figure 3-23) are as follows: 1564i (3-7α), 1188i (3-7βi), 1196i (3-7βii), 1227i (3-7γi) and

1230i (3-7γii). Similar to the previous case, lower energies were found when the solvent

molecule is on the opposite side (3-7βi and 3-7γi) but the energy differences between

conformations being smaller. The energy difference between the 3-7βi and 3-7βii is 0.07

and that between the 3-7γi and 3-7γii is 0.05 in kcal/mol.

These results indicate that there are some destabilizing electronic effects between

the substituent chlorine group and the solvent molecule (including the transferring

hydrogen atoms) that are significant only when the chloro substituent is at carbon 2

position and not at carbon 3 position. However, the energies of the 3-7 saddle point

series are higher than the analogous of the 3-6 saddle point series.

Page 114: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

99

3-6βi i

3-6γi i

3-6βi

3-6γi

3-6α

Figure 3-22 The optimized geometries of five saddle points leading to the 3-6 product of the reaction between 2-chloro-p-benzoquinone and NH3

Page 115: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

100

3-7βi i

3-7γi i

3-7βi

3-7γi

3-7α

Figure 3-23 The optimized geometries of five saddle points leading to the 3-7 product of the reaction between 2-chloro-p-benzoquinone and NH3

Page 116: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

101

Figures 3-24 show the energy diagrams for the reaction between NH3 and 2-

chloro-p-benzoquinone leading to the 3-6 and 3-7 products. The relative energies of

saddle points and the products were calculated with reference to the sum of the energies

of the reactants. The energy levels and the values are shown in different colors, and these

colors are the same as the boxes that enclosed the appropriate molecule.

The energy of the reaction giving the 3-6 product is –9.58 kcal/mol. The barrier

height of the reaction through the 3-6α saddle point is 30.97 kcal/mol while that through

the other two saddle points, 3-6βi and 3-6γi, are 4.62 and 4.61 kcal/mol, respectively. On

the other hand, for the formation of the 3-7 product, the energy of the reaction was found

to be less negative at –6.97 kcal/mol. The barrier height of this reaction through the 3-7α

saddle point is 33.81 kcal/mol and that of the 3-7βi and 3-7γi saddle points are 7.58 and

7.65 kcal/mol, respectively. In both cases, the reaction via β saddle point has the lowest

barrier height while reaction through the direct hydrogen transfer is significantly higher.

There is no significant difference between the barrier heights using different solvent

molecules. Because all three saddle points of the reaction leading to the 3-6 product have

lower barrier heights than the equivalent saddle points giving the 3-7 product, the

reaction at the carbonyl position 1 leading to the 3-6 product is predicted to be much

easier than at the carbonyl 4 position leading to the 3-7 product.

Page 117: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

102

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

30.9

4.64.6

–9.6

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

30.9

4.64.6

–9.6

a

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

33.8

7.67.6

–7.0

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

33.8

7.67.6

–7.0

b

Figure 3-24 The energy diagrams of the reaction between 2-chloro-p-benzoquinone and NH3 leading to the 3-6 product (panel a) and to the 3-7 product (panel b)

Page 118: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

103

Investigation of the saddle points of the reaction between 2-methyl-p-

benzoquinone and NH3 was carried out in a similar way to the 2-chloro-p-benzoquinone

case discussed above. Input geometries for the optimizations were prepared by replacing

chlorine from the input geometries of 2-chloro-p-benzoquinone saddle points with methyl

groups. Each saddle point optimization took around 3 – 13 days.

Figure 3-25 shows all the saddle point geometries that are leading to the 3-8

product of the reaction between 2-methyl-p-benzoquinone and NH3. The imaginary

frequencies of these saddle points are as follows: 1567i (3-8α), 1153i (3-8βi), 1183i (3-

8βii), 1191i (3-8γi) and 1208i (3-8γii). The energy difference between the 3-8βi and 3-8βii

saddle points is 0.66 kcal/mol. On the other hand, the difference between the 3-8γi and 3-

8γii saddle points is 0.46 kcal/mol.

Figure 3-26 shows all the saddle point geometries that are leading to the 3-9

product of the reaction. The imaginary frequencies for them are as follows: 1545i (3-9α),

1130i (3-9βi), 1139i (3-9βii), 1161i (3-9γi) and 1168i (3-9γii). The energy difference

between the 3-9βi and 3-9βii saddle points is 0.10 kcal/mol while the difference between

the 3-9γi and 3-9γii saddle points is 0.06 kcal/mol.

The effect of the methyl substituent on the energy differences between the

conformations of two β and two γ saddle points is much lower when compared to the

chloro substituent. These observed differences imply that the electronic effects of the

methyl group are less significant than those of the chloro substituent. Here also the effect

is very small when the substituent is at carbon 3 position.

Page 119: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

104

3-8βi i

3-8γi i

3-8βi

3-8γi

3-8α

Figure 3-25 The optimized geometries of five saddle points leading to the 3-8 product of the reaction between 2-methyl-p-benzoquinone and NH3

Page 120: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

105

3-9βi i

3-9γi i

3-9βi

3-9γi

3-9α

Figure 3-26 The optimized geometries of five saddle points leading to the 3-9 product of the reaction between 2-methyl-p-benzoquinone and NH3

Page 121: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

106

Figure 3-27 shows the energy diagrams for the two reactions of 2-methyl-p-

benzoquinone leading to the 3-8 and 3-9 products. The calculated energies of reaction

were –6.16 and –5.91 kcal/mol for the 3-8 and 3-9 products, respectively. Again, the

methyl substituent does not influence the preference for a product versus the other to the

same extent as chloro substituent does.

The barrier height of the reaction leading to the 3-8 product through the 3-8α

saddle point is 34.32 kcal/mol and that of the reaction through the 3-8βi and 3-8γi saddle

points are 8.04 and 8.19 kcal/mol, respectively. Similarly, barrier height of the reaction

leading to the 3-9 product through the 3-9α saddle point is 34.97 kcal/mol. The reaction

through the 3-9βi has a barrier height of 8.53 kcal/mol and that with the 3-9γi is 8.71

kcal/mol.

Similar to the previous reactions, both reactions have the lowest-energy barrier

height for the saddle point in which the hydrogen transfers occur through a water

molecule. The methanol-containing saddle points also show lower barrier heights, which

are just slightly higher in energy than those containing water. When comparing the two

reactions, the reaction producing the 3-8 has lower barrier heights for all saddle points

than the reaction leading to the 3-9. Therefore, the attack of the nucleophile to the

carbonyl 1 is more likely than the attack at carbonyl 4.

Page 122: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

107

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

34.3

8.28.0

–6.2

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

34.3

8.28.0

–6.2

a

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

34.9

8.78.5

–5.9

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

34.9

8.78.5

–5.9

b

Figure 3-27 The energy diagrams of the reaction between 2-methyl-p-benzoquinone

and NH3 leading to the 3-8 product (panel a) and to the 3-9 product (panel b)

Page 123: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

108

The saddle points investigated for the reaction of o-benzoquinone with NH3 are

given in Figure 3-28. In this case, just one possible conformation of each of the three

saddle points was investigated. The optimization of these saddle points took around 2 - 9

days of running time for completion. The observed imaginary frequencies are as follows:

1563i (3-10α), 1168i (3-10β) and 1217i (3-10γ).

The energy diagram for the reaction is given in Figure 3-29. The reaction energy

calculated for this reaction is –16.66 kcal/mol. The three transition states have barrier

heights of 25.15, –1.11 and –1.03 kcal/mol for 3-10α, 3-10β and 3-10γ, respectively.

These energies were calculated relative to the energy of reactants. Similarly to the

previously discussed reactions lowest barrier height was observed for the 3-10β saddle

point. The 3-10γ saddle point is just above the 3-10β saddle point and the 3-10α saddle

point has a large barrier height. It should be noted that the barrier heights involving

hydrogen transfer through water or methanol have negative values. This may seem

unreasonable but is a common feature for bimolecular reactions with strong van der

Waals (or electrostatic) intermolecular interactions and low barrier heights compared to

these van der Waals complexes. The results obtained here suggest that the interaction

between the reactants (quinone, ammonia, and water) is stronger than for previous

quinones. This makes the saddle point lower in energy that the separated reactants giving

therefore a negative barrier height.

Page 124: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

109

3-10β3-10α 3-10γ

Figure 3-28 The optimized geometries of three saddle points leading to the 3-10 product of the reaction between o-benzoquinone and NH3

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

25.2

– 1.0– 1.1

–16.7

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

25.2

– 1.0– 1.1

–16.7

Figure 3-29 The energy diagram of the reaction between o-benzoquinone and NH3 leading to the 3-10 product

Page 125: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

110

3.4.2 Reactions of Quinones with CH3NH2

In this section, the results of the reactions of the four investigated quinones with

CH3NH2 are presented in a similar way to the section above. All figures and tables are

arranged and featured similar to the above section. Due to the a much longer

optimization running time and the higher number of possibilities present, investigating

the saddle points of the reactions with CH3NH2 was more complicated than the case with

NH3. The α-β-γ labels of the saddle points are the same to the cases of reactions with

NH3. Cartesian coordinates for all the saddle points describe in this section are given in

Appendix B.

Figure 3-30 shows the optimized saddle points for the reaction of p-benzoquinone

with CH3NH2. The product of this reaction is 3-11 and therefore saddle points are

numbered as 3-11α, 3-11β and 3-11γ. Optimization time for these saddle points was

around 10 days. Saddle point 3-11α has only a single conformation and its imaginary

frequency is 1578i cm-1. The other two saddle points have two conformations each that

are different with respect to the orientation of the amine methyl group. The 3-11βi saddle

point is the minimum and 3-11βii is 0.29 kcal/mol higher in energy compared to it. In a

same way, 3-11γi is 0.39 kcal/mol lower in energy than and 3-11γii. The calculated

imaginary frequencies are 1065i cm-1 for 3-11βi, 1040i cm-1 for 3-11βii, 1104i cm-1 for 3-

11γi and 1069i cm-1 for 3-11γii. The energy diagram for this reaction is given in Figure 3-

31. The energy of the reaction is –9.12 kcal/mol and the barrier heights of the three

saddle points are 29.25, 2.37 and 2.66 kcal/mol respectively for 3-11α, 3-11βi and 3-11γi.

Page 126: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

111

3-11βi i

3-11γi i

3-11βi

3-11γi

3-11α

Figure 3-30 The optimized geometries of five saddle points leading to the 3-11 product of the reaction between p-benzoquinone and CH3NH2

Page 127: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

112

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

29.2

2.72.4

–9.1

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

29.2

2.72.4

–9.1

Figure 3-31 The energy diagram of the reaction between p-benzoquinone and CH3NH2 leading to the 3-11 product

The saddle points investigated for the reaction of 2-chloro-p-benzoquinone and

CH3NH2 are presented in Figures 3-32 and 3-33. In this case, input geometries for the

optimization were made by replacing relevant hydrogen atoms with chlorine atoms in the

saddle points of p-benzoquinone reaction with CH3NH2 (see Figure 3-29). Totally 20-

saddle point conformations were investigated leading to products 3-12 and 3-13. Each

reaction has ten saddle points. The optimization process required around 8 – 10 days of

computer running time for each of these saddle points.

In both cases, α saddle point has two conformations while β and γ saddle points

have four each (see Figures 3-32 and 3-33). Those conformations are arranged in order of

increasing their electronic energy.

Page 128: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

113

3-12βi 3-12βi ii

3-12γi 3-12γi ii

3-12βi i

3-12γi i

3-12αii3-12αi

3-12βiv

3-12γiv

Figure 3-32 The optimized geometries of ten saddle points leading to the 3-12 product of the reaction between 2-chloro-p-benzoquinone and CH3NH2

Page 129: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

114

3-13βi 3-13βi ii

3-13γi 3-13γi ii

3-13βi i

3-13γi i

3-13αii3-13αi

3-13βiv

3-13γiv

Figure 3-33 The optimized geometries of ten saddle points leading to the 3-13 product of the reaction between 2-chloro-p-benzoquinone and CH3NH2

Page 130: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

115

The energy difference between 3-12αi and 3-12αii is 0.78 kcal/mol while that

between 3-13αi and 3-13αii is 0.11 kcal/mol. This implies that when substituent chlorine

group is farther from the reactive end (like in the 3-13αi and 3-13αii), the influence of the

substituent on the structure of the saddle point is less significant. Moreover, this

phenomenon can be seen for the other two types of saddle points. The calculated

energies for 3-12βii, 3-12βiii and 3-12βiv relative to 3-12βi are 3.14, 3.40 and 4.73

kcal/mol, respectively, and energies of 3-13βii, 3-13βiii and 3-13βiv are 0.01, 0.25 and 0.43

kcal/mol, respectively, relative to 3-13βi. The energies for 3-12γii, 3-12γiii and 3-12γiv

relative to the 3-12γi are respectively 2.74, 3.25 and 4.24 kcal/mol while those for 3-13γii,

3-13γiii and 3-13γiv relative to the 3-13γi are 0.01, 0.37 and 0.51 kcal/mol. In this case, it

is more evident that for the saddle points involving solvent molecules, the relative

energies are more affected by the substituent group. When the substituent is far, i.e. at

the 3rd carbon, the energy difference among the conformations are lower than the

conformations with substituent at 2nd carbon. The major reason for this might be the

electronic repulsion between the substituent group and the solvent molecule. The energy

diagrams for these two reactions are given in Figure 3-34.

The imaginary frequencies (in cm-1) obtained for the saddle points of these

reactions are as follows: for the 3-12 saddle points, 1607i (3-12αi), 1647i (3-12αii), 1112i

(3-12βi), 1086i (3-12βii), 1352i (3-12βiii), 1314i (3-12βiv), 1190i (3-12γi), 1368i (3-12γii),

1154i (3-12γiii), 1344i (3-12γiv) and for the 3-13 saddle points, 1590i (3-13αi), 1592i (3-

13αii), 1086i (3-13βi), 1094i (3-13βii), 1066i (3-13βiii), 1076i (3-13βiv), 1154i (3-13γi),

1149i (3-13γii), 1114i (3-13γiii), 1117i (3-13γiv). One can see that the higher imaginary

frequencies are associated with saddle points that are higher in energy.

Page 131: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

116

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

26.2

-0.6-0.8

–12.6

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

26.2

-0.6-0.8

–12.6

a

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

28.9

2.62.3

–9.3

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

28.9

2.62.3

–9.3

b

Figure 3-34 The energy diagrams of the reaction between 2-chloro-p-benzoquinone and CH3NH2 leading to the 3-12 product (panel a) and to the 3-13 product (panel b)

Page 132: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

117

The energy for the reaction giving 3-12 is –12.62 kcal/mol and that for the

reaction giving 3-13 is –9.30 kcal/mol. The calculated barrier heights associated with 3-

12αi, 3-12βi and 3-12γi are 26.22, –0.82 and –0.55 kcal/mol respectively. As well, the

calculated barrier heights associated with 3-13αi, 3-13βi and 3-13γi are 28.92, 2.28 and

2.55 kcal/mol respectively. In the former case, the calculated barrier height values are

negative, again, an indication of stronger van der Waals interactions and lower barrier

starting from these complexes. A better understanding would require a careful analysis

on the van der Waals complexes but this study is prohibited at this time. As seen for

other reactions, both β and γ saddle points have drastically lower values of barrier heights

than the α saddle point. On the other hand, formation of the product 3-12 is much easier

than the formation of 3-13 in either reaction pathway.

Investigation of the saddle points for the reaction of CH3NH2 with 2-methyl-p-

benzoquinone was carried out similar to the case of 2-chloro-p-benzoquinone. The input

geometries were made by replacing chlorine group in all 2-chloro-p-benzoquinone saddle

points with a methyl group. The optimization process of these saddle points took around

4–5 days. The optimized conformations of the saddle points are shown in Figures 3-35

and 3-36. Figure 3-35 presents the saddle points leading to the product 3-14 while Figure

3-36 presents those leading to the product 3-15. The imaginary frequencies (in cm-1)

obtained for these saddle points are as follows: for the 3-14 saddle points, 1589i (3-14αi),

1619i (3-14αii), 1045i (3-14βi), 1102i (3-14βii), 1073i (3-14βiii), 1012i (3-14βiv), 1098i

(3-14γi), 1162i (3-14γii), 1115i (3-14γiii), 1042i (3-14γiv) and for the 3-15 saddle points,

1573i (3-15αi), 1573i (3-15αii), 1038i (3-15βi), 1051i (3-15βii), 1019i (3-15βiii), 1033i (3-

15βiv), 1070i (3-15γi), 1087i (3-15γii), 1034i (3-15γiii), 1049i (3-15γiv).

Page 133: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

118

3-14βi 3-14βi ii

3-14γi 3-14γi ii

3-14βi i

3-14γi i

3-14αii3-14αi

3-14βiv

3-14γiv

Figure 3-35 The optimized geometries of ten saddle points leading to the 3-14 product

of the reaction between 2-methyl-p-benzoquinone and CH3NH2

Page 134: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

119

3-15βi 3-15βi ii

3-15γi 3-15γi ii

3-15βi i

3-15γi i

3-15αii3-15αi

3-15βiv

3-15γiv

Figure 3-36 The optimized geometries of ten saddle points leading to the 3-15 product

of the reaction between 2-methyl-p-benzoquinone and CH3NH2

Page 135: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

120

The energy difference between 3-14αi and 3-14αii is 0.03 kcal/mol while that

between 3-15αi and 3-15αii is 0.04 kcal/mol. The calculated energies for 3-14βii, 3-14βiii

and 3-14βiv relative to the 3-14βi are 0.68, 1.77 and 2.09 kcal/mol, respectively, and

energies for 3-15βii, 3-15βiii and 3-15βiv relative to the 3-15βi are 0.14, 0.29 and 0.41

kcal/mol, respectively. The energies for 3-14γii, 3-14γiii and 3-14γiv relative to the 3-14γi

are respectively 0.48, 1.70 and 2.22 kcal/mol while those for 3-15γii, 3-15γiii and 3-15γiv

relative to the 3-15γi are 0.10, 0.40 and 0.48 kcal/mol. In this case, the calculated energy

differences between the two α saddle point conformations for both reactions are very low.

However, for β and γ saddle points, when the methyl group is at carbon 2 the energy

differences between the conformations are higher than when methyl group is connected

to carbon 3. Therefore, there is an apparent significant effect from the methyl group in

destabilizing certain conformations of these saddle points. This may be due to the steric

effects between the methyl group and the solvent molecule.

The energy diagrams for these two reactions are given in Figure 3-37. The

energy for the reaction giving 3-14 is –8.93 kcal/mol and that of the reaction giving 3-15

is –8.07 kcal/mol. The calculated barrier heights associated with 3-14αi, 3-14βi and 3-

14γi are 29.85, 2.89 and 3.19 kcal/mol, respectively. Similarly, the calculated barrier

heights associated with 3-15αi, 3-15βi and 3-15γi are 30.33, 3.30 and 3.62 kcal/mol

respectively. Similar to the p-benzoquinone and 2-chloro-p-benzoquinone reactions, β

and γ saddle points have drastically lower values of barrier heights than the α-saddle

point in both reactions. On the other hand, formation of the product 3-14 is much easier

than the formation of 3-15 in either pathway.

Page 136: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

121

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

29.8

3.22.9

–8.9

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

29.8

3.22.9

–8.9

a

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

30.3

3.63.3

–8.1

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

30.3

3.63.3

–8.1

b

Figure 3-37 The energy diagrams of the reaction between 2-methyl-p-benzoquinone

and CH3NH2 leading to the 3-14 product (panel a) and to the 3-15 product (panel b)

Page 137: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

122

For the reaction between CH3NH2 and o-benzoquinone giving the product 3-16,

the optimized saddle point conformations are given in Figure 3-38. The input conformers

were made by replacing both of the hydrogen atoms on nitrogen, one at a time with a

methyl group using the three saddle point conformations of the reaction with NH3 (see

Figure 3-28). The optimization process of these saddle points took around 4 – 5 days.

The imaginary frequencies (in cm-1) obtained for these saddle points are as

follows: 1607i (3-16αi), 1637i (3-16αii), 1014i (3-16βi), 1054i (3-16βii), 1070i (3-16γi),

1085i (3-16γii). The energy difference between 3-16αi and 3-16αii is 3.92 kcal/mol. The

energy difference between 3-16βi and 3-16βii is 4.80 kcal/mol while that between 3-16γi

for 3-16γii is 4.88 kcal/mol.

The energy diagram for this reaction is given in Figure 3-39. The energy of the

reaction is –18.26 kcal/mol. The calculated barrier heights associated with 3-16αi, 3-16βi

and 3-16γi are 20.71, –6.20 and –5.87 kcal/mol respectively. Similar to the other

quinones the reaction is more favorable to occur through β and γ saddle points. The

calculated barrier heights for these two saddle points are negative because are calculated

with respect to energies are separated reactants, not to the van der Waals complex of the

reactants.

Page 138: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

123

3-16βi i

3-16γi i

3-16βi

3-16γi

3-16αii3-16αi

Figure 3-38 The optimized geometries of six saddle points leading to the 3-16 product of the reaction between o-benzoquinone and CH3NH2

Page 139: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

124

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

20.7

– 5.9– 6.2

–18.3

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0

20.7

– 5.9– 6.2

–18.3

Figure 3-39 The energy diagram of the reaction between o-benzoquinone and CH3NH2 leading to the 3-16 product

3.4.3 Reaction of p-Benzoquinone with C2H5NH2

The reaction between p-benzoquinone and C2H5NH2 was investigated using three

types of saddle points. A total of 14 conformations were optimized including two α

saddle point conformations and six conformations each for β and γ saddle points. Input

geometries were made using the five saddle point conformations of the reaction between

p-benzoquinone and CH3NH2 (see Figure 3-30) by replacing one hydrogen of the methyl

group on nitrogen with a methyl group, one at a time. For example, using the 3-11α

saddle point, three of starting geometries were obtained. However, one of the α saddle

Page 140: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

125

point optimization calculations did not give an optimized saddle point. Each

optimization took around 3 – 6 days for successful completion.

The optimized conformations of the two α saddle points are shown in Figure 3-40.

Calculated imaginary frequencies of these saddle points are 1577i cm-1 for 3-17αi and

1600i cm-1 for 3-17αii. The energy difference between 3-17αi and 3-17αii is just 0.09

kcal/mol.

The optimized conformations of the six β saddle points are shown in Figures 3-

41. Calculated imaginary frequencies (in cm-1) of these saddle points are as follows:

1035i (3-17βi), 987i (3-17βii), 1039i (3-17βiii), 1028i (3-17βiv), 1043i (3-17βv) and 989i

(3-17βvi). The relative energies of β-saddle points are 0.36 for 3-17βii, 1.46 for 3-17βiii,

1.63 for 3-17βiv, 2.01 for 3-17βv and 2.22 for 3-17βvi in kcal/mol with respect to the 3-

17βi.

3-17αi 3-17αii

Figure 3-40 The optimized geometries of two α saddle points leading to the 3-17 product of the reaction between p-benzoquinone and C2H5NH2

Page 141: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

126

3-17βi 3-17βi ii

3-17βiv 3-17βvi

3-17βi i

3-17βv

Figure 3-41 The optimized geometries of six β saddle points leading to the 3-17 product of the reaction between p-benzoquinone and C2H5NH2

The optimized conformations of the six γ saddle points are shown in Figure 3-42.

Calculated imaginary frequencies (in cm-1) of these saddle points are as follows: 1071i

(3-17γi), 1053i (3-17γii), 1086i (3-17γiii), 1045i (3-17γiv), 1078i (3-17γv) and 986i (3-

17γvi). The relative energies calculated for γ saddle points with respect to the lowest-

energy 3-17γi one are 0.24 for 3-17γii, 1.46 for 3-17γiii, 1.72 for 3-17γiv, 1.95 for 3-17γv

and 2.07 for 3-17γvi in kcal/mol.

Page 142: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

127

3-17γi 3-17γi ii

3-17γiv 3-17γvi

3-17γi i

3-17γv

Figure 3-42 The optimized geometries of six γ saddle points leading to the 3-17 product of the reaction between p-benzoquinone and C2H5NH2

The energy diagram for this reaction is given in Figure 3-43. The energy for the

reaction is –8.91 kcal/mol. The calculated barrier heights associated with 3-17αi, 3-17βi

and 3-17γi are 29.16, 2.26 and 2.57 kcal/mol respectively. Similar to the reactions with

NH3 and CH3NH2, this reaction is also more favorable to occur through β and γ saddle

points.

Page 143: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

128

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.02.62.3

–8.9

29.2

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.02.62.3

–8.9

29.2

Figure 3-43 The energy diagram of the reaction between p-benzoquinone and C2H5NH2 leading to the 3-17 product

3.4.4 Reaction of p-Benzoquinone with Lysine

For the reaction between p-benzoquinone and the amino acid lysine leading to the

product 3-19, three saddle point conformations were investigated. Since all the

previously discussed reactions have low barrier heights with the water-containing saddle

point, in this case we choose to consider only the water-containing saddle point.

Optimization of these three saddle points required over 45 days each to successfully

complete using a very tight convergence criterion. After analyzing the optimization

cycles, it was found that even a normal convergence criterion would have required more

than one month of running time to complete. Therefore, it is computationally prohibited

Page 144: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

129

to investigate more conformations of this saddle point. Ball and stick representations of

the optimized structures of these saddle points are shown in Figure 3-44. They are

arranged in increasing order of energy. Actually, we first carried out the optimization of

3-19βi and 3-19βiii conformations and found out the minima of those two. Then we

carried out the 3-19βii by rotating the terminal carboxylic group by 180 degrees to find

out whether it would affect lowering the energy of the saddle point.

The calculated imaginary frequencies of these saddle points are 1023i cm-1 for 3-

19βi, 1064i cm-1 for 3-19βii and 1043i cm-1 for 3-19βiii. The energies of 3-19βii and 3-

19βiii relative to that of 3-19βi are 0.72 and 1.91 kcal/mol.

Figure 3-45 shows the energy diagram of this reaction. The calculated enthalpy

and the barrier height of the reaction were found to be –8.77 and 2.17 kcal/mol

respectively.

3-19βi i3-19βi 3-19βi ii

Figure 3-44 The optimized geometries of three saddle points leading to the 3-19

product of the reaction between p-benzoquinone and lysine

Page 145: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

130

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0 2.2

–8.8

-40

-30

-20

-10

0

10

20

30

40

Ener

gy (k

cal/m

ol)

0.0 2.2

–8.8

Figure 3-45 The energy diagram of the reaction between p-benzoquinone and lysine

leading to the 3-19 product

Page 146: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

131

3.5 Discussion

Tables 3-4 and 3-5 give selected bond distances of the reactants, saddle points and

product conformations for the reactions of the four quinones with NH3 and CH3NH2. For

the reactants, only the carbonyl bond distances are given, because the reactions that we

investigated modify only this bond in quinone. For the products, the newly formed C1–

N9 bond, the C1–O7 bond and the O7–H bond are given. For α saddle points, the forming

C1–N9 and O7–H bonds and breaking C1–O7 and N9–H bonds are given. For β and γ

saddle points, in addition to those four bond distances, distances between the oxygen

atom of the solvent molecule and its own proton which is oriented towards the oxygen

atom of the quinone, denoted in the tables as O–H(O7), and the distance between the

oxygen atom and the dissociating proton from the hydrogen, denoted in the tables as O–

H(N9), are given. The imaginary frequencies for the saddle points are also given. The

other bond distances are not presented here, because we did not see significant

differences in those values as the reaction progresses. In these two tables the heading of

the column are labeled based on the product of reaction considering that reactions of 2-

chloro-p-benzoquinone and 2-methyl-p-benzoquinone give two different products. The

representative numerical abbreviation for the structure of each molecule is given in bold

letters. The bond distances are in angstroms while the imaginary frequencies are in cm-1

units.

Page 147: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

132

Table 3-4 Selected bond distances (in angstroms) in reactants, saddle points and products of the reaction between quinones and NH3

ω is the imaginary frequency in cm-1

Bond 3-1→3-5 3-2→3-6 3-2→3-7 3-3→3-8 3-3→3-9 3-4→3-10

Reactant 3-1 3-2 3-2 3-3 3-3 3-4

C=O 1.210 1.204 1.209 1.211 1.211 1.203 Saddle points

3-5α 3-6α 3-7α 3-8α 3-9α 3-10α C1–N9 1.568 1.552 1.567 1.572 1.572 1.508 C1–O7 1.340 1.336 1.339 1.341 1.341 1.357 N9–H 1.166 1.172 1.169 1.169 1.165 1.174 O7–H 1.396 1.393 1.394 1.391 1.396 1.395 ω 1550i 1572i 1563i 1566i 1544i 1562i 3-5β 3-6βi 3-7βi 3-8βi 3-9βi 3-10β

C1–N9 1.564 1.547 1.561 1.566 1.567 1.515 C1–O7 1.334 1.331 1.333 1.334 1.334 1.347 N9–H 1.117 1.133 1.124 1.117 1.110 1.123 O7–H 1.211 1.217 1.213 1.206 1.207 1.202

O–H(O7) 1.195 1.190 1.194 1.199 1.200 1.204 O–H(N9) 1.432 1.398 1.416 1.430 1.446 1.415

ω 1156i 1223i 1188i 1153i 1130i 1167i 3-5γ 3-6γi 3-7γi 3-8γi 3-9γi 3-10γ

C1–N9 1.562 1.545 1.559 1.564 1.565 1.514 C1–O7 1.334 1.330 1.333 1.335 1.335 1.347 N9–H 1.135 1.158 1.148 1.136 1.127 1.144 O7–H 1.231 1.248 1.240 1.225 1.223 1.224

O–H(O7) 1.175 1.160 1.167 1.180 1.182 1.179 O–H(N9) 1.395 1.353 1.372 1.394 1.411 1.374

ω 1186i 1258i 1226i 1191i 1161i 1217i Products

3-5a 3-6a 3-7a 3-8a 3-9a 3-10a C1–N9 1.447 1.440 1.446 1.452 1.448 1.433 C1–O7 1.402 1.398 1.400 1.401 1.403 1.400 O7–H 0.959 0.958 0.959 0.959 0.959 0.962

Page 148: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

133

Table 3-5 Selected bond distances (in angstroms) in reactants, saddle points and products of the reaction between quinones and CH3NH2

ω is the imaginary frequency in cm-1

Bond 3-1→3-11 3-2→3-12 3-2→3-13 3-3→3-14 3-3→3-15 3-4→3-16

Reactant 3-1 3-2 3-2 3-3 3-3 3-4

C=O 1.210 1.204 1.209 1.211 1.211 1.203 Saddle points

3-11α 3-12αi 3-13αi 3-14αi 3-15αi 3-16αi C1–N9 1.568 1.551 1.566 1.573 1.572 1.510 C1–O7 1.344 1.340 1.342 1.344 1.345 1.361 N9–H 1.182 1.189 1.185 1.185 1.181 1.192 O7–H 1.372 1.368 1.370 1.366 1.372 1.365 ω 1578i 1606i 1591i 1588i 1573i 1606i 3-11β 3-12βi 3-13βi 3-14βi 3-15βi 3-16βi

C1–N9 1.561 1.540 1.558 1.561 1.564 1.512 C1–O7 1.339 1.338 1.339 1.341 1.340 1.352 N9–H 1.102 1.114 1.108 1.102 1.097 1.104 O7–H 1.183 1.179 1.182 1.177 1.181 1.164

O–H(O7) 1.226 1.232 1.228 1.232 1.228 1.250 O–H(N9) 1.466 1.439 1.452 1.466 1.480 1.460

ω 1065i 1111i 1086i 1044i 1037i 1014i 3-11γ 3-12γi 3-13γi 3-14γi 3-15γi 3-16γi

C1–N9 1.558 1.538 1.556 1.559 1.561 1.510 C1–O7 1.340 1.338 1.339 1.342 1.341 1.352 N9–H 1.117 1.134 1.127 1.117 1.109 1.118 O7–H 1.192 1.195 1.196 1.186 1.188 1.172

O–H(O7) 1.214 1.212 1.209 1.220 1.218 1.237 O–H(N9) 1.435 1.399 1.411 1.435 1.451 1.429

ω 1104i 1190i 1153i 1097i 1070i 1070i Products

3-11a 3-12a 3-13a 3-14a 3-15a 3-16a C1–N9 1.452 1.447 1.451 1.456 1.453 1.436 C1–O7 1.401 1.391 1.399 1.401 1.402 1.401 O7–H 0.959 0.960 0.959 0.959 0.959 0.962

Page 149: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

134

When we examine these bond distances and compare with relevant structures of a

particular reaction, for all cases, it is always true that saddle point geometries have

geometric parameters between those in the reactants and in the products. For example, in

the p-benzoquinone reactant, 3-1, the C1–O7 internuclear distance is 1.210 Å, a value

consistent with a formal double bond, while in the 3-5a product, it is 1.402 Å, a value

consistent with a formal single bond. In the three 3-5α, 3-5β and 3-5γ saddle points, this

distance is respectively 1.340, 1.334 and 1.334 Å, which are values intermediate between

double bond and a single bond. On the other hand, the C1–N9 distance, which is the

newly forming bond as a result of the reaction, has a higher value in all saddle points than

in the products. For example, the distance of C1–N9 in the 3-5a product is 1.447 Å while

that in the three 3-5α, 3-5β and 3-5γ saddle points are 1.568, 1.564 and 1.562 Å,

respectively. This means that the C1–N9 bond has not formed completely in the saddle

point as it is in the product. Another interesting feature, which can be observed

investigating these distances in the three saddle points, is the variation of the newly

making O7–H bond distance, which is the key step of the reaction. This distance

increases according to the order β, γ, α saddle points. In other words, the distance shows

the lowest value in β saddle points and highest value in α saddle point, while in the γ

saddle points it is in the middle. Also, the values in the β and γ saddle points are closer to

each other than they are closer to the α saddle point. For example, in the 3-5β, 3-5γ and

3-5α saddle points this distance is 1.211, 1.231 and 1.396 Å respectively. The distance in

the 3-5a product is 0.959 Å. Therefore, this feature indicates that the β saddle points are

relatively closer to the product than the other two saddle points and also γ saddle points

do so, when compared to the α saddle points which shows the longest distance in all the

Page 150: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

135

cases studied. This is an agreement of these results with the Hammond postulate. This

postulate states that the structure of a transition state resembles the stable species that is

nearest in free energy [Solomons, 1996]. This implies that if there are more possible

transition states, the one closer to the product will have the smallest energy difference,

therefore the lowest barrier height for an exothermic reaction. Some geometric features

of the lowest-energy saddle point (i.e., the β one), like the breaking distances, are closer

to the values in the reactant when compared to the other saddle points, and these trends

are consistent with smaller deformations to reach the saddle point and therefore smaller

barrier heights.

Table 3-6 compares the reaction energies and barrier heights for the reactions of

the four quinones with NH3 and Table 3-7 compares those of the reactions with CH3NH2.

These values show that the reactions with o-benzoquinone are the most exothermic and

have the lowest barrier heights (some being even negative) predicting a faster reaction.

When comparing the three p-quinone derivatives, 2-chloro-p-benzoquinone have lower

barrier heights suggesting a higher reactivity than p-benzoquinone while 2-methyl-p-

benzoquinone have higher barrier heights suggesting lower reactivity toward

nucleophiles. This is consistent with electron-withdrawing groups (like –Cl) enhancing

the reaction rates while electron-donating groups (like –CH3) decrease the reaction rate.

Between the two possible reactions of 2-chloro- and 2-methyl-p-benzoquinone with both

nucleophiles, reactions at the carbonyl in position 1 have consistently lower barrier

heights than reactions at position 4, suggesting a preference for forming these products.

For example, the barrier heights of the reaction between 2-chloro-p-benzoquinone and

Page 151: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

136

CH3NH2 through β saddle points, reacting at carbonyl position 1 and position 4 are –0.82

and 2.28 kcal/mol, respectively.

Table 3-6 Calculated reaction energies and barrier heights (in kcal/mol) for the reactions between quinones and NH3

Barrier Heights Reaction

Reaction

Energy NH3 (α) NH3 + H2O (β) NH3 + CH3OH (γ)

3-1 → 3-5 –6.95 33.95 7.58 7.71 3-2 → 3-6 –9.58 30.97 4.62 4.61 3-2 → 3-7 –6.97 33.81 7.58 7.65 3-3 → 3-8 –6.16 34.32 8.04 8.19 3-3 → 3-9 –5.91 34.97 8.53 8.71 3-4 → 3-10 –16.66 25.15 –1.11 –1.03

Table 3-7 Calculated reaction energies and barrier heights (in kcal/mol) for the reactions between quinones and CH3NH2

Barrier Heights Reaction

Reaction

Energy CH3NH2 (α) CH3NH2 + H2O (β) CH3NH2 + CH3OH (γ)

3-1 → 3-11 –9.12 29.25 2.37 2.66 3-2 → 3-12 –12.62 26.22 –0.82 –0.55 3-2 → 3-13 –9.30 28.92 2.28 2.55 3-3 → 3-14 –8.93 29.85 2.89 3.19 3-3 → 3-15 –8.07 30.33 3.30 3.62 3-4 → 3-16 –8.07 20.71 –6.20 –5.87

Table 3-8 Calculated reaction energies and barrier heights (in kcal/mol) for the reactions between p-benzoquinone and various nucleophiles

Barrier Heights Reaction Nucleophile

Reaction

Energy α β γ

3-1 → 3-5 NH3 –6.95 33.95 7.58 7.71 3-1 → 3-11 CH3NH2 –9.12 29.25 2.37 2.66 3-1 → 3-17 C2H5NH2 –8.91 29.16 2.26 2.57 3-1 → 3-19 Lysine –8.77 ND 2.17 ND

Page 152: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

137

Table 3-8 gives the reaction energies and barrier heights for the reactions of p-

benzoquinone with the four nucleophiles. These results show that the more basic amine

nucleophile is the faster it reacts. This is especially true when comparing ammonia with

the amines rather than the amines among themselves. Very interesting to point out is that

the barrier heights obtained for the amines and the lysine are very close to each other

suggesting that modeling reaction with biologically relevant molecules could be done

with smaller models like ethylamine or even methylamine. On the other hand, it is found

that the reaction energy becomes less negative as the alkyl chain increases, which is

suggestive of a trend. Calculations with additional chain lengths are needed however to

confirm this trend. For example, the reaction energy for the p-benzoquinone reaction

with CH3NH2 has a value of –9.12 kcal/mol, reaction with C2H5NH2 has a value of –8.91

kcal/mol, and reaction with lysine has a value of –8.77 kcal/mol. The last value however

is determined based on a limited number of product conformations investigated so it is

less reliable.

Page 153: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

138

3.6 Concluding Remarks

Reactivity of four quinone derivatives (p-benzoquinone, 2-chloro-p-

benzoquinone, 2-methyl-p-benzoquinone and o-benzoquinone) towards two nitrogen-

containing nucleophiles (NH3 and CH3NH2) and the reactions of p-benzoquinone with

two additional nucleophiles (C2H5NH2 and lysine) were successfully investigated by

employing gas-phase electronic structure calculations. The entire study was done by

using the hybrid density functional theory level mPW1B95-44 in conjunction with the 6-

31+G(d,p) basis set. The calculations were carried out using Gaussian03 software.

Conformational analyses on the reaction products and saddle points were

carefully carried out to find the minimum-energy conformations on the potential energy

surfaces. It was found that there is a preferred conformation (with similar orientations for

amino and hydroxyl groups) for all products of reactions of p-benzoquinone derivatives

with all studied nucleophiles regardless of the substitution on the ring, the basicity of the

nucleophile or the size of the nucleophile. The products of o-benzoquinone reactions

showed, however, different preferred conformations.

Each of the investigated reactions (except the one with lysine) was analyzed using

three different reaction pathways going through three different types of saddle points.

The reaction energies and barrier heights were calculated based on the minimum-energy

product and saddle point conformations. All the investigated reactions are exothermic.

These results suggest that the reactions are faster when they proceed through transition

states involving solvents molecules and, among the two of the solvent molecules studied

here (water and methanol), water was found to be give a slightly lower barrier height.

Page 154: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

139

The overall results suggest that o-benzoquinone is the most reactive quinone

towards the investigated nucleophiles. Electron-withdrawing groups (like –Cl) increase

the reactivity and electron-donating groups (like –CH3) decreases the reactivity of p-

benzoquinone. It was found that the substituent directs the nucleophilic attack favorably

towards the carbonyl 1 position. The reactivity also increases with basicity of the

nucleophiles measured by the length of the alkyl chain. However, the difference between

the reactivity of NH3 and amines are higher than the differences among amines. Based

on the value of the barrier height, there is no significant change in the reactivity with

increasing the alkyl chain length.

Future studies can be done to include other nucleophiles or some other quinones

with different or more substituents. The study can also be extended to include other

possible reaction pathways, mainly involving other solvents molecules. Considering that

this study involved gas-phase calculations, another improvement would be to carry out

similar calculations but in solvent by using the polarized continuum model or other

solvation models. Finally, the study can be extended to include nucleophilic attacks

involving reactions at alkene carbons, which are called conjugate addition reactions.

Page 155: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

140

BIBLIOGRAPHY

Page 156: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

141

Adamo, C.; Barone, V. “Exchange Functionals with Improved Long-range Behavior and Adiabatic Connection Methods without Adjustable Parameters: The mPW and mPW1PW Models,” J. Chem. Phys., 1998, 108, 664-675. Albu, T. V.; Mikel, S. E. “Performance of Hybrid Density Functional Theory Methods toward Oxygen Electroreduction over Platinum,” Electrochim. Acta, 2007, 52, 3149-3159. Albu, T. V.; Anderson, A. B. “Studies of Model Dependence in an ab initio Approach to Uncatalyzed Oxygen Reduction and the Calculation of Transfer Coefficients,” Electrochim. Acta, 2001, 46, 3001-3013. 1Anderson, A. B.; Albu, T. V. “Ab Initio Approach to Calculating Activation Energies as Functions of Electrode Potential : Trial Application to Four-Electron Reduction of Oxygen,” Electrochem. Comm., 1999, 46, 203-206. 2Anderson, A. B.; Albu, T. V. “Ab Initio Determination of Reversible Potentials and Activation Energies for Outer-Sphere Oxygen Reduction to Water and the Reverse Oxidation Reaction,” J. Am. Chem. Soc. 1999, 121(50), 11855-11863. Anderson, A. B.; Albu, T. V. “Catalytic Effect of Platinum on Oxygen Reduction An Ab Initio Model Including Electrode Potential Dependence,” J. Electrochem. Soc., 2000, 147(11), 4229-4238. Aponick, A.; Buzdygon, R. S.; Tomko, R. J.; Fazal, A. N.; Shughart, E. L.; McMaster, D. M.; Myers, M. C.; Pitcock, W. H.; Wigal, C. T. “Regioselective Organocadmium Alkylations of Substituted Quinones,” J. Org. Chem., 2002, 67, 242-244. Atkins, P.; DePaula, J. “Physical Chemistry,” 8th Ed., Oxford University Press, London, England, 2006. Becke, A. D. “Density-functional Thermochemistry. IV. A New Dynamical Correlation Functional and Implications for Exact-exchange Mixing,” J. Chem. Phys., 1996, 104, 1040. Boesch, S. E.; Wheeler, R. A. “π-Donor Substituent Effect on Calculated Structures, Spin Properties, and Vibrations of Radical Anions of p-Chloranil, p-Fluoranil, and p-Benzoquinone,” J. Phys. Chem. A 1997, 101, 8351-8359. Cenas, N. K.; Arscott, D.; Williams, C. H.; Blanchard, J. S. “Mechanism of Reduction of Quinones by Trypanosoma congolense Trypanothione Reductase,” Biochemistry 1994, 33, 2509-2515. Chowdhury, S.; Heinis, T.; Grimsrud, E. P.; Kebarle, P. “Entropy Changes and Electron Affinities from Gas-Phase Electron-Transfer Equilibria: A- + B = A + B-,” J. Phys. Chem. 1986, 90, 2747-2752.

Page 157: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

142

De Silva, N. W. S. V. N.; Albu, T. V. “A Theoretical Investigation on the Isomerism and the NMR Properties of Thiosemicarbazones,” Central Eur. J. Chem., 2007, 5(2), 396-419. Fischer, A.; Henderson, G. N. “Addition of Functionalized Organolithium Reagents to p-Benzoquinones and Cyclohexadienones: Synthesis of Functionalized Cyclohexadienones, Dienols and Dienediols,” Tetrahedron Letters 1983, 24(2), 131-134. Foresman, J. B.; Frisch, A. “Exploring Chemistry with Electronic Structure Methods,” 2nd Ed., Gaussian, Inc., Pittsburgh, Pennsylvania, USA, 1996. Fu, Y.; Liu, L.; Yu, H.; Wang, Y.; Guo, Q. “Quantum-Chemical Prediction of Absolute Standard Redox Potentials of Divers Organic Molecules and Free Radicals in Acetonitrile,” J. Am. Chem. Soc. 2005, 127, 7227-7234. Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford, CT, 2004. Grimsrud, E. P.; Caldwell, G.; Chowdhury, S.; Kebarle, P. “Electron Affinities from Electron-Transfer Equilibria: A- + B = A + B-,” J. Am. Chem. Soc. 1985, 107, 4627-4634. Heinis, T.; Chowdhury, S.; Scott, S. L.; Kebarle, P. “Electron Affinities of Benzo-, Naphtho-, and Anthraquinones Determined from Gas-Phase Equilibria Measurments,” J. Am. Chem. Soc., 1988, 110, 400-407. Hohenberg, P.; Kohn, W. “Inhomogeneous Electron Gas,” Phys. Rev., 1964, 136(3B), 864-871. Katritzky, A. R.; Fedoseyenko, D.; Mohaptra, P. P.; Steel, P. J. “Reactions of p-Benzoquinone with Sulfur Nucleophiles,” Synthesis, 2008, 5, 777-787. Kohn, W.; Sham, L. J. “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., 1965, 140(4A), 1133-1138.

Page 158: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

143

Leach, A. R. “Molecular Modeling: Principles and Applications”, 2nd Ed., Pearson Education Ltd, Edinburgh Gate, Harlow, Essex, England, 2001. Lehmann, M. W.; Evans, D. H. “Mechanism of the Electrochemical Reduction of 3,5-di-tert-butyl-1,2-benzoquinone. Evidence for a Concerted Electron and Proton Transfer Reaction Involving a Hydrogen-Bonded Complex as Reactant,” J. Phys. Chem. B 2001, 105, 8877-8884. Namazian, M.; Coote, M. L. “Accurate Calculation of Absolute One-Electron Redox Potentials of Some para-Quinone Derivatives in Acetonitrile,” J. Phys. Chem. A 2007, 111, 7227-7232. Ohtsuki, S.; Kunimatsu, N.; Takamura, K.; Kusu, F. “Determination of the Total Acid Content in Wine Based on the Voltammetric Reduction of Quinone,” Electroanalysis 2001, 13(5), 404-407. O’Malley, P. J. “A Density Functional Study of the Effect of Reduction on the Geometry and Electron Affinity of Hydrogen Bonded 1,4-benzoquinone. Implications for Quinone Reduction and Protonation in Photosynthetic Reaction Centres,” Chem. Phys. Letters 1997, 274, 251-254. Reynolds, C. A. “Theoretical Electrode Potentials and Conformational Energies of Benzoquinones and Naphthoquinones in Aqueous Solution,” J. Am. Chem. Soc. 1990, 112, 7545-7551. Robinson, T. “The Organic Constituents of Higher Plants,” 2nd Ed., Burgess Publishing Company, Minneapollis, Minnesota, USA, 1967. Rudin, A. “The Elements of Polymer Science and Engineering,” 2nd Ed., Academic Press, San Diego, California, USA, 1999. Solomons, T. W. G. “Organic Chemistry,” 6th Ed., John Wiley & Sons, Inc., New York, New Jersey, USA, 1996. Titulaer, G. T. M.; Zhu, J.; Klunder, A. J. H.; Zwanenburg, B. “A New Synthesis of p-Hydroxy Phenyl glycine and Some Analogues from p-Benzoquinone,” Org. Letters, 2000, 2(4), 473-475. 1Wass, J. R. T. J.; Ahlberg, E.; Panas, I.; Schiffrin, D. J. “Quantum Chemical Modeling of the Reduction of Quinones,” J. Phys. Chem. A, 2006, 110, 2005-2220. 2Wass, J. R. T. J.; Ahlberg, E.; Panas, I.; Schiffrin, D. J. “Quantum Chemical Modeling of the Rate Determining Step for Oxygen Reduction on Quinones,” Phys. Chem. Chem. Phys., 2006, 8, 4189-4199.

Page 159: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

144

Wheeler, R. A. “A Method for Computing One-Electron Reduction Potentials and Its Applications to p-Benzoquinone in Water at 300 K,” J. Am. Chem. Soc. 1994, 116, 11048-11051. Zhao, Y.; Truhlar, D. G. “Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions,” J. Phys. Chem. A, 2004, 108 (33), 6908-6918.

Page 160: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

145

APPENDICES

Page 161: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

146

APPENDIX A

Supplementary Information for Chapter 2

This appendix includes the optimized geometries in Cartesian coordinates for minimum-

energy structures in gas phase and in water solution using the mPW1B95-44/6-31+G(d,p)

level of theory.

Page 162: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

147

2-10 X Y Z C 0.000000 0.000000 1.428797 C 0.000000 1.261847 0.665271 C 0.000000 1.261847 -0.665271 C 0.000000 0.000000 -1.428797 C 0.000000 -1.261847 -0.665271 C 0.000000 -1.261847 0.665271 O 0.000000 0.000000 2.638769 O 0.000000 0.000000 -2.638769 H 0.000000 2.168652 1.250393 H 0.000000 2.168652 -1.250393 H 0.000000 -2.168652 -1.250393 H 0.000000 -2.168652 1.250393 2-10– X Y Z C 0.000000 0.000000 1.453994 C 0.000000 1.212653 0.680556 C 0.000000 1.212653 -0.680556 C 0.000000 0.000000 -1.453994 C 0.000000 -1.212653 -0.680556 C 0.000000 -1.212653 0.680556 O 0.000000 0.000000 2.709449 O 0.000000 0.000000 -2.709449 H 0.000000 2.139689 1.238125 H 0.000000 2.139689 -1.238125 H 0.000000 -2.139689 -1.238125 H 0.000000 -2.139689 1.238125 2-102– X Y Z C 0.000000 0.000000 1.493116 C 0.000000 1.174660 0.697969 C 0.000000 1.174660 -0.697969 C 0.000000 0.000000 -1.493116 C 0.000000 -1.174660 -0.697969 C 0.000000 -1.174660 0.697969 O 0.000000 0.000000 2.791749 O 0.000000 0.000000 -2.791749 H 0.000000 2.123944 1.228893 H 0.000000 2.123944 -1.228893 H 0.000000 -2.123944 -1.228893 H 0.000000 -2.123944 1.228893 2-11 X Y Z C 0.000000 1.321490 0.000000 C -1.214668 0.624137 0.000000 C -1.215550 -0.740449 0.000000 C 0.012672 -1.487323 0.000000 C 1.233983 -0.726790 0.000000 C 1.222425 0.634590 0.000000 O 0.055627 2.657837 0.000000 O 0.016583 -2.731944 0.000000 H -2.145312 1.174924 0.000000 H -2.135378 -1.303396 0.000000 H 2.158642 -1.281845 0.000000 H 2.133163 1.212334 0.000000 H -0.821978 3.036913 0.000000

2-11– X Y Z C 1.189251 0.632304 0.000000 C 0.000000 1.339299 0.000000 C -1.222171 0.687833 0.000000 C -1.342552 -0.735834 0.000000 C -0.080704 -1.410463 0.000000 C 1.133927 -0.750398 0.000000 O 2.429387 1.256875 0.000000 O -2.452739 -1.339581 0.000000 H 0.025489 2.425825 0.000000 H -2.138631 1.261875 0.000000 H -0.104367 -2.491763 0.000000 H 2.061450 -1.308193 0.000000 H 2.276373 2.197464 0.000000 2-12i X Y Z C 0.001121 1.389503 0.000000 C 1.195365 0.687286 0.000000 C 1.195365 -0.695524 0.000000 C -0.001121 -1.389503 0.000000 C -1.195365 -0.687286 0.000000 C -1.195365 0.695524 0.000000 O -0.056169 2.744445 0.000000 O 0.056169 -2.744445 0.000000 H 2.136382 1.219458 0.000000 H 2.121367 -1.247797 0.000000 H -2.136382 -1.219458 0.000000 H -2.121367 1.247797 0.000000 H 0.824736 3.111216 0.000000 H -0.824736 -3.111216 0.000000 2-12ii X Y Z C 0.000000 1.389431 0.009702 C 0.000000 0.693497 -1.184300 C 0.000000 -0.693497 -1.184300 C 0.000000 -1.389431 0.009702 C 0.000000 -0.689421 1.206724 C 0.000000 0.689421 1.206724 O 0.000000 2.743944 0.075292 O 0.000000 -2.743944 0.075292 H 0.000000 1.225951 -2.124979 H 0.000000 -1.225951 -2.124979 H 0.000000 -1.241610 2.132882 H 0.000000 1.241610 2.132882 H 0.000000 3.116886 -0.802996 H 0.000000 -3.116886 -0.802996

Page 163: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

148

2-10 (solution) X Y Z C 0.000000 0.000000 1.421984 C 0.000000 1.263252 0.665337 C 0.000000 1.263252 -0.665337 C 0.000000 0.000000 -1.421984 C 0.000000 -1.263252 -0.665337 C 0.000000 -1.263252 0.665337 O 0.000000 0.000000 2.637516 O 0.000000 0.000000 -2.637516 H 0.000000 2.176955 1.247305 H 0.000000 2.176955 -1.247305 H 0.000000 -2.176955 -1.247305 H 0.000000 -2.176955 1.247305 2-10– (solution) X Y Z C 0.000000 0.000000 1.440109 C 0.000000 1.216798 0.680049 C 0.000000 1.216798 -0.680049 C 0.000000 0.000000 -1.440109 C 0.000000 -1.216798 -0.680049 C 0.000000 -1.216798 0.680049 O 0.000000 0.000000 2.703652 O 0.000000 0.000000 -2.703652 H 0.000000 2.148391 1.233184 H 0.000000 2.148391 -1.233184 H 0.000000 -2.148391 -1.233184 H 0.000000 -2.148391 1.233184 2-102– (solution) X Y Z C 0.000000 0.000000 1.463657 C 0.000000 1.181471 0.695444 C 0.000000 1.181471 -0.695444 C 0.000000 0.000000 -1.463657 C 0.000000 -1.181471 -0.695444 C 0.000000 -1.181471 0.695444 O 0.000000 0.000000 2.776122 O 0.000000 0.000000 -2.776122 H 0.000000 2.129690 1.223856 H 0.000000 2.129690 -1.223856 H 0.000000 -2.129690 -1.223856 H 0.000000 -2.129690 1.223856 2-11 (solution) X Y Z C 0.000000 1.325626 0.000000 C -1.218502 0.624521 0.000000 C -1.217097 -0.737396 0.000000 C 0.011861 -1.483235 0.000000 C 1.235622 -0.727380 0.000000 C 1.224919 0.632507 0.000000 O 0.058189 2.649447 0.000000 O 0.015871 -2.734834 0.000000 H -2.147703 1.183083 0.000000 H -2.144663 -1.295306 0.000000 H 2.167248 -1.278429 0.000000 H 2.142756 1.206374 0.000000 H -0.830928 3.059519 0.000000

2-11– (solution) X Y Z C -1.188219 0.636007 0.000000 C 0.000000 1.347246 0.000000 C 1.220023 0.686463 0.000000 C 1.323777 -0.724012 0.000000 C 0.083965 -1.407645 0.000000 C -1.133866 -0.748363 0.000000 O -2.419617 1.237793 0.000000 O 2.461436 -1.342269 0.000000 H -0.026132 2.432052 0.000000 H 2.135657 1.265624 0.000000 H 0.101051 -2.491030 0.000000 H -2.059244 -1.311899 0.000000 H -2.319968 2.202884 0.000000 2-12i (solution) X Y Z C -0.000504 1.391797 0.000000 C 1.196831 0.692054 0.000000 C 1.196831 -0.692598 0.000000 C 0.000504 -1.391797 0.000000 C -1.196831 -0.692054 0.000000 C -1.196831 0.692598 0.000000 O -0.058865 2.746390 0.000000 O 0.058865 -2.746390 0.000000 H 2.136083 1.232542 0.000000 H 2.130831 -1.238948 0.000000 H -2.136083 -1.232542 0.000000 H -2.130831 1.238948 0.000000 H 0.834057 3.131549 0.000000 H -0.834057 -3.131549 0.000000 2-12ii (solution) X Y Z C 0.000000 1.391733 0.011500 C 0.000000 0.693515 -1.184446 C 0.000000 -0.693515 -1.184446 C 0.000000 -1.391733 0.011500 C 0.000000 -0.691163 1.209299 C 0.000000 0.691163 1.209299 O 0.000000 2.746155 0.072814 O 0.000000 -2.746155 0.072814 H 0.000000 1.232929 -2.124262 H 0.000000 -1.232929 -2.124262 H 0.000000 -1.238720 2.142621 H 0.000000 1.238720 2.142621 H 0.000000 3.133802 -0.818996 H 0.000000 -3.133802 -0.818996

Page 164: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

149

2-20 X Y Z C -1.242094 -0.099879 0.000000 C 0.000000 0.725309 0.000000 C 1.206991 0.162561 0.000000 C 1.360975 -1.300555 0.000000 C 0.138425 -2.124813 0.000000 C -1.065834 -1.562860 0.000000 O -2.336393 0.402003 0.000000 O 2.458495 -1.808774 0.000000 Cl -0.222845 2.414180 0.000000 H 2.115429 0.743291 0.000000 H 0.285772 -3.193597 0.000000 H -1.980441 -2.135167 0.000000 2-20– X Y Z C -1.275786 0.002174 0.000000 C 0.000000 0.677778 0.000000 C 1.195900 0.033023 0.000000 C 1.284620 -1.402067 0.000000 C 0.023832 -2.093228 0.000000 C -1.162864 -1.432753 0.000000 O -2.373685 0.593562 0.000000 O 2.385127 -2.000142 0.000000 Cl -0.033500 2.417651 0.000000 H 2.121874 0.587080 0.000000 H 0.062546 -3.173544 0.000000 H -2.100674 -1.970515 0.000000 2-202– X Y Z C 1.313166 0.116168 0.000000 C 0.000000 0.641172 0.000000 C -1.185421 -0.090587 0.000000 C -1.212640 -1.507225 0.000000 C 0.094571 -2.065486 0.000000 C 1.256745 -1.306178 0.000000 O 2.404251 0.795862 0.000000 O -2.298252 -2.208310 0.000000 Cl -0.158942 2.417247 0.000000 H -2.131067 0.435561 0.000000 H 0.166013 -3.149441 0.000000 H 2.220563 -1.806912 0.000000 2-21i X Y Z C -1.151747 -0.138767 0.000000 C 0.000000 0.670137 0.000000 C 1.245427 0.124130 0.000000 C 1.415585 -1.304773 0.000000 C 0.220739 -2.106023 0.000000 C -1.013414 -1.533765 0.000000 O -2.378409 0.366924 0.000000 O 2.548388 -1.814643 0.000000 Cl -0.228031 2.385374 0.000000 H 2.130480 0.738707 0.000000 H 0.345472 -3.176880 0.000000 H -1.915814 -2.124165 0.000000 H -2.342982 1.327104 0.000000

2-21ii X Y Z C -1.150150 -0.125147 0.000000 C 0.000000 0.689652 0.000000 C 1.239703 0.130203 0.000000 C 1.412232 -1.297848 0.000000 C 0.219723 -2.099462 0.000000 C -1.013446 -1.519091 0.000000 O -2.336147 0.477587 0.000000 O 2.543757 -1.811826 0.000000 Cl -0.201422 2.395546 0.000000 H 2.125926 0.743193 0.000000 H 0.340354 -3.170712 0.000000 H -1.906917 -2.127863 0.000000 H -3.044442 -0.164823 0.000000 2-21iii X Y Z C -1.296785 0.081278 0.000000 C 0.000000 0.727730 0.000000 C 1.164107 0.008618 0.000000 C 1.113988 -1.385962 0.000000 C -0.114376 -2.065997 0.000000 C -1.273771 -1.358322 0.000000 O -2.354299 0.722248 0.000000 O 2.219241 -2.136329 0.000000 Cl 0.043396 2.431414 0.000000 H 2.114340 0.521769 0.000000 H -0.103414 -3.144104 0.000000 H -2.233980 -1.848919 0.000000 H 3.006809 -1.594210 0.000000 2-21iv X Y Z C 1.291874 0.074702 0.000000 C 0.000000 0.734359 0.000000 C -1.168952 0.030567 0.000000 C -1.133566 -1.366221 0.000000 C 0.085728 -2.058705 0.000000 C 1.256097 -1.362917 0.000000 O 2.357981 0.701669 0.000000 O -2.312000 -1.995702 0.000000 Cl -0.019675 2.438811 0.000000 H -2.123739 0.530004 0.000000 H 0.087147 -3.139596 0.000000 H 2.210746 -1.864140 0.000000 H -2.194609 -2.944498 0.000000 2-21i– X Y Z C -1.186318 -0.079720 0.000000 C 0.000000 0.631193 0.000000 C 1.244801 0.041288 0.000000 C 1.398261 -1.381228 0.000000 C 0.154290 -2.090514 0.000000 C -1.072149 -1.461650 0.000000 O -2.429163 0.505435 0.000000 O 2.521857 -1.949148 0.000000 Cl -0.119318 2.394095 0.000000 H 2.134005 0.651652 0.000000 H 0.205641 -3.170029 0.000000 H -1.985680 -2.040868 0.000000 H -2.300414 1.453111 0.000000

Page 165: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

150

2-21ii– X Y Z C -1.180045 -0.065829 0.000000 C 0.000000 0.657450 0.000000 C 1.238591 0.055189 0.000000 C 1.400888 -1.367425 0.000000 C 0.162931 -2.082349 0.000000 C -1.062498 -1.446882 0.000000 O -2.395240 0.582950 0.000000 O 2.528176 -1.928540 0.000000 Cl -0.101134 2.405247 0.000000 H 2.128316 0.665226 0.000000 H 0.212502 -3.161799 0.000000 H -1.970509 -2.042474 0.000000 H -3.073721 -0.086375 0.000000 2-21iii– X Y Z C 1.332692 0.176576 0.000000 C 0.000000 0.693791 0.000000 C -1.142778 -0.086969 0.000000 C -1.048764 -1.464752 0.000000 C 0.209211 -2.042722 0.000000 C 1.341630 -1.255253 0.000000 O 2.371535 0.880312 0.000000 O -2.165099 -2.283177 0.000000 Cl -0.197793 2.427314 0.000000 H -2.110253 0.399817 0.000000 H 0.289007 -3.121193 0.000000 H 2.318165 -1.718615 0.000000 H -2.937870 -1.725454 0.000000 2-21iv– X Y Z C 1.328122 0.163773 0.000000 C 0.000000 0.701586 0.000000 C -1.156358 -0.053588 0.000000 C -1.082796 -1.432716 0.000000 C 0.165980 -2.029600 0.000000 C 1.317325 -1.265373 0.000000 O 2.375721 0.854146 0.000000 O -2.260601 -2.160211 0.000000 Cl -0.160745 2.438645 0.000000 H -2.120642 0.431477 0.000000 H 0.243515 -3.112436 0.000000 H 2.284638 -1.747269 0.000000 H -2.029450 -3.084715 0.000000 2-22i X Y Z C -1.213485 0.010994 0.000000 C 0.000000 0.685625 0.000000 C 1.206991 0.016376 0.000000 C 1.214518 -1.365945 0.000000 C 0.013639 -2.057858 0.000000 C -1.185389 -1.372343 0.000000 O -2.405641 0.634091 0.000000 O 2.420647 -1.979528 0.000000 Cl -0.023291 2.416900 0.000000 H 2.137065 0.559701 0.000000 H 0.009934 -3.138298 0.000000 H -2.124412 -1.901970 0.000000 H -2.274609 1.583136 0.000000 H 2.310284 -2.927481 0.000000

2-22ii X Y Z C -1.216644 0.020000 0.000000 C 0.000000 0.680416 0.000000 C 1.202232 -0.006578 0.000000 C 1.193985 -1.387733 0.000000 C -0.016069 -2.066556 0.000000 C -1.202411 -1.367335 0.000000 O -2.403830 0.652582 0.000000 O 2.327153 -2.127191 0.000000 Cl 0.002732 2.412130 0.000000 H 2.127995 0.548418 0.000000 H -0.009416 -3.144357 0.000000 H -2.148538 -1.884373 0.000000 H -2.266392 1.600595 0.000000 H 3.096779 -1.562888 0.000000 2-22iii X Y Z C 1.213573 0.027719 0.000000 C 0.000000 0.698376 0.000000 C -1.196401 0.004151 0.000000 C -1.195743 -1.379189 0.000000 C 0.008038 -2.061961 0.000000 C 1.195639 -1.358259 0.000000 O 2.350170 0.753482 0.000000 O -2.334527 -2.110125 0.000000 Cl -0.017561 2.418208 0.000000 H -2.121905 0.559943 0.000000 H 0.002427 -3.139630 0.000000 H 2.132575 -1.897142 0.000000 H 3.108642 0.174160 0.000000 H -3.098973 -1.538744 0.000000 2-22iv X Y Z C 1.210221 0.018827 0.000000 C 0.000000 0.704082 0.000000 C -1.201411 0.027254 0.000000 C -1.216078 -1.357280 0.000000 C -0.021514 -2.053360 0.000000 C 1.178914 -1.363215 0.000000 O 2.352726 0.735164 0.000000 O -2.426420 -1.962606 0.000000 Cl 0.008529 2.423515 0.000000 H -2.131269 0.571132 0.000000 H -0.017004 -3.133597 0.000000 H 2.108578 -1.914253 0.000000 H 3.106657 0.149966 0.000000 H -2.323183 -2.911318 0.000000

Page 166: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

151

2-20 (solution) X Y Z C -1.237934 -0.105337 0.000000 C 0.000000 0.721370 0.000000 C 1.209090 0.166156 0.000000 C 1.356360 -1.296904 0.000000 C 0.139702 -2.125413 0.000000 C -1.066204 -1.565775 0.000000 O -2.334327 0.403107 0.000000 O 2.459713 -1.803850 0.000000 Cl -0.225359 2.413777 0.000000 H 2.119226 0.753430 0.000000 H 0.282828 -3.199106 0.000000 H -1.980125 -2.147192 0.000000 2-20– (solution) X Y Z C -1.263264 -0.011867 0.000000 C 0.000000 0.679926 0.000000 C 1.200385 0.044928 0.000000 C 1.282727 -1.386956 0.000000 C 0.034460 -2.094887 0.000000 C -1.156118 -1.443450 0.000000 O -2.368225 0.582315 0.000000 O 2.392948 -1.982064 0.000000 Cl -0.052791 2.413851 0.000000 H 2.124883 0.607492 0.000000 H 0.074482 -3.177129 0.000000 H -2.088830 -1.994012 0.000000 2-202– (solution) X Y Z C 1.289051 0.085542 0.000000 C 0.000000 0.650427 0.000000 C -1.190329 -0.066650 0.000000 C -1.211509 -1.473688 0.000000 C 0.070647 -2.067250 0.000000 C 1.240997 -1.327487 0.000000 O 2.395761 0.766428 0.000000 O -2.318971 -2.165674 0.000000 Cl -0.117665 2.406721 0.000000 H -2.131044 0.469781 0.000000 H 0.129523 -3.150366 0.000000 H 2.194370 -1.845062 0.000000 2-21i (solution) X Y Z C -1.161521 -0.123238 0.000000 C 0.000000 0.678159 0.000000 C 1.238401 0.116668 0.000000 C 1.397858 -1.311868 0.000000 C 0.200159 -2.107239 0.000000 C -1.025940 -1.523953 0.000000 O -2.389591 0.355457 0.000000 O 2.533085 -1.831355 0.000000 Cl -0.182156 2.392548 0.000000 H 2.128435 0.732351 0.000000 H 0.307270 -3.184115 0.000000 H -1.934057 -2.113197 0.000000 H -2.446686 1.327664 0.000000

2-21ii (solution) X Y Z C -1.157784 -0.126164 0.000000 C 0.000000 0.684810 0.000000 C 1.240816 0.133081 0.000000 C 1.409580 -1.294963 0.000000 C 0.217925 -2.098134 0.000000 C -1.015204 -1.524422 0.000000 O -2.329743 0.476425 0.000000 O 2.547673 -1.809102 0.000000 Cl -0.199138 2.395736 0.000000 H 2.126994 0.754072 0.000000 H 0.332442 -3.174286 0.000000 H -1.914281 -2.130496 0.000000 H -3.075247 -0.160634 0.000000 2-21iii (solution) X Y Z C -1.293991 0.072466 0.000000 C 0.000000 0.720544 0.000000 C 1.167178 0.017281 0.000000 C 1.125084 -1.383978 0.000000 C -0.107090 -2.067252 0.000000 C -1.268713 -1.365839 0.000000 O -2.357555 0.716122 0.000000 O 2.221516 -2.123173 0.000000 Cl 0.030268 2.433812 0.000000 H 2.124156 0.526137 0.000000 H -0.098400 -3.149534 0.000000 H -2.226817 -1.869348 0.000000 H 3.040009 -1.584981 0.000000 2-21iv (solution) X Y Z C 1.288964 0.068708 0.000000 C 0.000000 0.728428 0.000000 C -1.169366 0.034423 0.000000 C -1.138255 -1.368950 0.000000 C 0.084555 -2.064627 0.000000 C 1.252391 -1.368787 0.000000 O 2.358727 0.702292 0.000000 O -2.308061 -1.983689 0.000000 Cl -0.015093 2.442634 0.000000 H -2.127116 0.538333 0.000000 H 0.077712 -3.148504 0.000000 H 2.207034 -1.878942 0.000000 H -2.216115 -2.959662 0.000000 2-21i– (solution) X Y Z C -0.580927 1.039253 0.004022 C -0.546687 -0.346751 0.000261 C 0.633770 -1.063618 0.012595 C 1.893828 -0.415704 0.003894 C 1.837463 1.001287 -0.008979 C 0.642570 1.692820 -0.003335 O -1.734637 1.768615 -0.057118 O 3.000749 -1.069302 0.007686 Cl -2.060616 -1.215023 -0.013600 H 0.601447 -2.144888 0.020169 H 2.771811 1.548366 -0.016676 H 0.638230 2.776120 -0.005553 H -2.390008 1.437574 0.577959

Page 167: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

152

2-21ii– (solution) X Y Z C -1.185777 -0.059348 0.000000 C 0.000000 0.656438 0.000000 C 1.238773 0.043609 0.000000 C 1.372076 -1.365808 0.000000 C 0.147645 -2.077759 0.000000 C -1.080044 -1.442794 0.000000 O -2.372469 0.606839 0.000000 O 2.520513 -1.949155 0.000000 Cl -0.079841 2.398576 0.000000 H 2.131975 0.653947 0.000000 H 0.185591 -3.159889 0.000000 H -1.991486 -2.031247 0.000000 H -3.109178 -0.026101 0.000000 2-21iii– (solution) X Y Z C 1.313525 0.164040 0.000000 C 0.000000 0.689384 0.000000 C -1.152843 -0.080730 0.000000 C -1.058665 -1.459246 0.000000 C 0.201050 -2.040349 0.000000 C 1.336002 -1.254160 0.000000 O 2.375232 0.883869 0.000000 O -2.152731 -2.277795 0.000000 Cl -0.183277 2.425809 0.000000 H -2.123033 0.401826 0.000000 H 0.284604 -3.120077 0.000000 H 2.310255 -1.727305 0.000000 H -2.970554 -1.755414 0.000000 2-21iv– (solution) X Y Z C 1.310158 0.157274 0.000000 C 0.000000 0.696793 0.000000 C -1.159453 -0.059105 0.000000 C -1.079869 -1.439212 0.000000 C 0.172780 -2.033738 0.000000 C 1.318176 -1.259146 0.000000 O 2.377845 0.868241 0.000000 O -2.247889 -2.148450 0.000000 Cl -0.162140 2.435319 0.000000 H -2.126991 0.425399 0.000000 H 0.252697 -3.115323 0.000000 H 2.286474 -1.744214 0.000000 H -2.066197 -3.101808 0.000000 2-22i (solution) X Y Z C 1.218789 0.025578 0.000000 C 0.000000 0.689779 0.000000 C -1.201042 0.006532 0.000000 C -1.200125 -1.376483 0.000000 C 0.005686 -2.063194 0.000000 C 1.196706 -1.361680 0.000000 O 2.418828 0.637786 0.000000 O -2.399627 -1.993012 0.000000 Cl -0.020312 2.421363 0.000000 H -2.137428 0.547608 0.000000 H 0.013760 -3.146329 0.000000 H 2.142012 -1.888402 0.000000 H 2.348890 1.603432 0.000000 H -2.295611 -2.960866 0.000000

2-22ii (solution) X Y Z C -1.223226 0.031303 0.000000 C 0.000000 0.682669 0.000000 C 1.198360 -0.012567 0.000000 C 1.185545 -1.395039 0.000000 C -0.030513 -2.066367 0.000000 C -1.213085 -1.357683 0.000000 O -2.419453 0.650183 0.000000 O 2.315170 -2.135631 0.000000 Cl 0.037494 2.414025 0.000000 H 2.135044 0.531043 0.000000 H -0.039590 -3.148077 0.000000 H -2.163013 -1.876013 0.000000 H -2.346158 1.615661 0.000000 H 3.108091 -1.571358 0.000000 2-22iii (solution) X Y Z C 1.218507 0.028041 0.000000 C 0.000000 0.690759 0.000000 C -1.201548 0.004732 0.000000 C -1.199410 -1.379817 0.000000 C 0.009134 -2.060307 0.000000 C 1.199456 -1.359764 0.000000 O 2.352536 0.754285 0.000000 O -2.336629 -2.109859 0.000000 Cl -0.018374 2.420571 0.000000 H -2.134894 0.554081 0.000000 H 0.010815 -3.142036 0.000000 H 2.141946 -1.894721 0.000000 H 3.134049 0.173278 0.000000 H -3.123652 -1.537582 0.000000 2-22iv (solution) X Y Z C 1.214213 0.023166 0.000000 C 0.000000 0.698340 0.000000 C -1.204691 0.024076 0.000000 C -1.214804 -1.361184 0.000000 C -0.015236 -2.055010 0.000000 C 1.183320 -1.362543 0.000000 O 2.353197 0.741796 0.000000 O -2.420297 -1.969860 0.000000 Cl -0.001039 2.428188 0.000000 H -2.137634 0.571108 0.000000 H -0.014236 -3.138193 0.000000 H 2.120889 -1.906044 0.000000 H 3.130914 0.155805 0.000000 H -2.322276 -2.938428 0.000000

Page 168: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

153

2-30 X Y Z C 1.243849 0.245181 0.000000 C 1.125891 -1.223901 0.000000 C -0.061919 -1.820467 0.000000 C -1.304316 -1.025175 0.000000 C -1.182429 0.439145 0.000000 C 0.000000 1.059784 0.000000 C 0.176363 2.533264 0.000000 O 2.330397 0.778839 0.000000 O -2.387875 -1.566534 0.000000 H 2.057340 -1.768962 0.000000 H -0.181843 -2.892932 0.000000 H -2.115034 0.983966 0.000000 H -0.782363 3.040574 0.000000 H 0.748541 2.845967 0.870347 H 0.748541 2.845967 -0.870347 2-30– X Y Z C 1.257422 0.304984 0.000000 C 1.163630 -1.126384 0.000000 C -0.028353 -1.784217 0.000000 C -1.284143 -1.086345 0.000000 C -1.185516 0.348734 0.000000 C 0.000000 1.020256 0.000000 C 0.077135 2.509592 0.000000 O 2.357501 0.912439 0.000000 O -2.388585 -1.683242 0.000000 H 2.100222 -1.667653 0.000000 H -0.072864 -2.864916 0.000000 H -2.122271 0.892233 0.000000 H -0.915589 2.955268 0.000000 H 0.629062 2.865892 0.869017 H 0.629062 2.865892 -0.869017 2-302– X Y Z C 1.277475 0.369802 0.000000 C 1.201884 -1.041696 0.000000 C 0.004719 -1.758884 0.000000 C -1.275986 -1.149403 0.000000 C -1.192159 0.267900 0.000000 C 0.000000 0.993770 0.000000 C -0.013701 2.488906 0.000000 O 2.386134 1.049693 0.000000 O -2.393591 -1.807253 0.000000 H 2.146347 -1.580721 0.000000 H 0.032217 -2.845820 0.000000 H -2.135321 0.811592 0.000000 H -1.035505 2.877333 0.000000 H 0.519261 2.887860 0.868363 H 0.519261 2.887860 -0.868363

2-31i X Y Z C 1.158379 0.203332 0.000000 C 1.085018 -1.195054 0.000000 C -0.127205 -1.814344 0.000000 C -1.345071 -1.050400 0.000000 C -1.214120 0.381327 0.000000 C 0.000000 1.007502 0.000000 C 0.132900 2.496769 0.000000 O 2.384489 0.740605 0.000000 O -2.462317 -1.598348 0.000000 H 2.009464 -1.750823 0.000000 H -0.214855 -2.889098 0.000000 H -2.130869 0.951475 0.000000 H -0.844867 2.966055 0.000000 H 0.662239 2.856895 0.883121 H 0.662239 2.856895 -0.883121 H 2.339869 1.695755 0.000000 2-31ii X Y Z C 1.151681 0.203875 0.000000 C 1.067524 -1.192112 0.000000 C -0.151820 -1.804278 0.000000 C -1.361018 -1.028277 0.000000 C -1.216361 0.402864 0.000000 C 0.000000 1.019764 0.000000 C 0.162527 2.502526 0.000000 O 2.329871 0.842485 0.000000 O -2.480830 -1.571123 0.000000 H 1.977484 -1.776838 0.000000 H -0.247957 -2.878227 0.000000 H -2.127854 0.981243 0.000000 H -0.805308 2.992613 0.000000 H 0.720671 2.832417 0.873392 H 0.720671 2.832417 -0.873392 H 3.054766 0.219305 0.000000 2-31iii X Y Z C 1.273557 0.367432 0.000000 C 1.251982 -1.069789 0.000000 C 0.083015 -1.765907 0.000000 C -1.131951 -1.067138 0.000000 C -1.159368 0.331444 0.000000 C 0.000000 1.059091 0.000000 C 0.020340 2.543409 0.000000 O 2.341924 1.003735 0.000000 O -2.252491 -1.799086 0.000000 H 2.207056 -1.570771 0.000000 H 0.057429 -2.843975 0.000000 H -2.114783 0.840506 0.000000 H -0.983867 2.955918 0.000000 H 0.559562 2.913563 0.869049 H 0.559562 2.913563 -0.869049 H -3.025882 -1.237247 0.000000

Page 169: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

154

2-31iv X Y Z C 1.270653 0.367860 0.000000 C 1.241492 -1.067977 0.000000 C 0.064121 -1.755770 0.000000 C -1.144839 -1.049233 0.000000 C -1.162903 0.350642 0.000000 C 0.000000 1.067160 0.000000 C 0.032140 2.551523 0.000000 O 2.345373 0.993669 0.000000 O -2.331256 -1.669054 0.000000 H 2.192682 -1.576200 0.000000 H 0.053965 -2.837016 0.000000 H -2.122946 0.844203 0.000000 H -0.969320 2.969841 0.000000 H 0.573890 2.917678 0.869213 H 0.573890 2.917678 -0.869213 H -2.219082 -2.618332 0.000000 2-31i– X Y Z C 1.179495 0.247086 0.000000 C 1.115171 -1.134316 0.000000 C -0.098976 -1.793009 0.000000 C -1.352469 -1.105222 0.000000 C -1.217970 0.316744 0.000000 C 0.000000 0.980747 0.000000 C 0.052814 2.480255 0.000000 O 2.429299 0.853887 0.000000 O -2.470128 -1.695028 0.000000 H 2.042579 -1.692470 0.000000 H -0.128173 -2.874036 0.000000 H -2.133794 0.894624 0.000000 H -0.951882 2.894254 0.000000 H 0.564531 2.877598 0.881207 H 0.564531 2.877598 -0.881207 H 2.300453 1.797853 0.000000 2-31ii– X Y Z C 1.169452 0.248902 0.000000 C 1.090708 -1.130982 0.000000 C -0.129936 -1.783576 0.000000 C -1.372117 -1.079298 0.000000 C -1.219647 0.343574 0.000000 C 0.000000 0.997869 0.000000 C 0.090182 2.492301 0.000000 O 2.383277 0.927233 0.000000 O -2.497950 -1.653088 0.000000 H 2.008032 -1.713970 0.000000 H -0.168270 -2.864086 0.000000 H -2.130230 0.929583 0.000000 H -0.902908 2.935557 0.000000 H 0.631564 2.857245 0.873104 H 0.631564 2.857245 -0.873104 H 3.075774 0.272530 0.000000

2-31iii– X Y Z C 1.297110 0.419579 0.000000 C 1.276724 -1.003717 0.000000 C 0.107333 -1.746088 0.000000 C -1.120551 -1.114864 0.000000 C -1.156515 0.270667 0.000000 C 0.000000 1.031362 0.000000 C -0.038200 2.520701 0.000000 O 2.357879 1.112645 0.000000 O -2.276892 -1.882879 0.000000 H 2.233780 -1.507369 0.000000 H 0.140531 -2.827609 0.000000 H -2.119038 0.777859 0.000000 H -1.060929 2.899477 0.000000 H 0.490232 2.918777 0.867266 H 0.490232 2.918777 -0.867266 H -3.018107 -1.283881 0.000000 2-31iv– X Y Z C 1.294500 0.417948 0.000000 C 1.262944 -1.003152 0.000000 C 0.079954 -1.728126 0.000000 C -1.142335 -1.085687 0.000000 C -1.166469 0.299770 0.000000 C 0.000000 1.041301 0.000000 C -0.019840 2.531329 0.000000 O 2.360576 1.102512 0.000000 O -2.348072 -1.773622 0.000000 H 2.213119 -1.519311 0.000000 H 0.116089 -2.814002 0.000000 H -2.126726 0.801355 0.000000 H -1.037879 2.921077 0.000000 H 0.513920 2.922124 0.867212 H 0.513920 2.922124 -0.867212 H -2.144997 -2.704782 0.000000 2-32i X Y Z C 1.198000 0.312193 0.000000 C 1.191562 -1.068554 0.000000 C -0.005417 -1.761862 0.000000 C -1.202783 -1.068701 0.000000 C -1.190921 0.314722 0.000000 C 0.000000 1.022488 0.000000 C 0.013189 2.517834 0.000000 O 2.405531 0.932986 0.000000 O -2.411849 -1.684470 0.000000 H 2.133840 -1.592830 0.000000 H 0.000222 -2.842720 0.000000 H -2.133824 0.839930 0.000000 H -0.997191 2.913352 0.000000 H 0.515481 2.918387 0.881754 H 0.515481 2.918387 -0.881754 H 2.291468 1.880345 0.000000 H -2.296705 -2.631692 0.000000

Page 170: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

155

2-32ii X Y Z C 1.198981 0.314719 0.000000 C 1.200887 -1.069376 0.000000 C 0.013962 -1.772288 0.000000 C -1.189376 -1.087503 0.000000 C -1.187600 0.295205 0.000000 C 0.000000 1.016203 0.000000 C -0.000637 2.511622 0.000000 O 2.404001 0.940565 0.000000 O -2.331741 -1.819285 0.000000 H 2.148176 -1.584751 0.000000 H 0.005922 -2.850318 0.000000 H -2.125968 0.834283 0.000000 H -1.014201 2.899737 0.000000 H 0.497752 2.917233 0.881603 H 0.497752 2.917233 -0.881603 H 2.287148 1.887538 0.000000 H -3.091960 -1.242685 0.000000 2-32iii X Y Z C 1.192664 0.312257 0.000000 C 1.182963 -1.070068 0.000000 C -0.012407 -1.766781 0.000000 C -1.205209 -1.070240 0.000000 C -1.189303 0.315681 0.000000 C 0.000000 1.026554 0.000000 C 0.034111 2.518010 0.000000 O 2.340812 1.040028 0.000000 O -2.357149 -1.786819 0.000000 H 2.117013 -1.614762 0.000000 H -0.028478 -2.844577 0.000000 H -2.123089 0.862794 0.000000 H -0.969723 2.931840 0.000000 H 0.564820 2.893602 0.872359 H 0.564820 2.893602 -0.872359 H 3.097339 0.458517 0.000000 H -3.108913 -1.199166 0.000000 2-32iv X Y Z C 1.191519 0.310000 0.000000 C 1.173927 -1.069081 0.000000 C -0.031497 -1.756266 0.000000 C -1.218305 -1.051162 0.000000 C -1.192737 0.335419 0.000000 C 0.000000 1.033339 0.000000 C 0.047802 2.524350 0.000000 O 2.342747 1.032527 0.000000 O -2.434988 -1.651483 0.000000 H 2.102810 -1.622242 0.000000 H -0.034038 -2.836926 0.000000 H -2.131283 0.868364 0.000000 H -0.952591 2.945514 0.000000 H 0.582264 2.894669 0.872361 H 0.582264 2.894669 -0.872361 H 3.097057 0.448162 0.000000 H -2.332806 -2.600164 0.000000

2-30 (solution) X Y Z C 1.241045 0.242974 0.000000 C 1.128556 -1.224783 0.000000 C -0.059474 -1.821665 0.000000 C -1.296388 -1.022541 0.000000 C -1.183036 0.439735 0.000000 C 0.000000 1.060176 0.000000 C 0.168117 2.534093 0.000000 O 2.330826 0.779255 0.000000 O -2.385512 -1.566318 0.000000 H 2.060213 -1.777461 0.000000 H -0.173134 -2.898939 0.000000 H -2.117090 0.989735 0.000000 H -0.795245 3.032638 0.000000 H 0.734910 2.851296 0.872945 H 0.734910 2.851296 -0.872945 2-30– (solution) X Y Z C 1.249257 0.299769 0.000000 C 1.165592 -1.130380 0.000000 C -0.025018 -1.788567 0.000000 C -1.270160 -1.079814 0.000000 C -1.183764 0.351503 0.000000 C 0.000000 1.026596 0.000000 C 0.063355 2.515405 0.000000 O 2.359098 0.902088 0.000000 O -2.383191 -1.680515 0.000000 H 2.100563 -1.677823 0.000000 H -0.063562 -2.871214 0.000000 H -2.119861 0.898895 0.000000 H -0.931818 2.950554 0.000000 H 0.605923 2.879962 0.870840 H 0.605923 2.879962 -0.870840 2-302– (solution) X Y Z C 1.261230 0.356053 0.000000 C 1.201719 -1.049049 0.000000 C 0.007535 -1.765866 0.000000 C -1.249277 -1.135122 0.000000 C -1.185113 0.274111 0.000000 C 0.000000 1.003768 0.000000 C -0.034100 2.498428 0.000000 O 2.389585 1.024669 0.000000 O -2.386511 -1.794216 0.000000 H 2.142686 -1.590759 0.000000 H 0.037585 -2.850959 0.000000 H -2.126050 0.817685 0.000000 H -1.055855 2.872242 0.000000 H 0.482541 2.907115 0.869295 H 0.482541 2.907115 -0.869295

Page 171: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

156

2-31i (solution) X Y Z C 1.163959 0.210856 0.000000 C 1.081684 -1.193035 0.000000 C -0.127289 -1.813425 0.000000 C -1.341523 -1.045369 0.000000 C -1.210538 0.384970 0.000000 C 0.000000 1.016333 0.000000 C 0.107214 2.504463 0.000000 O 2.395221 0.711386 0.000000 O -2.465569 -1.595181 0.000000 H 2.006632 -1.755355 0.000000 H -0.206195 -2.892772 0.000000 H -2.126366 0.963570 0.000000 H -0.878955 2.955894 0.000000 H 0.639096 2.867259 0.879887 H 0.639096 2.867259 -0.879887 H 2.448434 1.675752 0.000000 2-31ii (solution) X Y Z C 1.158660 0.202989 0.000000 C 1.069015 -1.197885 0.000000 C -0.151043 -1.802772 0.000000 C -1.358257 -1.023398 0.000000 C -1.216628 0.407059 0.000000 C 0.000000 1.019744 0.000000 C 0.160963 2.501804 0.000000 O 2.322769 0.836662 0.000000 O -2.485634 -1.567735 0.000000 H 1.983401 -1.780509 0.000000 H -0.242452 -2.881190 0.000000 H -2.126717 0.994580 0.000000 H -0.807278 2.991518 0.000000 H 0.719736 2.830916 0.873796 H 0.719736 2.830916 -0.873796 H 3.080238 0.217102 0.000000 2-31iii (solution) X Y Z C 1.273171 0.366856 0.000000 C 1.254460 -1.070074 0.000000 C 0.087189 -1.766428 0.000000 C -1.134148 -1.068556 0.000000 C -1.159004 0.334019 0.000000 C 0.000000 1.058395 0.000000 C 0.007420 2.543989 0.000000 O 2.349182 1.003904 0.000000 O -2.243422 -1.796837 0.000000 H 2.209464 -1.579512 0.000000 H 0.068902 -2.848592 0.000000 H -2.120750 0.836286 0.000000 H -1.002674 2.941023 0.000000 H 0.536903 2.923772 0.871733 H 0.536903 2.923772 -0.871733 H -3.049357 -1.242492 0.000000

2-31iv (solution) X Y Z C 1.269582 0.368155 0.000000 C 1.242643 -1.068037 0.000000 C 0.070303 -1.759918 0.000000 C -1.144435 -1.053723 0.000000 C -1.160726 0.350501 0.000000 C 0.000000 1.067895 0.000000 C 0.016868 2.553633 0.000000 O 2.350268 0.997339 0.000000 O -2.321303 -1.665956 0.000000 H 2.194533 -1.583338 0.000000 H 0.055493 -2.843811 0.000000 H -2.122843 0.848213 0.000000 H -0.991068 2.956139 0.000000 H 0.548235 2.930569 0.871807 H 0.548235 2.930569 -0.871807 H -2.229707 -2.640442 0.000000 2-31i– (solution) X Y Z C 1.013572 -0.642131 -0.005473 C 0.001192 -1.584981 -0.008924 C -1.330512 -1.206363 -0.004419 C -1.717653 0.155018 0.006305 C -0.646668 1.083394 0.005159 C 0.689859 0.712854 -0.006383 C 1.778712 1.739084 -0.016154 O 2.330261 -1.055442 -0.077226 O -2.954122 0.527741 0.013459 H 0.270263 -2.634718 -0.016377 H -2.106865 -1.961794 -0.008360 H -0.896782 2.138601 0.005343 H 1.368733 2.738559 -0.129664 H 2.357653 1.718956 0.907361 H 2.480245 1.557222 -0.828290 H 2.786627 -0.876464 0.759461 2-31ii– (solution) X Y Z C 1.172848 0.249704 0.000000 C 1.099818 -1.131319 0.000000 C -0.126159 -1.781030 0.000000 C -1.348449 -1.073508 0.000000 C -1.218912 0.336648 0.000000 C 0.000000 0.999192 0.000000 C 0.079324 2.492761 0.000000 O 2.363304 0.931381 0.000000 O -2.501725 -1.664203 0.000000 H 2.017292 -1.710963 0.000000 H -0.157427 -2.863860 0.000000 H -2.129436 0.925845 0.000000 H -0.913284 2.934116 0.000000 H 0.618584 2.859602 0.872309 H 0.618584 2.859602 -0.872309 H 3.102235 0.303550 0.000000

Page 172: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

157

2-31iii– (solution) X Y Z C 1.283131 0.419650 0.000000 C 1.280729 -0.992583 0.000000 C 0.116411 -1.746889 0.000000 C -1.114764 -1.118749 0.000000 C -1.156588 0.267547 0.000000 C 0.000000 1.034764 0.000000 C -0.075456 2.525232 0.000000 O 2.372972 1.117635 0.000000 O -2.247937 -1.893050 0.000000 H 2.239673 -1.497320 0.000000 H 0.162788 -2.829211 0.000000 H -2.121911 0.765394 0.000000 H -1.106332 2.871452 0.000000 H 0.430723 2.944294 0.869722 H 0.430723 2.944294 -0.869722 H -3.036719 -1.329421 0.000000 2-31iv– (solution) X Y Z C 1.280489 0.419212 0.000000 C 1.268358 -0.991435 0.000000 C 0.096135 -1.737207 0.000000 C -1.129575 -1.099206 0.000000 C -1.161220 0.287720 0.000000 C 0.000000 1.044278 0.000000 C -0.062564 2.535322 0.000000 O 2.374068 1.111185 0.000000 O -2.326527 -1.770316 0.000000 H 2.222679 -1.504696 0.000000 H 0.141355 -2.821174 0.000000 H -2.124799 0.785203 0.000000 H -1.090513 2.889952 0.000000 H 0.447466 2.949751 0.869648 H 0.447466 2.949751 -0.869648 H -2.173715 -2.727850 0.000000 2-32i (solution) X Y Z C -1.053788 -0.645258 0.000571 C -0.048981 -1.593620 -0.007920 C 1.283834 -1.213870 -0.006645 C 1.605303 0.133171 0.006473 C 0.594908 1.084121 0.010763 C -0.741062 0.713622 -0.000393 C -1.828966 1.736590 -0.023060 O -2.354187 -1.067053 -0.071107 O 2.882206 0.581889 0.010732 H -0.318983 -2.641532 -0.014663 H 2.068389 -1.960821 -0.013203 H 0.865136 2.132742 0.009444 H -1.420194 2.734889 -0.144431 H -2.524337 1.543519 -0.837566 H -2.409721 1.723312 0.899189 H -2.862565 -0.779108 0.704559 H 3.510635 -0.160220 0.000925

2-32ii (solution) X Y Z C 1.065844 -0.631914 0.002223 C 0.080128 -1.602764 -0.007629 C -1.258622 -1.252816 -0.007757 C -1.611260 0.087040 0.006094 C -0.622223 1.059187 0.011813 C 0.723822 0.717798 0.000631 C 1.786196 1.767151 -0.024786 O 2.373868 -1.028564 -0.068736 O -2.929756 0.393825 0.008679 H 0.374106 -2.644211 -0.014306 H -2.031109 -2.010002 -0.015453 H -0.906912 2.105732 0.010934 H 1.352926 2.755398 -0.143529 H 2.370967 1.767813 0.895072 H 2.482682 1.592516 -0.842587 H 2.884485 -0.708761 0.692438 H -3.063346 1.357331 0.014364 2-32iii (solution) X Y Z C 1.197782 0.315021 0.000000 C 1.188435 -1.069254 0.000000 C -0.008869 -1.766264 0.000000 C -1.205522 -1.071601 0.000000 C -1.191622 0.315615 0.000000 C 0.000000 1.025912 0.000000 C 0.022596 2.518626 0.000000 O 2.345241 1.039666 0.000000 O -2.357524 -1.788150 0.000000 H 2.128201 -1.609129 0.000000 H -0.016421 -2.848041 0.000000 H -2.131733 0.856528 0.000000 H -0.985413 2.922229 0.000000 H 0.548329 2.901555 0.872929 H 0.548329 2.901555 -0.872929 H 3.121100 0.454205 0.000000 H -3.130925 -1.199373 0.000000 2-32iv (solution) X Y Z C 1.194945 0.315543 0.000000 C 1.177167 -1.066951 0.000000 C -0.026695 -1.757633 0.000000 C -1.217206 -1.053906 0.000000 C -1.194076 0.333749 0.000000 C 0.000000 1.035172 0.000000 C 0.033098 2.527645 0.000000 O 2.345850 1.034547 0.000000 O -2.431330 -1.658327 0.000000 H 2.113013 -1.613557 0.000000 H -0.033010 -2.840954 0.000000 H -2.133878 0.871883 0.000000 H -0.972379 2.937465 0.000000 H 0.561357 2.907064 0.872930 H 0.561357 2.907064 -0.872930 H 3.118984 0.445516 0.000000 H -2.335002 -2.625953 0.000000

Page 173: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

158

2-40 X Y Z C 0.000000 0.771159 -0.667723 C 0.000000 -0.771159 -0.667723 C 0.000000 1.443843 0.632628 C 0.000000 -1.443843 0.632628 C 0.000000 0.728090 1.761383 C 0.000000 -0.728090 1.761383 O 0.000000 1.366703 -1.712751 O 0.000000 -1.366703 -1.712751 H 0.000000 2.522417 0.626399 H 0.000000 -2.522417 0.626399 H 0.000000 1.228992 2.717876 H 0.000000 -1.228992 2.717876 2-40– X Y Z C 0.000000 0.747101 -0.665726 C 0.000000 -0.747101 -0.665726 C 0.000000 1.394912 0.615312 C 0.000000 -1.394912 0.615312 C 0.000000 0.705806 1.796831 C 0.000000 -0.705806 1.796831 O 0.000000 1.395740 -1.726884 O 0.000000 -1.395740 -1.726884 H 0.000000 2.476403 0.598996 H 0.000000 -2.476403 0.598996 H 0.000000 1.240525 2.737569 H 0.000000 -1.240525 2.737569 2-402– X Y Z C 0.000000 0.747963 -0.666150 C 0.000000 -0.747963 -0.666150 C 0.000000 1.371491 0.604462 C 0.000000 -1.371491 0.604462 C 0.000000 0.690003 1.837525 C 0.000000 -0.690003 1.837525 O 0.000000 1.412277 -1.751980 O 0.000000 -1.412277 -1.751980 H 0.000000 2.458924 0.590758 H 0.000000 -2.458924 0.590758 H 0.000000 1.249266 2.770062 H 0.000000 -1.249266 2.770062 2-41i X Y Z C 0.000000 0.896157 0.000000 C -0.918757 -0.227075 0.000000 C 1.367701 0.709463 0.000000 C -0.355872 -1.541161 0.000000 C 1.855836 -0.582509 0.000000 C 0.995858 -1.701810 0.000000 O -0.550095 2.093317 0.000000 O -2.136753 0.030076 0.000000 H 2.025134 1.563670 0.000000 H -1.037563 -2.376541 0.000000 H 2.922914 -0.741740 0.000000 H 1.424163 -2.691841 0.000000 H -1.508469 1.940913 0.000000

2-41ii X Y Z C 0.000000 0.897753 0.000000 C 0.960551 -0.191701 0.000000 C -1.356353 0.641896 0.000000 C 0.420054 -1.522485 0.000000 C -1.816724 -0.664658 0.000000 C -0.923895 -1.747919 0.000000 O 0.518360 2.120462 0.000000 O 2.179571 0.030846 0.000000 H -2.058921 1.463602 0.000000 H 1.137309 -2.327975 0.000000 H -2.879840 -0.847991 0.000000 H -1.309578 -2.755253 0.000000 H -0.174214 2.779841 0.000000 2-41i– X Y Z C 0.000000 0.865405 0.000000 C -0.920042 -0.233361 0.000000 C 1.359098 0.704361 0.000000 C -0.335689 -1.510470 0.000000 C 1.903681 -0.588699 0.000000 C 1.048693 -1.675003 0.000000 O -0.613667 2.071421 0.000000 O -2.164037 0.058484 0.000000 H 1.996066 1.578720 0.000000 H -0.992185 -2.369768 0.000000 H 2.975420 -0.726601 0.000000 H 1.459012 -2.677241 0.000000 H -1.551126 1.782258 0.000000 2-41ii– X Y Z C 0.000000 0.861225 0.000000 C 0.996105 -0.179854 0.000000 C -1.348627 0.601510 0.000000 C 0.431268 -1.488544 0.000000 C -1.850699 -0.704412 0.000000 C -0.931031 -1.739990 0.000000 O 0.470945 2.150428 0.000000 O 2.228869 0.060762 0.000000 H -2.038998 1.441344 0.000000 H 1.137528 -2.307847 0.000000 H -2.914986 -0.886780 0.000000 H -1.277990 -2.766463 0.000000 H -0.286160 2.730612 0.000000 2-42i X Y Z C 0.000000 0.850456 0.000000 C -0.840604 -0.258115 0.000000 C 1.369187 0.691463 0.000000 C -0.294714 -1.525152 0.000000 C 1.914651 -0.584130 0.000000 C 1.081821 -1.687762 0.000000 O -0.639162 2.051740 0.000000 O -2.177064 -0.094175 0.000000 H 2.009555 1.562432 0.000000 H -0.961975 -2.372299 0.000000 H 2.985981 -0.706115 0.000000 H 1.499744 -2.681977 0.000000 H -0.014194 2.772633 0.000000 H -2.371357 0.844244 0.000000

Page 174: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

159

2-42ii X Y Z C 0.000000 0.697402 -0.534575 C 0.000000 -0.697402 -0.534575 C 0.000000 1.376360 0.668212 C 0.000000 -1.376360 0.668212 C 0.000000 0.689975 1.873670 C 0.000000 -0.689975 1.873670 O 0.000000 1.310752 -1.736120 O 0.000000 -1.310752 -1.736120 H 0.000000 2.457652 0.659414 H 0.000000 -2.457652 0.659414 H 0.000000 1.239389 2.801493 H 0.000000 -1.239389 2.801493 H 0.000000 2.257668 -1.615789 H 0.000000 -2.257668 -1.615789 2-42iii X Y Z C 0.000000 0.695317 -0.524650 C 0.000000 -0.695317 -0.524650 C 0.000000 1.376272 0.680258 C 0.000000 -1.376272 0.680258 C 0.000000 0.692609 1.879760 C 0.000000 -0.692609 1.879760 O 0.000000 1.457008 -1.651539 O 0.000000 -1.457008 -1.651539 H 0.000000 2.454334 0.646181 H 0.000000 -2.454334 0.646181 H 0.000000 1.241367 2.808021 H 0.000000 -1.241367 2.808021 H 0.000000 0.945316 -2.454097 H 0.000000 -0.945316 -2.454097 2-40 (solution) X Y Z C 0.000000 0.772435 -0.656872 C 0.000000 -0.772435 -0.656872 C 0.000000 1.449852 0.630722 C 0.000000 -1.449852 0.630722 C 0.000000 0.729067 1.758158 C 0.000000 -0.729067 1.758158 O 0.000000 1.352443 -1.717757 O 0.000000 -1.352443 -1.717757 H 0.000000 2.532304 0.630309 H 0.000000 -2.532304 0.630309 H 0.000000 1.227905 2.719706 H 0.000000 -1.227905 2.719706 2-40– (solution) X Y Z C 0.000000 0.739817 -0.651501 C 0.000000 -0.739817 -0.651501 C 0.000000 1.400013 0.615868 C 0.000000 -1.400013 0.615868 C 0.000000 0.707972 1.792002 C 0.000000 -0.707972 1.792002 O 0.000000 1.376635 -1.734939 O 0.000000 -1.376635 -1.734939 H 0.000000 2.483142 0.606400 H 0.000000 -2.483142 0.606400 H 0.000000 1.239804 2.734898 H 0.000000 -1.239804 2.734898

2-402– (solution) X Y Z C 0.000000 0.728804 -0.643956 C 0.000000 -0.728804 -0.643956 C 0.000000 1.368753 0.604214 C 0.000000 -1.368753 0.604214 C 0.000000 0.689892 1.828495 C 0.000000 -0.689892 1.828495 O 0.000000 1.395842 -1.760494 O 0.000000 -1.395842 -1.760494 H 0.000000 2.454278 0.594301 H 0.000000 -2.454278 0.594301 H 0.000000 1.247783 2.757133 H 0.000000 -1.247783 2.757133 2-41i (solution) X Y Z C 0.000000 0.897065 0.000000 C -0.927608 -0.218473 0.000000 C 1.367617 0.690337 0.000000 C -0.372086 -1.537668 0.000000 C 1.848261 -0.602962 0.000000 C 0.976293 -1.715893 0.000000 O -0.494165 2.119770 0.000000 O -2.152228 0.024425 0.000000 H 2.036408 1.540783 0.000000 H -1.061951 -2.371541 0.000000 H 2.917512 -0.770473 0.000000 H 1.394805 -2.713616 0.000000 H -1.470496 2.086851 0.000000 2-41ii (solution) X Y Z C 0.000000 0.898913 0.000000 C 0.956595 -0.195839 0.000000 C -1.360906 0.646238 0.000000 C 0.419683 -1.527203 0.000000 C -1.818182 -0.656868 0.000000 C -0.922736 -1.746555 0.000000 O 0.523329 2.112927 0.000000 O 2.182204 0.030358 0.000000 H -2.056341 1.477387 0.000000 H 1.131973 -2.342130 0.000000 H -2.884341 -0.842955 0.000000 H -1.313407 -2.755451 0.000000 H -0.168875 2.804752 0.000000 2-41i– (solution) X Y Z C 0.000000 0.861035 0.000000 C -0.920972 -0.221750 0.000000 C 1.361768 0.680834 0.000000 C -0.354114 -1.504246 0.000000 C 1.890731 -0.612778 0.000000 C 1.025862 -1.692990 0.000000 O -0.550124 2.103320 0.000000 O -2.185229 0.055223 0.000000 H 2.010473 1.548424 0.000000 H -1.021009 -2.358115 0.000000 H 2.962061 -0.759709 0.000000 H 1.421696 -2.701140 0.000000 H -1.510046 1.941565 0.000000

Page 175: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

160

2-41ii– (solution) X Y Z C 0.000000 0.862263 0.000000 C 0.970242 -0.183336 0.000000 C -1.354575 0.606939 0.000000 C 0.428654 -1.486312 0.000000 C -1.845359 -0.698648 0.000000 C -0.936593 -1.741980 0.000000 O 0.488316 2.136747 0.000000 O 2.233678 0.061437 0.000000 H -2.041039 1.447829 0.000000 H 1.133252 -2.309663 0.000000 H -2.911180 -0.880074 0.000000 H -1.285211 -2.767592 0.000000 H -0.245985 2.770472 0.000000 2-42i (solution) X Y Z C 0.000000 0.860125 0.000000 C 0.842435 -0.250407 0.000000 C -1.371141 0.686130 0.000000 C 0.300298 -1.521411 0.000000 C -1.912678 -0.591757 0.000000 C -1.076398 -1.694952 0.000000 O 0.616091 2.064099 0.000000 O 2.185336 -0.105573 0.000000 H -2.011088 1.560772 0.000000 H 0.971564 -2.370317 0.000000 H -2.986989 -0.715998 0.000000 H -1.489166 -2.694570 0.000000 H -0.026066 2.796235 0.000000 H 2.435228 0.829302 0.000000

2-42ii (solution) X Y Z C 0.000000 0.698103 -0.531798 C 0.000000 -0.698103 -0.531798 C 0.000000 1.383381 0.668640 C 0.000000 -1.383381 0.668640 C 0.000000 0.691588 1.873252 C 0.000000 -0.691588 1.873252 O 0.000000 1.306486 -1.735970 O 0.000000 -1.306486 -1.735970 H 0.000000 2.467118 0.652511 H 0.000000 -2.467118 0.652511 H 0.000000 1.240994 2.804781 H 0.000000 -1.240994 2.804781 H 0.000000 2.273861 -1.630101 H 0.000000 -2.273861 -1.630101 2-42iii (solution) X Y Z C 0.000000 0.697339 -0.531302 C 0.000000 -0.697339 -0.531302 C 0.000000 1.373777 0.679866 C 0.000000 -1.373777 0.679866 C 0.000000 0.693164 1.883272 C 0.000000 -0.693164 1.883272 O 0.000000 1.465162 -1.646381 O 0.000000 -1.465162 -1.646381 H 0.000000 2.455790 0.650361 H 0.000000 -2.455790 0.650361 H 0.000000 1.245768 2.812845 H 0.000000 -1.245768 2.812845 H 0.000000 0.973924 -2.483177 H 0.000000 -0.973924 -2.483177

Page 176: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

161

APPENDIX B

Supplementary Information for Chapter 3

This appendix includes the optimized geometries in Cartesian coordinates for minimum-

energy structures and saddle points in gas phase and in water solution using the

mPW1B95-44/6-31+G(d,p) level of theory.

Page 177: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

162

3-1 X Y Z C 0.000000 0.000000 1.428797 C 0.000000 1.261847 0.665271 C 0.000000 1.261847 -0.665271 C 0.000000 0.000000 -1.428797 C 0.000000 -1.261847 -0.665271 C 0.000000 -1.261847 0.665271 O 0.000000 0.000000 2.638769 O 0.000000 0.000000 -2.638769 H 0.000000 2.168652 1.250393 H 0.000000 2.168652 -1.250393 H 0.000000 -2.168652 -1.250393 H 0.000000 -2.168652 1.250393 3-2 X Y Z C -1.242094 -0.099879 0.000000 C 0.000000 0.725309 0.000000 C 1.206991 0.162561 0.000000 C 1.360975 -1.300555 0.000000 C 0.138425 -2.124813 0.000000 C -1.065834 -1.562860 0.000000 O -2.336393 0.402003 0.000000 O 2.458495 -1.808774 0.000000 Cl -0.222845 2.414180 0.000000 H 2.115429 0.743291 0.000000 H 0.285772 -3.193597 0.000000 H -1.980441 -2.135167 0.000000 3-3 X Y Z C 1.243849 0.245181 0.000000 C 1.125891 -1.223901 0.000000 C -0.061919 -1.820467 0.000000 C -1.304316 -1.025175 0.000000 C -1.182429 0.439145 0.000000 C 0.000000 1.059784 0.000000 C 0.176363 2.533264 0.000000 O 2.330397 0.778839 0.000000 O -2.387875 -1.566534 0.000000 H 2.057340 -1.768962 0.000000 H -0.181843 -2.892932 0.000000 H -2.115034 0.983966 0.000000 H -0.782363 3.040574 0.000000 H 0.748541 2.845967 0.870347 H 0.748541 2.845967 -0.870347 3-4 X Y Z C 0.000000 0.771159 -0.667723 C 0.000000 -0.771159 -0.667723 C 0.000000 1.443843 0.632628 C 0.000000 -1.443843 0.632628 C 0.000000 0.728090 1.761383 C 0.000000 -0.728090 1.761383 O 0.000000 1.366703 -1.712751 O 0.000000 -1.366703 -1.712751 H 0.000000 2.522417 0.626399 H 0.000000 -2.522417 0.626399 H 0.000000 1.228992 2.717876 H 0.000000 -1.228992 2.717876

3-5a X Y Z C 1.161320 -0.002026 -0.024710 C 0.333086 1.245344 -0.078154 C -0.993243 1.254448 -0.033348 C -1.764536 0.004275 -0.000381 C -0.996424 -1.250227 -0.053136 C 0.329914 -1.250236 -0.066205 O 2.020034 0.061092 -1.130843 O -2.975006 0.002477 0.058542 N 1.987663 -0.069252 1.161784 H 0.902131 2.163655 -0.134536 H -1.565443 2.169086 -0.034850 H -1.574248 -2.161121 -0.081452 H 0.892491 -2.173592 -0.097652 H 2.471083 0.804314 1.308469 H 1.445059 -0.279717 1.984386 H 2.734359 -0.555881 -0.962845 3-5b X Y Z C -1.161320 -0.002026 -0.024710 C -0.329914 -1.250236 -0.066205 C 0.996424 -1.250227 -0.053135 C 1.764536 0.004275 -0.000381 C 0.993243 1.254448 -0.033348 C -0.333086 1.245344 -0.078155 O -2.020034 0.061092 -1.130843 O 2.975006 0.002477 0.058542 N -1.987662 -0.069252 1.161784 H -0.892490 -2.173592 -0.097651 H 1.574248 -2.161121 -0.081451 H 1.565443 2.169086 -0.034851 H -0.902131 2.163655 -0.134537 H -2.471084 0.804314 1.308468 H -1.445058 -0.279714 1.984387 H -2.734358 -0.555883 -0.962846 3-5c X Y Z C 0.000137 -1.165525 0.000000 C -0.033161 -0.337852 1.248761 C -0.033161 0.988903 1.252501 C -0.037955 1.759486 0.000000 C -0.033161 0.988903 -1.252501 C -0.033161 -0.337852 -1.248761 O 1.195725 -1.941339 0.000000 O -0.043206 2.971300 0.000000 N -1.117514 -2.044336 0.000000 H -0.025913 -0.901096 2.172457 H -0.036090 1.563654 2.165625 H -0.036090 1.563654 -2.165625 H -0.025913 -0.901096 -2.172457 H -1.103475 -2.635941 0.815928 H -1.103475 -2.635941 -0.815928 H 1.956187 -1.358960 0.000000

Page 178: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

163

3-5d X Y Z C 1.169388 0.018744 -0.007457 C 0.328423 1.259865 -0.020951 C -0.999171 1.249901 -0.015671 C -1.759617 -0.009971 0.011732 C -0.980424 -1.257475 -0.005488 C 0.347918 -1.238497 -0.031315 O 2.044366 0.016080 -1.111237 O -2.971088 -0.018961 0.039687 N 2.045261 0.085047 1.132235 H 0.897281 2.178184 -0.035423 H -1.583473 2.157144 -0.029161 H -1.548409 -2.175091 -0.000662 H 0.923726 -2.154747 -0.056570 H 2.709793 -0.673034 1.102182 H 1.526883 0.040952 1.994253 H 1.532048 -0.081089 -1.912964 3-5e X Y Z C 1.163364 -0.009083 0.003254 C 0.328928 -1.252974 0.008849 C -0.996270 -1.249659 -0.004978 C -1.761941 0.003127 -0.013643 C -0.986071 1.252878 0.001232 C 0.339076 1.242647 -0.001596 O 1.911474 -0.084599 1.206251 O -2.973772 0.012588 -0.029409 N 1.970839 -0.015321 -1.176909 H 0.887975 -2.178164 0.035005 H -1.572984 -2.161238 -0.004274 H -1.556519 2.168549 0.007827 H 0.896523 2.172599 -0.000577 H 2.609854 -0.793993 -1.180207 H 2.486281 0.840490 -1.303024 H 2.428862 0.713474 1.310172 3-5f X Y Z C 1.163364 -0.009083 0.003254 C 0.328928 -1.252974 0.008849 C -0.996270 -1.249659 -0.004978 C -1.761941 0.003127 -0.013643 C -0.986071 1.252878 0.001232 C 0.339076 1.242647 -0.001596 O 1.911473 -0.084599 1.206251 O -2.973772 0.012588 -0.029409 N 1.970839 -0.015321 -1.176908 H 0.887975 -2.178164 0.035004 H -1.572984 -2.161238 -0.004275 H -1.556519 2.168549 0.007826 H 0.896523 2.172599 -0.000578 H 2.609855 -0.793993 -1.180206 H 2.486281 0.840490 -1.303024 H 2.428860 0.713475 1.310173

3-5g X Y Z C 0.004888 -1.157332 0.000000 C 0.012339 -0.328507 1.248929 C 0.012339 0.996731 1.252060 C -0.006710 1.766576 0.000000 C 0.012339 0.996731 -1.252060 C 0.012339 -0.328507 -1.248929 O 1.211902 -1.915013 0.000000 O -0.033778 2.978294 0.000000 N -1.175638 -1.955466 0.000000 H 0.041291 -0.890887 2.172829 H 0.028012 1.571182 2.165044 H 0.028012 1.571182 -2.165044 H 0.041291 -0.890887 -2.172829 H -1.302644 -2.505023 0.832522 H -1.302644 -2.505023 -0.832522 H 0.985943 -2.842678 0.000000 3-5α X Y Z C 0.104141 -1.128761 0.000000 C 0.113557 -0.306300 1.251171 C 0.113557 1.021739 1.253792 C 0.067241 1.789953 0.000000 C 0.113557 1.021739 -1.253792 C 0.113557 -0.306300 -1.251171 O 0.960525 -2.159922 0.000000 O 0.006478 3.000554 0.000000 N -1.193666 -2.009248 0.000000 H 0.186119 -0.876469 2.167924 H 0.165749 1.599473 2.163838 H 0.165749 1.599473 -2.163838 H 0.186119 -0.876469 -2.167924 H -0.300669 -2.759376 0.000000 H -1.768548 -1.949686 0.830388 H -1.768548 -1.949686 -0.830388 3-5β X Y Z C 0.647367 0.347952 -0.150373 C -0.410518 1.405005 -0.148450 C -1.708157 1.137236 -0.074851 C -2.204319 -0.247079 0.007748 C -1.202085 -1.320225 -0.075473 C 0.096850 -1.052623 -0.137101 O 1.554731 0.551843 -1.106133 O -3.386162 -0.486715 0.126558 N 1.411326 0.465534 1.209345 H -0.041763 2.416599 -0.253406 H -2.460595 1.910480 -0.096802 H -1.586090 -2.328578 -0.098821 H 0.845584 -1.829717 -0.215193 H 1.663412 1.433007 1.366386 H 0.886163 0.116727 2.000034 H 2.334860 -0.116375 0.974578 H 2.485780 -0.140591 -0.759028 O 3.154386 -0.775025 0.002681 H 4.094907 -0.662712 -0.097017

Page 179: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

164

3-5γ X Y Z C 0.176785 0.398501 -0.139856 C -0.924919 1.409975 -0.150574 C -2.211395 1.089409 -0.087012 C -2.651135 -0.313229 -0.001642 C -1.604762 -1.344454 -0.069941 C -0.317692 -1.022788 -0.121808 O 1.078941 0.631097 -1.094386 O -3.823141 -0.601474 0.107665 N 0.928719 0.553451 1.220274 H -0.597787 2.435708 -0.256868 H -2.994556 1.831173 -0.119029 H -1.946575 -2.367942 -0.090954 H 0.461792 -1.770227 -0.189676 H 1.128907 1.532707 1.378895 H 0.417789 0.180008 2.009085 H 1.895561 0.010827 0.975122 H 2.056761 -0.016081 -0.721077 O 2.751848 -0.576182 0.043452 C 4.118246 -0.315205 -0.053119 H 4.645312 -0.779805 0.779127 H 4.336304 0.756430 -0.039892 H 4.523514 -0.727729 -0.976791 3-6a X Y Z C 0.574785 0.909179 -0.017562 C -0.750620 1.614420 -0.045163 C -1.926893 1.004628 -0.044871 C -2.027425 -0.460979 0.003924 C -0.768558 -1.216106 0.013548 C 0.401999 -0.592800 -0.017775 O 1.303725 1.216367 -1.170003 O -3.098334 -1.025437 0.035864 N 1.311261 1.396886 1.119087 H -0.673654 2.692288 -0.079818 H -2.858769 1.546783 -0.081962 H -0.845630 -2.290760 0.043256 Cl 1.876570 -1.476255 -0.012520 H 2.145857 0.847545 1.264327 H 0.759178 1.385255 1.961635 H 1.729653 2.059535 -1.007697 3-6b X Y Z C 0.574785 0.909179 -0.017562 C -0.750620 1.614420 -0.045162 C -1.926894 1.004628 -0.044869 C -2.027425 -0.460979 0.003924 C -0.768558 -1.216106 0.013548 C 0.401999 -0.592800 -0.017774 O 1.303724 1.216367 -1.170004 O -3.098333 -1.025437 0.035863 N 1.311262 1.396887 1.119086 H -0.673655 2.692288 -0.079816 H -2.858769 1.546783 -0.081959 H -0.845629 -2.290760 0.043255 Cl 1.876569 -1.476255 -0.012520 H 2.145858 0.847547 1.264326 H 0.759180 1.385256 1.961635 H 1.729650 2.059536 -1.007700

3-6c X Y Z C -0.572080 0.910030 -0.012293 C -0.407728 -0.593420 -0.015707 C 0.761962 -1.217848 0.005663 C 2.024159 -0.463451 -0.000972 C 1.926652 0.996804 -0.112722 C 0.748869 1.604093 -0.157923 O -1.350428 1.339044 -1.083310 O 3.090814 -1.033030 0.066887 N -1.250622 1.277567 1.208494 Cl -1.887219 -1.467530 -0.032116 H 0.838493 -2.293056 0.016440 H 2.858475 1.536869 -0.170216 H 0.668668 2.676705 -0.269032 H -1.292496 2.281416 1.295590 H -0.801802 0.894811 2.025562 H -2.248356 1.042927 -0.916709 3-6d X Y Z C 0.570442 0.915276 -0.003338 C 0.413848 -0.586718 -0.019145 C -0.752576 -1.218467 -0.013794 C -2.018952 -0.474437 -0.024526 C -1.930892 0.991791 -0.032413 C -0.758621 1.609885 -0.040103 O 1.251118 1.304291 1.177101 O -3.083828 -1.051036 -0.024009 N 1.324467 1.316346 -1.136332 Cl 1.894326 -1.460625 -0.003799 H -0.820920 -2.294172 -0.007121 H -2.866836 1.527905 -0.038737 H -0.693099 2.689399 -0.043011 H 2.233861 0.880453 -1.127873 H 1.449038 2.315993 -1.138126 H 0.745328 1.046605 1.948956 3-6e X Y Z C -0.562746 0.917603 -0.001527 C -0.401566 -0.581693 0.004659 C 0.756071 -1.222214 0.010775 C 2.023835 -0.476833 0.012406 C 1.934698 0.986941 -0.038116 C 0.766007 1.609107 -0.054270 O -1.227104 1.325219 -1.175426 O 3.086209 -1.056604 0.044100 N -1.215456 1.301247 1.209753 Cl -1.900962 -1.443556 -0.011999 H 0.821205 -2.297988 0.011690 H 2.870664 1.521807 -0.066214 H 0.702521 2.686748 -0.109356 H -2.083152 0.808520 1.350610 H -1.386940 2.293373 1.226576 H -2.070393 0.872889 -1.230555

Page 180: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

165

3-6f X Y Z C 0.562746 0.917603 -0.001568 C -0.766010 1.609106 -0.054252 C -1.934700 0.986941 -0.038030 C -2.023835 -0.476832 0.012515 C -0.756071 -1.222214 0.010829 C 0.401566 -0.581693 0.004646 O 1.227044 1.325204 -1.175506 O -3.086207 -1.056604 0.044270 N 1.215518 1.301262 1.209674 H -0.702527 2.686747 -0.109355 H -2.870668 1.521806 -0.066088 H -0.821204 -2.297987 0.011761 Cl 1.900961 -1.443557 -0.012077 H 1.387003 2.293389 1.226476 H 2.083221 0.808537 1.350493 H 2.070331 0.872874 -1.230671 3-6g X Y Z C 0.571672 0.908100 0.005185 C 0.409817 -0.590918 -0.003544 C -0.757667 -1.217604 -0.014036 C -2.020758 -0.471468 -0.014539 C -1.928479 0.994841 -0.010447 C -0.755245 1.608094 -0.017492 O 1.225365 1.188535 1.226957 O -3.089149 -1.041839 -0.020563 N 1.299916 1.296308 -1.156489 Cl 1.888804 -1.464488 -0.000401 H -0.827322 -2.292960 -0.023495 H -2.862638 1.533840 -0.006710 H -0.698732 2.690071 -0.019243 H 2.231512 0.912567 -1.158078 H 1.331083 2.293251 -1.287269 H 1.411252 2.125546 1.275127 3-6h X Y Z C -0.584575 0.905953 -0.001708 C -0.418637 -0.599024 0.000654 C 0.758767 -1.215490 0.014255 C 2.019742 -0.462658 0.009611 C 1.923624 1.001839 -0.054677 C 0.742834 1.607007 -0.081559 O -1.386200 1.318487 -1.073076 O 3.088894 -1.031095 0.045754 N -1.327837 1.287614 1.165442 Cl -1.882659 -1.482991 -0.016118 H 0.838108 -2.290616 0.022783 H 2.855898 1.544133 -0.082356 H 0.661311 2.684437 -0.138183 H -1.593020 2.257733 1.099634 H -0.801766 1.134067 2.009859 H -0.932548 1.142885 -1.896710

3-6α X Y Z C -0.570746 0.870893 -0.140847 C -0.358798 -0.620607 -0.035337 C 0.832027 -1.204267 0.009284 C 2.064889 -0.404345 0.027614 C 1.919071 1.055863 -0.045379 C 0.722110 1.626059 -0.088785 O -1.390355 1.270808 -1.117405 O 3.151574 -0.934252 0.100277 N -1.476594 1.329672 1.032578 Cl -1.809294 -1.544537 -0.028506 H 0.947332 -2.275796 0.035447 H 2.834406 1.625805 -0.080368 H 0.608635 2.697276 -0.187365 H -2.045310 1.638455 0.055583 H -1.894032 0.582630 1.574103 H -1.097939 2.047047 1.636894 3-6βi X Y Z C 0.609342 -0.226897 -0.097015 C -0.395088 0.895748 -0.044332 C -1.709193 0.718932 -0.013935 C -2.293039 -0.631427 -0.000933 C -1.361799 -1.766045 -0.049811 C -0.048687 -1.579975 -0.067360 O 1.461918 -0.097917 -1.111017 O -3.492705 -0.787987 0.049083 N 1.444311 -0.155053 1.203200 Cl 0.300473 2.468030 -0.046583 H -2.400268 1.546242 -0.003881 H -1.807380 -2.747892 -0.087727 H 0.650456 -2.403353 -0.129069 H 1.754743 0.801648 1.333433 H 0.945837 -0.469866 2.024904 H 2.330451 -0.796935 0.910805 H 2.379186 -0.835202 -0.800951 O 3.047364 -1.491829 -0.067710 H 3.986927 -1.405948 -0.200526 3-6βii X Y Z C -0.369732 -0.683161 -0.132515 C 0.769511 -1.660685 -0.143175 C 2.051805 -1.327591 -0.091798 C 2.470125 0.077438 0.009569 C 1.409842 1.093322 0.000034 C 0.128496 0.748450 -0.046683 O -1.197200 -0.907648 -1.143422 O 3.637407 0.390280 0.092727 N -1.148680 -0.911242 1.200236 H 0.455912 -2.688846 -0.266513 H 2.842921 -2.059108 -0.145845 H 1.724945 2.124020 0.028115 Cl -1.116478 1.927738 -0.034776 H -1.038323 -1.870662 1.500185 H -0.836896 -0.305245 1.947516 H -2.265489 -0.737116 0.871492 H -2.376243 -0.682645 -0.751425 O -3.232223 -0.539770 -0.006149 H -3.910096 -1.202788 -0.111827

Page 181: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

166

3-6γi X Y Z C 0.252076 -0.100793 -0.073884 C -0.908122 0.862411 -0.045141 C -2.183118 0.496638 -0.036634 C -2.564111 -0.923788 -0.023100 C -1.476641 -1.910967 -0.046672 C -0.204864 -1.534507 -0.042760 O 1.089487 0.142024 -1.078760 O -3.728813 -1.254395 0.007129 N 1.046935 0.097756 1.236415 Cl -0.451045 2.520297 -0.048015 H -2.987335 1.214460 -0.045465 H -1.773798 -2.947466 -0.084321 H 0.606267 -2.249422 -0.085880 H 1.196229 1.091333 1.373578 H 0.591499 -0.293520 2.050180 H 2.049117 -0.400934 0.938945 H 2.136022 -0.439604 -0.728302 O 2.883301 -0.927719 0.012476 C 4.218510 -0.535225 -0.118673 H 4.801321 -0.930266 0.711244 H 4.326622 0.551933 -0.131175 H 4.639119 -0.927741 -1.043012 3-6γii X Y Z C -0.109955 -0.535320 -0.117961 C 0.857455 -1.683487 -0.124274 C 2.177386 -1.561609 -0.087287 C 2.818116 -0.242128 -0.004725 C 1.935811 0.931945 -0.014396 C 0.615493 0.797008 -0.046872 O -0.967727 -0.628980 -1.121441 O 4.021634 -0.120563 0.063766 N -0.905868 -0.622930 1.222760 H 0.381500 -2.649049 -0.233565 H 2.839733 -2.411569 -0.140307 H 2.413489 1.898398 0.001271 Cl -0.422952 2.163346 -0.034682 H -0.946560 -1.585313 1.530628 H -0.493842 -0.070935 1.963361 H -1.999011 -0.266614 0.885508 H -2.128469 -0.201989 -0.708277 O -2.920888 0.042814 0.033400 C -4.048208 -0.784941 -0.068634 H -4.701877 -0.609358 0.781961 H -3.776405 -1.842452 -0.093846 H -4.598043 -0.552460 -0.977363

3-7a X Y Z C -1.604421 -0.265987 -0.024275 C -0.280300 -0.971532 -0.026819 C 0.884146 -0.337722 -0.012527 C 0.970825 1.145406 0.010146 C -0.309331 1.861534 -0.048052 C -1.470337 1.223069 -0.096769 O -2.362923 -0.634016 -1.142236 O 2.027166 1.724185 0.065900 N -2.322466 -0.703903 1.152438 H -0.325080 -2.050917 -0.032839 Cl 2.376782 -1.180093 -0.016554 H -0.238703 2.937722 -0.064578 H -2.406021 1.759822 -0.172984 H -3.171271 -0.171512 1.271657 H -1.765628 -0.619839 1.987976 H -2.698774 -1.516334 -0.974402 3-7b X Y Z C 1.604732 -0.263486 -0.023949 C 1.473043 1.229070 -0.065685 C 0.308739 1.861764 -0.054625 C -0.972911 1.142768 0.001865 C -0.884822 -0.336957 -0.021705 C 0.281906 -0.965994 -0.068849 O 2.315951 -0.730144 -1.136988 O -2.026850 1.726097 0.057239 N 2.371176 -0.600366 1.155058 H 2.407846 1.771532 -0.098146 H 0.234167 2.937590 -0.084774 Cl -2.375215 -1.184467 -0.003191 H 0.331568 -2.043980 -0.120795 H 2.384024 -1.598800 1.300287 H 2.004104 -0.157791 1.982585 H 3.241786 -0.540666 -0.974641 3-7c X Y Z C 1.606139 -0.272935 -0.006308 C 0.281407 -0.972856 -0.025672 C -0.881630 -0.335731 -0.017183 C -0.963567 1.146230 -0.022574 C 0.321317 1.858638 -0.026829 C 1.482163 1.218767 -0.035123 O 2.301586 -0.651507 1.176165 O -2.017825 1.731417 -0.020755 N 2.358296 -0.690159 -1.137974 H 0.320749 -2.052645 -0.016714 Cl -2.376360 -1.174390 -0.004085 H 0.253768 2.935230 -0.030199 H 2.419369 1.758479 -0.034989 H 2.480547 -1.690597 -1.136703 H 3.270906 -0.262310 -1.134499 H 1.799650 -0.384366 1.947218

Page 182: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

167

3-7d X Y Z C 1.616242 -0.257186 -0.007423 C 1.479951 1.234431 -0.019458 C 0.312866 1.864580 -0.015206 C -0.968682 1.143472 0.010427 C -0.879643 -0.338097 -0.008562 C 0.290579 -0.964951 -0.035818 O 2.381687 -0.682037 -1.108709 O -2.025496 1.723313 0.038632 N 2.411063 -0.623698 1.132963 H 2.420549 1.765041 -0.031384 H 0.236111 2.940730 -0.026615 Cl -2.370210 -1.186271 0.001544 H 0.342450 -2.044342 -0.062691 H 2.638561 -1.605482 1.097231 H 1.934068 -0.420229 1.995904 H 1.886972 -0.526931 -1.912571 3-7e X Y Z C -1.605297 -0.286539 -0.007794 C -0.276369 -0.980940 -0.006108 C 0.884512 -0.338137 0.000033 C 0.961429 1.145636 0.015339 C -0.324754 1.856063 -0.014537 C -1.483173 1.208425 -0.043104 O -2.367859 -0.711689 -1.110980 O 2.013673 1.733684 0.043634 N -2.348689 -0.753647 1.131185 H -0.330210 -2.058796 -0.009749 Cl 2.383926 -1.168695 -0.006217 H -0.259266 2.932989 -0.016743 H -2.424716 1.740373 -0.078551 H -3.297448 -0.414384 1.089106 H -1.923474 -0.459509 1.995046 H -1.955394 -0.400331 -1.915925 3-7f X Y Z C 1.606393 -0.266135 0.004365 C 0.282287 -0.967390 -0.009021 C -0.881173 -0.333708 -0.004691 C -0.966069 1.148571 -0.015211 C 0.316419 1.860656 -0.005227 C 1.477823 1.224842 0.009747 O 2.289469 -0.560768 1.210307 O -2.023487 1.728105 -0.029163 N 2.320064 -0.648826 -1.173359 H 0.309850 -2.049504 -0.012972 Cl -2.372593 -1.177401 0.002284 H 0.249095 2.937021 -0.005393 H 2.413268 1.765740 0.036938 H 2.350437 -1.645762 -1.310680 H 3.257614 -0.280621 -1.171379 H 2.371421 -1.508992 1.309235

3-7g X Y Z C -1.606393 -0.266135 0.004365 C -1.477823 1.224842 0.009747 C -0.316419 1.860656 -0.005228 C 0.966068 1.148571 -0.015210 C 0.881173 -0.333708 -0.004691 C -0.282287 -0.967390 -0.009022 O -2.289469 -0.560767 1.210307 O 2.023487 1.728105 -0.029163 N -2.320065 -0.648826 -1.173359 H -2.413268 1.765740 0.036937 H -0.249096 2.937021 -0.005394 Cl 2.372593 -1.177401 0.002284 H -0.309850 -2.049504 -0.012973 H -3.257616 -0.280622 -1.171376 H -2.350438 -1.645762 -1.310679 H -2.371419 -1.508992 1.309237 3-7h X Y Z C 1.601495 -0.279802 0.004191 C 0.274921 -0.973959 0.011745 C -0.884101 -0.332718 -0.002329 C -0.963356 1.146852 -0.012117 C 0.323502 1.856189 -0.000320 C 1.480718 1.212768 -0.004520 O 2.218280 -0.702167 1.208424 O -2.014276 1.738196 -0.027026 N 2.304118 -0.674583 -1.175830 H 0.311101 -2.052946 0.040423 Cl -2.380617 -1.168677 -0.002336 H 0.259639 2.932896 0.003732 H 2.414930 1.761895 -0.005964 H 2.485885 -1.665178 -1.186102 H 3.166654 -0.172076 -1.307038 H 3.072338 -0.279212 1.294386 3-7α X Y Z C -1.578482 -0.222520 -0.161437 C -0.274800 -0.956490 -0.098257 C 0.900660 -0.344387 -0.023231 C 1.009432 1.135321 0.036845 C -0.253672 1.878488 -0.076126 C -1.428128 1.265583 -0.148614 O -2.434890 -0.691832 -1.077679 O 2.069888 1.696665 0.158795 N -2.436563 -0.644552 1.079916 H -0.342839 -2.031484 -0.184899 Cl 2.380026 -1.210167 -0.016100 H -0.155804 2.952356 -0.112392 H -2.350439 1.817745 -0.268747 H -3.041377 -0.989252 0.141187 H -2.032057 -1.352315 1.679425 H -2.812030 0.113007 1.635714

Page 183: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

168

3-7βi X Y Z C -1.123542 -0.275267 -0.134837 C 0.195327 -0.979020 -0.104380 C 1.355803 -0.339898 -0.032416 C 1.433474 1.143901 0.017033 C 0.154213 1.859256 -0.087296 C -1.008578 1.223480 -0.143989 O -1.912312 -0.749577 -1.099204 O 2.484418 1.724821 0.125417 N -1.842243 -0.592136 1.214719 H 0.150293 -2.055196 -0.189029 Cl 2.852972 -1.172855 -0.025530 H 0.228991 2.934893 -0.127952 H -1.950422 1.747344 -0.236198 H -1.802915 -1.588702 1.386998 H -1.457164 -0.094630 2.006623 H -2.897498 -0.308129 0.951543 H -3.013587 -0.356637 -0.775196 O -3.845974 0.065780 -0.031014 H -4.711772 -0.318366 -0.132087 3-7βii X Y Z C 1.202995 0.469877 -0.149758 C 0.580445 1.827619 -0.167263 C -0.727992 2.027861 -0.089908 C -1.686072 0.916779 0.021034 C -1.107415 -0.449003 -0.029577 C 0.202042 -0.653293 -0.095662 O 2.101610 0.323265 -1.122873 O -2.870537 1.111405 0.135249 N 1.985296 0.339375 1.195030 H 1.275466 2.646675 -0.292163 H -1.166878 3.012737 -0.127272 Cl -2.232696 -1.742261 -0.018227 H 0.624532 -1.646843 -0.151359 H 2.561177 1.161165 1.326837 H 1.388216 0.208538 2.000786 H 2.649153 -0.538352 0.957284 H 2.744892 -0.644223 -0.766567 O 3.159082 -1.449061 0.007824 H 4.076947 -1.680806 -0.097701 3-7γi X Y Z C -0.711714 -0.168473 -0.116961 C 0.565906 -0.946000 -0.091481 C 1.762362 -0.375352 -0.033381 C 1.926566 1.100832 0.006780 C 0.689753 1.888982 -0.088522 C -0.508073 1.320792 -0.131020 O -1.528968 -0.595507 -1.079403 O 3.010224 1.621359 0.101163 N -1.440480 -0.440216 1.234566 H 0.458213 -2.018294 -0.169074 Cl 3.208886 -1.294855 -0.034408 H 0.826565 2.958293 -0.134885 H -1.417740 1.899954 -0.217649 H -1.437992 -1.435321 1.419065 H -1.031931 0.048442 2.020217 H -2.504020 -0.112288 0.953664 H -2.634686 -0.157356 -0.728357 O -3.434931 0.254034 0.014570 C -4.708420 -0.311712 -0.076522 H -5.329702 0.042178 0.744381 H -4.677089 -1.403706 -0.038209 H -5.188205 -0.021349 -1.010181

3-7γii X Y Z C 0.712001 0.729431 -0.137795 C -0.121695 1.969000 -0.166025 C -1.446237 1.957755 -0.100601 C -2.214863 0.708553 0.008891 C -1.424008 -0.546952 -0.027012 C -0.098277 -0.538212 -0.080720 O 1.623868 0.720371 -1.109406 O -3.416485 0.710403 0.110873 N 1.499258 0.731529 1.207973 H 0.433788 2.888679 -0.289691 H -2.036639 2.859577 -0.147103 Cl -2.327028 -2.004682 -0.015610 H 0.476579 -1.452735 -0.126219 H 1.923617 1.640309 1.343290 H 0.928867 0.502136 2.011061 H 2.318726 -0.033386 0.956924 H 2.439717 -0.132239 -0.724913 O 2.988615 -0.809998 0.048619 C 4.379467 -0.875236 -0.056685 H 4.788163 -1.426840 0.788104 H 4.837704 0.116980 -0.074107 H 4.667842 -1.395851 -0.968789 3-8a X Y Z C 0.934582 -0.507489 -0.014405 C 0.423475 0.917585 -0.033667 C -0.881357 1.182347 0.003313 C -1.907735 0.135178 -0.004285 C -1.440368 -1.250634 -0.141979 C -0.144809 -1.529904 -0.187952 O 1.853256 -0.731496 -1.048330 O -3.088544 0.401906 0.078726 N 1.646615 -0.693045 1.237142 C 1.466953 1.976301 -0.075532 H -1.249659 2.197658 0.018522 H -2.201661 -2.011661 -0.213971 H 0.214027 -2.542860 -0.312377 H 1.892930 -1.664688 1.356092 H 1.084292 -0.411167 2.025252 H 2.685397 -0.347937 -0.766720 H 1.981539 1.955572 -1.035687 H 2.213378 1.811330 0.699605 H 1.031316 2.961483 0.053163 3-8b X Y Z C -0.936890 -0.513248 -0.004652 C -0.430646 0.911609 -0.027533 C 0.873344 1.183749 -0.005276 C 1.904894 0.144482 -0.028615 C 1.442394 -1.250594 -0.071449 C 0.149245 -1.540932 -0.082248 O -1.647166 -0.715342 1.217918 O 3.086938 0.417231 -0.014039 N -1.834575 -0.714644 -1.089822 C -1.474847 1.972078 -0.035859 H 1.235021 2.201250 0.015620 H 2.207806 -2.010592 -0.097249 H -0.195903 -2.566224 -0.104689 H -2.635828 -0.109429 -1.003293 H -2.167690 -1.665795 -1.096323 H -1.041381 -0.632657 1.955473 H -1.955873 2.021957 -1.012657 H -2.243755 1.759986 0.704403 H -1.043519 2.946033 0.170225

Page 184: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

169

3-8c X Y Z C 0.937028 -0.509609 -0.008391 C 0.425206 0.914718 -0.018143 C -0.879762 1.181324 0.028975 C -1.907925 0.139623 0.000280 C -1.442346 -1.248223 -0.141465 C -0.148604 -1.534331 -0.154435 O 1.842100 -0.600522 -1.076547 O -3.089786 0.404311 0.072346 N 1.660707 -0.846201 1.199917 C 1.458226 1.984491 -0.069484 H -1.244679 2.197128 0.065373 H -2.205579 -2.005343 -0.234174 H 0.203506 -2.552822 -0.248005 H 2.342132 -0.137552 1.424066 H 1.040987 -0.961342 1.985961 H 2.370864 -1.385296 -0.924979 H 2.041735 1.887884 -0.981884 H 2.157959 1.915751 0.762951 H 0.998674 2.966726 -0.039139 3-8d X Y Z C 0.937028 -0.509609 -0.008388 C 0.425206 0.914718 -0.018117 C -0.879762 1.181323 0.028987 C -1.907925 0.139623 0.000253 C -1.442344 -1.248220 -0.141514 C -0.148602 -1.534328 -0.154470 O 1.842117 -0.600499 -1.076531 O -3.089787 0.404310 0.072307 N 1.660689 -0.846226 1.199925 C 1.458227 1.984493 -0.069419 H -1.244680 2.197126 0.065400 H -2.205575 -2.005338 -0.234250 H 0.203509 -2.552816 -0.248055 H 2.342112 -0.137583 1.424098 H 1.040957 -0.961383 1.985956 H 2.370877 -1.385277 -0.924973 H 2.041750 1.887905 -0.981813 H 2.157947 1.915735 0.763026 H 0.998675 2.966726 -0.039061 3-8e X Y Z C 0.946478 -0.495427 -0.003341 C 0.422655 0.925385 -0.005828 C -0.886096 1.181457 0.001557 C -1.907101 0.130828 0.010959 C -1.432561 -1.260556 -0.030386 C -0.134158 -1.534782 -0.055935 O 1.815063 -0.691514 -1.096294 O -3.091802 0.391594 0.041356 N 1.794777 -0.661945 1.150147 C 1.462965 1.985471 -0.019371 H -1.259735 2.194940 -0.002300 H -2.191141 -2.028084 -0.041860 H 0.227458 -2.554487 -0.095617 H 2.257556 -1.556990 1.105498 H 1.258487 -0.610906 2.001524 H 1.295885 -0.731119 -1.898693 H 2.129867 1.843948 -0.866989 H 2.082776 1.908491 0.871032 H 1.016225 2.972916 -0.070045

3-8f X Y Z C -0.938989 -0.504063 -0.001081 C -0.422536 0.916392 -0.010400 C 0.882054 1.180146 -0.016644 C 1.908156 0.138599 -0.015889 C 1.438509 -1.255012 0.002215 C 0.145188 -1.537283 -0.002563 O -1.672279 -0.598383 1.213028 O 3.092605 0.401630 -0.026691 N -1.744463 -0.711756 -1.166133 C -1.460029 1.982293 0.002468 H 1.246483 2.196550 -0.019073 H 2.199375 -2.019754 0.014333 H -0.194528 -2.567264 0.002817 H -2.584901 -0.157665 -1.133355 H -1.993295 -1.678979 -1.294184 H -1.946104 -1.504870 1.348170 H -2.021586 1.987512 -0.931616 H -2.163613 1.813456 0.814621 H -1.007313 2.960899 0.121880 3-8g X Y Z C -0.938989 -0.504063 -0.001081 C -0.422536 0.916392 -0.010400 C 0.882054 1.180146 -0.016644 C 1.908156 0.138600 -0.015889 C 1.438509 -1.255012 0.002215 C 0.145188 -1.537283 -0.002562 O -1.672279 -0.598383 1.213028 O 3.092605 0.401630 -0.026691 N -1.744463 -0.711756 -1.166134 C -1.460029 1.982293 0.002469 H 1.246483 2.196550 -0.019073 H 2.199375 -2.019754 0.014333 H -0.194527 -2.567264 0.002817 H -2.584900 -0.157665 -1.133356 H -1.993295 -1.678979 -1.294184 H -1.946101 -1.504871 1.348173 H -2.163614 1.813455 0.814621 H -2.021585 1.987513 -0.931617 H -1.007314 2.960899 0.121881 3-8h X Y Z C 0.935412 -0.519252 -0.002276 C 0.428359 0.907233 -0.002136 C -0.874032 1.179179 -0.000041 C -1.908371 0.141612 0.012217 C -1.447830 -1.251363 -0.022129 C -0.156715 -1.543121 -0.037294 O 1.674365 -0.767030 -1.188677 O -3.088358 0.422074 0.041391 N 1.689149 -0.732929 1.195719 C 1.455798 1.987960 -0.012530 H -1.235357 2.196954 -0.007050 H -2.212213 -2.012250 -0.040211 H 0.189128 -2.566741 -0.082975 H 2.435262 -0.068552 1.317797 H 2.066656 -1.666045 1.228274 H 2.473688 -0.242152 -1.176774 H 2.126955 1.897785 -0.866373 H 2.064561 1.974833 0.891443 H 0.983494 2.962822 -0.070746

Page 185: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

170

3-8α X Y Z C 0.913849 -0.479287 -0.147350 C 0.386089 0.934133 -0.050531 C -0.921514 1.178342 0.037240 C -1.929894 0.114328 0.028180 C -1.449918 -1.259260 -0.188250 C -0.151811 -1.523902 -0.261117 O 1.948995 -0.642394 -0.983478 O -3.110702 0.354539 0.171441 N 1.732702 -0.776832 1.161101 C 1.416208 2.002836 -0.126665 H -1.306554 2.186339 0.089394 H -2.206956 -2.020373 -0.299207 H 0.219699 -2.521895 -0.452791 H 0.966279 2.987909 -0.064224 H 2.159934 1.916402 0.666973 H 1.961219 1.898394 -1.061601 H 2.496309 -0.848640 0.278973 H 1.809655 -0.022565 1.830663 H1 1.487105 -1.638045 1.631356 3-8βi X Y Z C 0.631330 0.069755 -0.126271 C -0.405623 1.163698 -0.047416 C -1.703930 0.874132 0.030193 C -2.218349 -0.499861 0.005394 C -1.238588 -1.575778 -0.204578 C 0.060915 -1.315426 -0.261580 O 1.576866 0.339811 -1.028304 O -3.401435 -0.735384 0.133594 N 1.352160 0.026264 1.263131 C 0.118589 2.553242 -0.113758 H -2.452864 1.650852 0.081044 H -1.636964 -2.571930 -0.321837 H 0.802089 -2.086208 -0.425707 H -0.689833 3.276250 -0.092524 H 0.793553 2.782713 0.712381 H 0.698863 2.669255 -1.025604 H 1.617434 0.963992 1.535259 H 0.792091 -0.396202 1.991301 H 2.272416 -0.548625 0.996702 H 2.479789 -0.399083 -0.722421 O 3.115999 -1.120725 -0.005767 H 4.060809 -1.013055 -0.058601 3-8βii X Y Z C -0.503663 -0.474120 -0.194220 C 0.566672 -1.517265 -0.305823 C 1.862479 -1.263849 -0.186026 C 2.343759 0.106110 0.051682 C 1.340989 1.174394 0.031067 C 0.033733 0.944531 -0.099646 O -1.444651 -0.643257 -1.121358 O 3.520566 0.337385 0.234454 N -1.181337 -0.719595 1.204057 H 0.193299 -2.510480 -0.517996 H 2.616699 -2.030206 -0.277352 H 1.730470 2.179909 0.096563 C -0.976838 2.029690 -0.188089 H -0.504533 3.004329 -0.125492 H -1.514427 1.944462 -1.129970 H -1.734081 1.949712 0.590495 H -1.186223 -1.710689 1.406822 H -0.707116 -0.236897 1.955644 H -2.245912 -0.388623 1.024662 H -2.502398 -0.287055 -0.640007 O -3.297196 0.007572 0.188300 H -4.108962 -0.487850 0.123401

3-8γi X Y Z C 0.205641 0.161453 -0.123364 C -0.926193 1.157538 -0.046120 C -2.194013 0.753480 0.028605 C -2.583807 -0.660434 0.003203 C -1.511307 -1.644742 -0.203686 C -0.240321 -1.268616 -0.257878 O 1.122260 0.511429 -1.028152 O -3.741445 -1.001239 0.128278 N 0.928638 0.182000 1.263145 C -0.528173 2.588348 -0.112584 H -3.009151 1.460591 0.077342 H -1.819033 -2.672508 -0.321136 H 0.566032 -1.971528 -0.420381 H -1.397778 3.236629 -0.095738 H 0.120338 2.878186 0.715760 H 0.043001 2.753833 -1.022541 H 1.100391 1.140119 1.539278 H 0.411693 -0.293852 1.990313 H 1.913809 -0.306368 0.979453 H 2.105808 -0.142892 -0.705088 O 2.806793 -0.764891 0.011778 C 4.165079 -0.453184 -0.019707 H 4.688517 -0.986636 0.772780 H 4.347387 0.617330 0.112283 H 4.606224 -0.752348 -0.970383 3-8γii X Y Z C -0.129534 -0.377610 -0.211650 C 0.851064 -1.505611 -0.322046 C 2.162506 -1.362874 -0.186963 C 2.754783 -0.040862 0.069302 C 1.845805 1.108310 0.048840 C 0.525710 0.988997 -0.098723 O -1.070658 -0.455018 -1.150337 O 3.944892 0.089225 0.266495 N -0.840969 -0.574972 1.176798 H 0.398545 -2.462505 -0.546945 H 2.850765 -2.189025 -0.278114 H 2.317446 2.077009 0.128251 C -0.390972 2.154393 -0.189642 H 0.154872 3.087009 -0.093549 H -0.905848 2.130821 -1.147720 H -1.173292 2.120032 0.567474 H -0.920145 -1.563620 1.376094 H -0.340122 -0.133071 1.936224 H -1.890834 -0.157397 0.973905 H -2.121911 -0.022985 -0.659739 O -2.891963 0.286169 0.154332 C -4.114088 -0.385957 0.082763 H -4.711739 -0.161570 0.964665 H -3.985635 -1.470379 0.020597 H -4.675129 -0.065227 -0.793938

Page 186: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

171

3-9a X Y Z C -1.391958 -0.114714 -0.024335 C -0.236974 -1.069652 -0.032203 C 1.044598 -0.714015 -0.019284 C 1.399873 0.724155 0.008224 C 0.305837 1.701258 -0.051219 C -0.962441 1.316890 -0.100320 O -2.222331 -0.321712 -1.136230 O 2.558582 1.077231 0.068486 N -2.180578 -0.392880 1.158200 H -0.518054 -2.115385 -0.040920 C 2.180686 -1.674083 -0.028753 H 0.598301 2.739628 -0.068413 H -1.769756 2.032771 -0.177212 H -2.896902 0.306964 1.282032 H -1.610124 -0.423010 1.988142 H -2.717751 -1.124275 -0.964854 H 2.817678 -1.518593 0.838514 H 2.807395 -1.511345 -0.902479 H 1.825529 -2.699786 -0.032903 3-9b X Y Z C 1.395055 -0.116610 -0.008155 C 0.240766 -1.069464 -0.023971 C -1.040946 -0.713333 -0.015509 C -1.395382 0.724068 -0.022353 C -0.298629 1.701246 -0.029811 C 0.970756 1.318678 -0.039574 O 2.157230 -0.337238 1.177419 O -2.554706 1.080084 -0.019434 N 2.224405 -0.371757 -1.135967 H 0.519470 -2.116078 -0.014830 C -2.177185 -1.673285 -0.009002 H -0.590836 2.739894 -0.033444 H 1.777098 2.039838 -0.041389 H 2.537291 -1.329906 -1.134569 H 3.038651 0.222271 -1.115724 H 1.600984 -0.196362 1.944256 H -2.803347 -1.524120 -0.885394 H -2.814679 -1.504772 0.855601 H -1.822278 -2.699038 0.003621 3-9c X Y Z C -1.392016 -0.110412 -0.024234 C -0.239156 -1.064355 -0.062233 C 1.044225 -0.715803 -0.020658 C 1.402768 0.718588 0.002638 C 0.309543 1.700432 -0.056473 C -0.961364 1.324360 -0.070002 O -2.187637 -0.423388 -1.136991 O 2.560803 1.074461 0.059795 N -2.218653 -0.277402 1.154001 H -0.526713 -2.107371 -0.109343 C 2.175858 -1.681521 -0.009876 H 0.607471 2.737105 -0.088490 H -1.765208 2.047167 -0.106351 H -2.422705 -1.254224 1.304734 H -1.766807 0.085107 1.978692 H -3.052208 -0.043038 -0.972833 H 2.787854 -1.542609 0.878287 H 2.828912 -1.511534 -0.862464 H 1.815506 -2.705106 -0.037643

3-9d X Y Z C -1.396218 -0.136181 -0.007340 C -0.232778 -1.079016 -0.008551 C 1.046743 -0.711218 -0.003560 C 1.391126 0.729904 0.014221 C 0.288460 1.700865 -0.013264 C -0.978506 1.304672 -0.040266 O -2.233100 -0.392749 -1.112678 O 2.547554 1.093978 0.043050 N -2.222610 -0.442346 1.131168 H -0.518874 -2.121903 -0.013382 C 2.190694 -1.662379 -0.009070 H 0.573988 2.741619 -0.015222 H -1.793614 2.015959 -0.074741 H -3.070082 0.103699 1.101319 H -1.736536 -0.257090 1.993187 H -1.755230 -0.187156 -1.915145 H 2.817852 -1.507881 0.865675 H 2.825637 -1.490351 -0.874998 H 1.842374 -2.690180 -0.020866 3-9e X Y Z C -1.403053 -0.097190 -0.006890 C -0.252249 -1.060116 -0.030621 C 1.035297 -0.718756 -0.006709 C 1.400275 0.716179 0.010687 C 0.311067 1.703629 -0.014660 C -0.963264 1.334533 -0.019015 O -2.239316 -0.350703 -1.113406 O 2.561941 1.063276 0.037863 N -2.266809 -0.287258 1.129858 H -0.544944 -2.103292 -0.053512 C 2.162901 -1.689272 0.002677 H 0.614430 2.739260 -0.027546 H -1.772894 2.049519 -0.032836 H -2.680580 -1.206479 1.095098 H -1.757146 -0.186098 1.992408 H -1.709680 -0.330569 -1.909398 H 2.775517 -1.552688 0.890819 H 2.817765 -1.522020 -0.849091 H 1.798339 -2.711448 -0.023414 3-9f X Y Z C 1.394939 -0.107419 0.002604 C 0.243027 -1.063232 -0.006365 C -1.038797 -0.713305 -0.002839 C -1.398056 0.723559 -0.014417 C -0.305292 1.701653 -0.004659 C 0.964522 1.325449 0.009466 O 2.135638 -0.254612 1.205344 O -2.559908 1.071420 -0.028702 N 2.175339 -0.333218 -1.175874 H 0.514291 -2.114442 -0.010813 C -2.171332 -1.676787 0.001801 H -0.599142 2.739570 -0.003665 H 1.767457 2.049052 0.036163 H 2.404218 -1.304920 -1.308412 H 3.025110 0.207738 -1.157098 H 2.342013 -1.179045 1.339488 H -2.804063 -1.521362 -0.868617 H -2.802450 -1.515799 0.872501 H -1.814715 -2.702235 0.004884

Page 187: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

172

3-9g X Y Z C 1.390881 -0.126103 0.003070 C 0.231798 -1.072045 0.008718 C -1.046266 -0.709021 -0.003029 C -1.395033 0.727106 -0.013182 C -0.293849 1.699996 -0.002045 C 0.972075 1.311312 -0.005294 O 2.085682 -0.411665 1.208374 O -2.551610 1.092261 -0.027705 N 2.167308 -0.367379 -1.174558 H 0.505770 -2.118893 0.035924 C -2.186131 -1.664809 -0.001561 H -0.580839 2.739985 0.001530 H 1.774893 2.039847 -0.007267 H 2.531250 -1.306614 -1.186280 H 2.927293 0.285092 -1.280309 H 2.825408 0.188644 1.297203 H -2.809147 -1.514369 -0.880004 H -1.834726 -2.691717 0.013825 H -2.824484 -1.493716 0.861857 3-9h X Y Z C 1.390881 -0.126103 0.003070 C 0.231798 -1.072045 0.008718 C -1.046266 -0.709021 -0.003029 C -1.395033 0.727106 -0.013182 C -0.293849 1.699996 -0.002045 C 0.972075 1.311312 -0.005294 O 2.085682 -0.411665 1.208374 O -2.551610 1.092261 -0.027705 N 2.167308 -0.367379 -1.174558 H 0.505770 -2.118893 0.035924 C -2.186131 -1.664809 -0.001560 H -0.580839 2.739985 0.001530 H 1.774893 2.039847 -0.007267 H 2.531250 -1.306614 -1.186280 H 2.927293 0.285092 -1.280309 H 2.825408 0.188644 1.297203 H -2.809146 -1.514369 -0.880004 H -2.824484 -1.493716 0.861857 H -1.834726 -2.691717 0.013825 3-9α X Y Z C -1.357301 -0.090061 -0.164032 C -0.222525 -1.061575 -0.099843 C 1.063070 -0.721220 -0.029605 C 1.430634 0.711899 0.035419 C 0.353201 1.705186 -0.078571 C -0.920613 1.340335 -0.153649 O -2.298846 -0.381069 -1.073963 O 2.587507 1.053482 0.163506 N -2.280975 -0.326652 1.085423 H -0.519164 -2.099699 -0.186314 C 2.189706 -1.692275 -0.029846 H 0.665507 2.737611 -0.114753 H -1.716108 2.063452 -0.275818 H 1.824559 -2.713874 -0.064824 H 2.839808 -1.519691 -0.884491 H 2.806317 -1.560177 0.855903 H -2.945669 -0.541647 0.152834 H -2.023876 -1.103118 1.680563 H -2.490871 0.490667 1.643357

3-9βi X Y Z C -0.882265 -0.294154 -0.139494 C 0.351304 -1.135320 -0.108764 C 1.590896 -0.655499 -0.041680 C 1.801485 0.811178 0.015319 C 0.622085 1.681014 -0.090840 C -0.606320 1.183235 -0.151941 O -1.731830 -0.681529 -1.092819 O 2.916621 1.272994 0.131656 N -1.626875 -0.523802 1.219958 H 0.168654 -2.199328 -0.193907 C 2.816768 -1.497457 -0.046573 H 0.820463 2.741148 -0.130907 H -1.484344 1.808014 -0.246824 H 2.566078 -2.553009 -0.079545 H 3.439837 -1.254237 -0.904021 H 3.419241 -1.297631 0.836151 H -1.699728 -1.518586 1.390462 H -1.179168 -0.074026 2.007190 H -2.633192 -0.123922 0.974415 H -2.771041 -0.160391 -0.768126 O -3.555057 0.364842 -0.026852 H -4.460260 0.090131 -0.136632 3-9βii X Y Z C -0.916980 -0.462859 -0.156237 C -0.075807 -1.697327 -0.175664 C 1.247481 -1.666984 -0.092407 C 1.983737 -0.398135 0.021403 C 1.208829 0.861782 -0.038610 C -0.119996 0.809799 -0.105113 O -1.842776 -0.475824 -1.117059 O 3.189902 -0.386740 0.145839 N -1.702009 -0.472374 1.199637 H -0.621399 -2.622613 -0.303641 H 1.851625 -2.560494 -0.128263 C 1.998821 2.122383 -0.037219 H -0.719848 1.709226 -0.165809 H 1.347343 2.989904 -0.061393 H 2.634323 2.172991 0.843542 H 2.663671 2.154285 -0.897387 H -2.130005 -1.379732 1.332170 H -1.127185 -0.243767 1.999372 H -2.498292 0.273083 0.978841 H -2.630965 0.367536 -0.756879 O -3.182704 1.097404 0.015951 H -4.127093 1.155533 -0.092769

Page 188: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

173

3-9γi X Y Z C -0.444507 -0.266184 -0.120459 C 0.775493 -1.127468 -0.099956 C 2.023969 -0.669077 -0.047316 C 2.260528 0.793563 0.004139 C 1.095185 1.683616 -0.089862 C -0.141773 1.206106 -0.136356 O -1.307067 -0.636511 -1.069500 O 3.384625 1.236917 0.106384 N -1.183365 -0.481800 1.241713 H 0.574062 -2.188500 -0.180412 C 3.235206 -1.531989 -0.063243 H 1.311282 2.740144 -0.133675 H -1.009367 1.846785 -0.222780 H 2.966025 -2.583149 -0.090880 H 3.853184 -1.301681 -0.927932 H 3.850503 -1.340688 0.812516 H -1.260461 -1.475055 1.419161 H -0.727150 -0.031958 2.024071 H -2.201386 -0.070809 0.986185 H -2.352660 -0.106139 -0.720845 O -3.124726 0.390939 0.023728 C -4.449321 -0.027640 -0.081944 H -5.040124 0.393242 0.731041 H -4.544225 -1.116862 -0.042303 H -4.887467 0.310955 -1.021053 3-9γii X Y Z C -0.438763 -0.602010 -0.144412 C 0.522573 -1.745140 -0.175499 C 1.837071 -1.582748 -0.103732 C 2.443726 -0.247385 0.010092 C 1.545959 0.928909 -0.035456 C 0.228665 0.743200 -0.090448 O -1.361837 -0.700227 -1.103430 O 3.643877 -0.115085 0.123471 N -1.212717 -0.695326 1.212033 H 0.071756 -2.720235 -0.302936 H 2.527331 -2.411071 -0.149143 C 2.205112 2.262632 -0.033396 H -0.458244 1.579050 -0.140691 H 1.469444 3.060408 -0.042609 H 2.843681 2.370971 0.839873 H 2.852002 2.367561 -0.901424 H -1.536364 -1.644527 1.347367 H -0.662683 -0.405858 2.009548 H -2.098398 -0.032616 0.980967 H -2.248907 0.054286 -0.718988 O -2.879576 0.681050 0.055262 C -4.265333 0.582003 -0.053701 H -4.742649 1.085561 0.786245 H -4.606688 -0.457346 -0.065905 H -4.615040 1.058434 -0.969664

3-10a X Y Z C -0.641068 -0.481597 -0.001719 C 0.496760 -1.433431 -0.174767 C 1.762025 -1.027329 -0.131409 C 2.093777 0.374395 0.039589 C 1.164911 1.339413 0.099120 C -0.234532 0.992974 -0.037747 O -1.552867 -0.720078 -1.036792 O -1.129707 1.804215 -0.156752 N -1.172373 -0.653747 1.317974 H 0.233139 -2.471563 -0.316579 H 2.569573 -1.735663 -0.229735 H 3.139044 0.640910 0.100114 H 1.415002 2.384687 0.183324 H -1.533360 -1.585596 1.444515 H -1.906939 0.016697 1.490988 H -2.100498 0.067107 -1.108496 3-10b X Y Z C -0.641068 -0.481597 -0.001719 C 0.496760 -1.433431 -0.174767 C 1.762025 -1.027329 -0.131409 C 2.093777 0.374395 0.039589 C 1.164911 1.339413 0.099120 C -0.234532 0.992974 -0.037746 O -1.552867 -0.720078 -1.036793 O -1.129707 1.804215 -0.156751 N -1.172373 -0.653747 1.317974 H 0.233139 -2.471563 -0.316578 H 2.569573 -1.735663 -0.229734 H 3.139044 0.640910 0.100114 H 1.415002 2.384687 0.183323 H -1.533361 -1.585596 1.444514 H -1.906939 0.016697 1.490987 H -2.100498 0.067106 -1.108496 3-10c X Y Z C -0.638249 -0.506868 -0.001246 C 0.511281 -1.414644 -0.288149 C 1.766513 -0.978146 -0.234218 C 2.066315 0.420663 0.030429 C 1.114082 1.358056 0.131892 C -0.275695 0.978908 -0.068097 O -1.660524 -0.751005 -0.901930 O -1.175238 1.777610 -0.229496 N -1.085857 -0.791892 1.351197 H 0.258885 -2.444918 -0.486130 H 2.591382 -1.654015 -0.397736 H 3.104858 0.705633 0.117798 H 1.337150 2.403775 0.271196 H -1.786007 -0.121952 1.635347 H -0.324956 -0.773403 2.012524 H -2.159703 0.067469 -0.983636

Page 189: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

174

3-10d X Y Z C -0.671537 -0.446818 -0.003407 C 0.418338 -1.415594 -0.333619 C 1.702666 -1.070604 -0.258708 C 2.090021 0.297286 0.038040 C 1.199769 1.292722 0.161806 C -0.212354 1.015672 -0.048386 O -1.713807 -0.637520 -0.889871 O -1.048016 1.868835 -0.232115 N -1.157908 -0.653031 1.350725 H 0.104218 -2.424506 -0.560539 H 2.480860 -1.799377 -0.422771 H 3.144480 0.513924 0.131509 H 1.491873 2.318078 0.322941 H -1.437374 -1.615707 1.466030 H -0.457071 -0.436234 2.043674 H -2.288467 0.128536 -0.794386 3-10e X Y Z C 0.678863 -0.427817 0.036018 C -0.391412 -1.450937 -0.189625 C -1.682898 -1.134385 -0.178016 C -2.124007 0.239669 0.000460 C -1.267470 1.263097 0.094223 C 0.163516 1.024544 -0.029443 O 1.155437 -0.546708 1.355181 O 0.966422 1.913848 -0.185102 N 1.770621 -0.641465 -0.863204 H -0.057634 -2.474434 -0.289523 H -2.435117 -1.900679 -0.285164 H -3.187084 0.426083 0.047090 H -1.590746 2.286232 0.201106 H 2.315054 0.208645 -0.924347 H 1.456654 -0.893184 -1.786215 H 1.870098 -1.184559 1.317149 3-10f X Y Z C 0.673542 -0.443389 0.004615 C -0.422518 -1.444018 -0.188691 C -1.707454 -1.100220 -0.175578 C -2.112037 0.287247 -0.020247 C -1.229463 1.290830 0.056502 C 0.199130 1.020809 -0.035926 O 1.254826 -0.666496 1.285916 O 1.027963 1.896735 -0.105238 N 1.655565 -0.581830 -1.000443 H -0.111804 -2.473601 -0.295460 H -2.477681 -1.848018 -0.284001 H -3.169899 0.502623 0.022337 H -1.528375 2.322459 0.152228 H 2.153353 -1.451339 -0.898879 H 2.302246 0.191310 -0.942021 H 0.573688 -0.680090 1.959415

3-10g X Y Z C 0.673541 -0.443385 0.004588 C -0.422533 -1.444033 -0.188536 C -1.707469 -1.100239 -0.175375 C -2.112049 0.287239 -0.020146 C -1.229476 1.290831 0.056491 C 0.199116 1.020809 -0.035942 O 1.255032 -0.666464 1.285794 O 1.027949 1.896735 -0.105271 N 1.655409 -0.581839 -1.000625 H -0.111822 -2.473625 -0.295225 H -2.477700 -1.848051 -0.283676 H -3.169910 0.502615 0.022461 H -1.528387 2.322466 0.152157 H 2.153190 -1.451364 -0.899149 H 2.302120 0.191282 -0.942284 H 0.574016 -0.679948 1.959419 3-10h X Y Z C 0.678422 -0.457758 0.026711 C -0.425168 -1.445556 -0.189897 C -1.707317 -1.088716 -0.181573 C -2.106128 0.301662 -0.024319 C -1.217181 1.298762 0.061043 C 0.210219 1.012829 -0.044935 O 1.211346 -0.647786 1.321331 O 1.038900 1.884595 -0.165273 N 1.755526 -0.713056 -0.868308 H -0.112970 -2.475641 -0.278561 H -2.483015 -1.832230 -0.282379 H -3.163154 0.522219 0.012745 H -1.509596 2.333018 0.152047 H 1.426566 -0.791378 -1.816688 H 2.409246 0.055561 -0.816766 H 0.545188 -0.441959 1.977112 3-10α X Y Z C -0.626984 -0.406636 0.108809 C -0.098872 1.024077 -0.015568 C 1.328924 1.222119 0.168661 C 2.153257 0.178707 0.006702 C 1.675472 -1.168528 -0.257792 C 0.373232 -1.448150 -0.268828 O -1.170935 -0.642210 1.329375 O -0.875338 1.925549 -0.250243 N -1.911947 -0.482681 -0.677598 H 1.682250 2.227113 0.334153 H 3.221296 0.330312 0.065376 H 2.406524 -1.949152 -0.400516 H 0.011917 -2.461670 -0.374002 H -2.201733 0.451734 -0.955915 H -1.971058 -1.150366 -1.433386 H -2.225552 -0.745458 0.422524

Page 190: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

175

3-10β X Y Z C 0.325019 0.057185 -0.004281 C -0.860780 1.023504 -0.059767 C -2.175547 0.459957 -0.305993 C -2.373838 -0.848903 -0.098139 C -1.307195 -1.759219 0.284670 C -0.046028 -1.343767 0.379958 O 0.951323 0.074607 -1.196306 O -0.652884 2.206387 0.101725 N 1.282784 0.626553 1.022147 H -2.973376 1.137982 -0.562554 H -3.366590 -1.259440 -0.212682 H -1.557283 -2.796270 0.446661 H 0.774238 -2.020049 0.578337 H 1.257480 1.635824 0.893421 H 1.032661 0.402967 1.975688 H 2.259871 0.183116 0.691851 H 2.050156 -0.333846 -0.931914 O 2.994033 -0.597710 -0.232308 H 3.833796 -0.334964 -0.597403 3-10γ X Y Z C -0.104189 0.038960 0.073946 C -1.264752 1.025561 -0.080134 C -2.564053 0.485441 -0.439035 C -2.804034 -0.818698 -0.247604 C -1.790722 -1.746508 0.227004 C -0.534989 -1.352703 0.428665 O 0.612769 0.038305 -1.066044 O -1.052213 2.205332 0.098418 N 0.777492 0.592860 1.172767 H -3.323717 1.177603 -0.764610 H -3.790561 -1.211447 -0.446949 H -2.072638 -2.778225 0.369748 H 0.249118 -2.046338 0.700219 H 0.755020 1.604256 1.059820 H 0.459572 0.353972 2.102024 H 1.796093 0.153176 0.891961 H 1.718492 -0.344310 -0.707614 O 2.609822 -0.549372 0.036767 C 3.858305 -0.085766 -0.378256 H 4.575498 -0.166225 0.437714 H 3.823217 0.958066 -0.701767 H 4.231029 -0.682402 -1.210558

3-11a X Y Z C -0.969855 -0.464313 0.085496 C -0.159660 -0.073482 1.285618 C 1.147596 0.146852 1.248285 C 1.908907 0.028458 -0.005656 C 1.173827 -0.453832 -1.183833 C -0.122941 -0.730095 -1.119907 O -1.682409 -1.644978 0.329945 O 3.089094 0.299785 -0.057549 N -1.950776 0.574924 -0.169825 H -0.721833 0.030707 2.204333 H 1.712853 0.426557 2.123950 H 1.754024 -0.599883 -2.081866 H -0.659842 -1.125055 -1.972047 H -2.489984 0.298750 -0.977321 C -1.444814 1.921980 -0.328576 H -2.261986 2.561757 -0.645825 H -0.634071 2.005664 -1.057781 H -1.081305 2.296098 0.623694 H -2.414262 -1.410928 0.903913 3-11b X Y Z C -0.969927 -0.464270 0.085579 C -0.159741 -0.073248 1.285644 C 1.147522 0.147041 1.248279 C 1.908847 0.028339 -0.005625 C 1.173798 -0.454333 -1.183666 C -0.122976 -0.730556 -1.119685 O -1.682766 -1.644699 0.330321 O 3.089021 0.299710 -0.057587 N -1.950587 0.575117 -0.170154 H -0.721922 0.031143 2.204330 H 1.712776 0.426921 2.123890 H 1.754023 -0.600702 -2.081629 H -0.659864 -1.125805 -1.971699 H -2.489649 0.298936 -0.977744 C -1.444332 1.922057 -0.328972 H -2.261195 2.561841 -0.646999 H -0.633082 2.005391 -1.057656 H -1.081426 2.296437 0.623424 H -2.414748 -1.410256 0.903963 3-11c X Y Z C 0.791064 0.329705 0.230244 C 0.135607 -0.966394 0.605045 C -1.155445 -1.216944 0.426459 C -2.070327 -0.193620 -0.097399 C -1.494767 1.134778 -0.361411 C -0.198728 1.369524 -0.205450 O 1.473850 0.749513 1.382721 O -3.244276 -0.424650 -0.291013 N 1.757216 0.201423 -0.842025 H 0.794511 -1.711269 1.027342 H -1.597965 -2.169358 0.674461 H -2.185613 1.898054 -0.684886 H 0.223862 2.344853 -0.407393 H 1.290622 0.188121 -1.734328 C 2.711603 -0.881332 -0.724104 H 3.509646 -0.725555 -1.443743 H 2.286207 -1.873435 -0.889746 H 3.150490 -0.857359 0.269352 H 2.077090 1.442794 1.109147

Page 191: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

176

3-11d X Y Z C -0.784928 0.278072 0.183635 C 0.193886 1.348964 -0.192833 C 1.498993 1.149256 -0.322135 C 2.091204 -0.180978 -0.124039 C 1.171539 -1.263571 0.256573 C -0.133839 -1.058423 0.380963 O -1.419201 0.651624 1.406691 O 3.279909 -0.375684 -0.258012 N -1.771019 0.210984 -0.842036 H -0.238534 2.330791 -0.334593 H 2.181834 1.943064 -0.582377 H 1.621010 -2.229388 0.428851 H -0.793515 -1.859532 0.681202 H -2.134353 1.136611 -1.001802 C -2.855922 -0.728567 -0.641349 H -3.623851 -0.523532 -1.380091 H -3.301295 -0.668592 0.352487 H -2.512246 -1.744255 -0.816670 H -0.773180 0.661901 2.112927 3-11e X Y Z C -0.953632 -0.470835 0.023676 C -0.122704 -0.321932 1.263105 C 1.181899 -0.076588 1.251173 C 1.921522 0.087331 -0.010601 C 1.160750 -0.095157 -1.257002 C -0.138061 -0.372728 -1.234363 O -1.620438 -1.711717 0.041653 O 3.104962 0.348226 -0.022868 N -2.022726 0.492387 0.061137 H -0.678373 -0.435508 2.183080 H 1.761137 0.017991 2.156958 H 1.720968 -0.004341 -2.175169 H -0.697433 -0.520544 -2.149570 H -2.695922 0.245884 -0.647807 C -1.635979 1.881487 -0.011088 H -2.533478 2.491030 0.016857 H -1.062549 2.147646 -0.903813 H -1.037765 2.140028 0.858848 H -0.976460 -2.410440 -0.067008 3-11f X Y Z C 0.785779 0.292131 0.202238 C 0.127588 -1.035740 0.454534 C -1.173379 -1.257862 0.298646 C -2.089246 -0.183623 -0.113251 C -1.499417 1.148839 -0.317674 C -0.196204 1.359531 -0.177275 O 1.481001 0.684235 1.365848 O -3.274378 -0.383818 -0.269390 N 1.784779 0.242269 -0.832885 H 0.790640 -1.828146 0.773110 H -1.620735 -2.225484 0.467866 H -2.186058 1.937094 -0.585955 H 0.248200 2.333203 -0.325437 H 1.341403 0.146164 -1.731078 C 2.861711 -0.705609 -0.653089 H 3.624588 -0.504806 -1.399186 H 2.566844 -1.754745 -0.741875 H 3.303905 -0.548412 0.324942 H 0.883784 0.639905 2.111369

3-11g X Y Z C 0.785779 0.292132 0.202238 C 0.127589 -1.035739 0.454534 C -1.173379 -1.257862 0.298647 C -2.089245 -0.183624 -0.113250 C -1.499417 1.148839 -0.317675 C -0.196204 1.359531 -0.177276 O 1.481001 0.684236 1.365848 O -3.274378 -0.383819 -0.269390 N 1.784780 0.242269 -0.832885 H 0.790640 -1.828145 0.773111 H -1.620734 -2.225484 0.467866 H -2.186059 1.937093 -0.585956 H 0.248200 2.333204 -0.325438 H 1.341403 0.146164 -1.731078 C 2.861710 -0.705610 -0.653089 H 3.624589 -0.504806 -1.399185 H 2.566842 -1.754745 -0.741876 H 3.303903 -0.548414 0.324943 H 0.883784 0.639906 2.111368 3-11h X Y Z C -0.784824 0.279189 0.207284 C 0.191831 1.349784 -0.175794 C 1.493670 1.149235 -0.320353 C 2.088565 -0.180037 -0.116674 C 1.178059 -1.250359 0.308593 C -0.121494 -1.040223 0.465313 O -1.392137 0.604747 1.449838 O 3.273549 -0.374657 -0.281249 N -1.718126 0.154371 -0.871909 H -0.233776 2.333579 -0.341041 H 2.172701 1.939869 -0.599199 H 1.630447 -2.210629 0.501298 H -0.772206 -1.826691 0.817887 H -2.032268 1.060545 -1.177251 C -2.825986 -0.756830 -0.682727 H -3.539588 -0.603253 -1.485670 H -3.337036 -0.625618 0.272559 H -2.483087 -1.785326 -0.754885 H -1.748526 1.491643 1.407099 3-11i X Y Z C -0.785131 0.294759 0.210504 C 0.198686 1.359864 -0.163656 C 1.496323 1.145274 -0.324774 C 2.084119 -0.184133 -0.119288 C 1.168746 -1.248439 0.318538 C -0.130930 -1.030845 0.463985 O -1.377464 0.762454 1.414325 O 3.265862 -0.394996 -0.286883 N -1.716663 0.178327 -0.874488 H -0.226786 2.345679 -0.295391 H 2.178626 1.932160 -0.605660 H 1.616905 -2.209943 0.515632 H -0.780099 -1.830420 0.797146 H -2.072797 1.094377 -1.095277 C -2.804056 -0.758561 -0.712296 H -3.493948 -0.634067 -1.540504 H -3.374299 -0.630430 0.213923 H -2.435934 -1.779606 -0.758326 H -1.868755 0.056783 1.832251

Page 192: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

177

3-11α X Y Z C -0.813382 -0.506873 0.341886 C -0.129338 0.630113 1.034371 C 1.152500 0.929810 0.855942 C 1.998851 0.163638 -0.072532 C 1.395888 -1.027576 -0.688648 C 0.117368 -1.330271 -0.492749 O -1.647092 -1.211666 1.125477 O 3.145224 0.486440 -0.299636 N -1.938396 0.050311 -0.597464 H -0.738055 1.161253 1.752615 H 1.642138 1.724353 1.398181 H 2.054804 -1.644087 -1.280621 H -0.323500 -2.227552 -0.907783 H -2.483712 -0.540777 0.269146 H -1.956061 -0.490953 -1.452956 C -2.090017 1.470672 -0.874971 H -2.223865 2.006874 0.056978 H -1.212607 1.859993 -1.384062 H -2.966632 1.623449 -1.495767 3-11βi X Y Z C -0.563423 -0.254176 0.480159 C 0.497818 0.186704 1.435710 C 1.788184 0.220067 1.127203 C 2.271383 -0.204565 -0.198324 C 1.271760 -0.752310 -1.126627 C -0.021638 -0.761265 -0.826514 O -1.422643 -1.104706 1.056471 O 3.442491 -0.118010 -0.498230 N -1.406869 1.009708 0.123686 H 0.140711 0.450374 2.422481 H 2.545150 0.525140 1.833468 H 1.652946 -1.153042 -2.053485 H -0.770389 -1.167909 -1.493378 H -1.708458 1.385126 1.015252 H -2.289262 0.520738 -0.320272 C -0.794318 2.040603 -0.709211 H 0.175834 2.319891 -0.308654 H -1.441139 2.910579 -0.740018 H -0.668161 1.655003 -1.713100 H -2.332208 -1.118306 0.300734 O -3.042003 -0.703512 -0.608949 H -3.978295 -0.836073 -0.497543 3-11βii X Y Z C -0.457692 0.013545 0.361416 C 0.478291 1.134158 0.684014 C 1.786088 1.074050 0.464795 C 2.417565 -0.124812 -0.112246 C 1.549229 -1.290539 -0.332607 C 0.240263 -1.230341 -0.117503 O -1.315485 -0.211563 1.363577 O 3.600664 -0.150612 -0.373316 N -1.321933 0.436788 -0.874065 H 0.022821 1.992951 1.155789 H 2.452608 1.882211 0.724477 H 2.039485 -2.194353 -0.660612 H -0.411892 -2.081843 -0.259232 H -0.777645 0.391037 -1.725809 H -2.081264 -0.356513 -0.830540 C -1.992450 1.727385 -0.719799 H -2.781320 1.813683 -1.458909 H -1.288377 2.543262 -0.838986 H -2.424233 1.749488 0.275208 H -2.130825 -0.898176 0.866041 O -2.760072 -1.411233 -0.061657 H -3.694448 -1.532670 0.073777

3-11γi X Y Z C -0.154038 -0.117358 0.528001 C 0.964340 0.338762 1.408248 C 2.244358 0.244564 1.069943 C 2.656855 -0.348779 -0.213775 C 1.593714 -0.913716 -1.057570 C 0.312646 -0.794760 -0.729662 O -1.053831 -0.841209 1.207732 O 3.821679 -0.380980 -0.547200 N -0.915858 1.159414 0.061049 H 0.656327 0.728576 2.369493 H 3.041548 0.563966 1.723646 H 1.917811 -1.435239 -1.945223 H -0.481189 -1.212395 -1.334912 H -1.154596 1.650878 0.914403 H -1.858332 0.682533 -0.301024 C -0.260219 2.046104 -0.895418 H 0.743019 2.290178 -0.557537 H -0.841067 2.956007 -1.000366 H -0.200726 1.549215 -1.855740 H -1.997594 -0.848146 0.480257 O -2.716806 -0.461066 -0.417757 C -4.088374 -0.475962 -0.188419 H -4.614545 0.018526 -1.005655 H -4.462419 -1.499097 -0.127450 H -4.361256 0.032005 0.742484 3-11γii X Y Z C -0.059751 0.150493 0.348432 C 1.016352 1.128142 0.698140 C 2.306543 0.894645 0.490314 C 2.776413 -0.369275 -0.101106 C 1.760654 -1.403081 -0.349268 C 0.469758 -1.168584 -0.145036 O -0.948725 0.025592 1.342281 O 3.947900 -0.551944 -0.351794 N -0.848853 0.702990 -0.882685 H 0.676823 2.033287 1.180785 H 3.073288 1.600731 0.770209 H 2.127682 -2.359890 -0.687847 H -0.289027 -1.922692 -0.306906 H -0.312844 0.588869 -1.733263 H -1.723348 0.018282 -0.842005 C -1.329491 2.074558 -0.718627 H -2.095162 2.279051 -1.459008 H -0.517195 2.784563 -0.827960 H -1.758149 2.150395 0.275202 H -1.854384 -0.526732 0.821278 O -2.554009 -0.907074 -0.108495 C -3.934055 -0.882447 0.052103 H -4.431833 -1.071364 -0.900029 H -4.260271 -1.654644 0.751063 H -4.293470 0.079913 0.431635

Page 193: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

178

3-12a X Y Z C 0.533919 -0.741281 -0.455792 C 0.311725 0.719163 -0.139165 C -0.875991 1.265253 0.080980 C -2.103146 0.457568 0.010439 C -1.957732 -0.938904 -0.418114 C -0.764250 -1.452150 -0.685645 O 1.280040 -0.906417 -1.618072 O -3.181987 0.939063 0.277684 N 1.276660 -1.338571 0.632931 Cl 1.756916 1.644186 -0.036749 H -0.993541 2.309518 0.321455 H -2.870335 -1.502458 -0.533263 H -0.650202 -2.466719 -1.041965 H 1.403046 -2.317231 0.424806 C 0.758944 -1.140763 1.968766 H 1.316862 -1.774012 2.650467 H -0.305085 -1.373692 2.070260 H 0.914874 -0.109784 2.274910 H 2.174956 -0.621266 -1.418160 3-12b X Y Z C -0.548822 -0.663184 -0.487274 C 0.717479 -1.460565 -0.613395 C 1.933426 -0.987630 -0.383174 C 2.138471 0.394826 0.070416 C 0.943445 1.238294 0.204514 C -0.262376 0.764440 -0.080537 O -1.192604 -0.596315 -1.725376 O 3.241207 0.826433 0.324173 N -1.437742 -1.338700 0.425176 H 0.560925 -2.481235 -0.935229 H 2.821681 -1.586400 -0.510828 H 1.099292 2.253890 0.530650 Cl -1.660345 1.752710 0.073492 H -2.309747 -0.828616 0.431614 C -0.949515 -1.521794 1.776158 H -1.724814 -2.005494 2.361012 H -0.670690 -0.588288 2.272672 H -0.081667 -2.174749 1.769447 H -1.626391 -1.441548 -1.855548 3-12c X Y Z C 0.652296 -0.384820 0.295841 C -0.296831 -1.523635 0.529943 C -1.603742 -1.468632 0.312114 C -2.254444 -0.221949 -0.106807 C -1.402924 0.972851 -0.202167 C -0.094527 0.896267 0.000011 O 1.400358 -0.273523 1.466976 O -3.440406 -0.163096 -0.345880 N 1.553353 -0.616422 -0.810609 H 0.175524 -2.433404 0.870330 H -2.248395 -2.322742 0.448527 H -1.895265 1.904665 -0.428869 Cl 0.901596 2.296061 -0.083895 H 1.097950 -0.433593 -1.689940 C 2.252302 -1.883610 -0.816471 H 3.067292 -1.828285 -1.531693 H 1.626943 -2.741817 -1.071954 H 2.683891 -2.050898 0.166014 H 2.099068 0.362115 1.294520

3-12d X Y Z C -0.526510 -0.715823 -0.471851 C 0.749099 -1.504886 -0.538174 C 1.955810 -1.012003 -0.293837 C 2.141922 0.392157 0.098614 C 0.938216 1.232838 0.174949 C -0.259698 0.731937 -0.102375 O -1.178804 -0.774634 -1.710902 O 3.236731 0.846438 0.346745 N -1.429925 -1.364929 0.431064 H 0.593951 -2.535576 -0.821944 H 2.851198 -1.609506 -0.367715 H 1.081531 2.262569 0.460903 Cl -1.672742 1.707001 -0.004320 H -2.358252 -1.015666 0.247238 C -1.087932 -1.285791 1.831647 H -1.812691 -1.860890 2.398427 H -1.065221 -0.267054 2.230584 H -0.111368 -1.735032 1.994888 H -0.661923 -0.308369 -2.366976 3-12e X Y Z C -0.639649 -0.405552 0.266706 C 0.106705 0.875987 -0.010082 C 1.413058 0.973374 -0.196425 C 2.269186 -0.219481 -0.122626 C 1.616302 -1.481279 0.242903 C 0.307543 -1.557174 0.431866 O -1.307325 -0.320315 1.506881 O 3.459072 -0.146798 -0.334816 N -1.501280 -0.647528 -0.850154 Cl -0.906789 2.277497 -0.075576 H 1.898828 1.913134 -0.402317 H 2.263389 -2.335736 0.362950 H -0.159013 -2.481793 0.736837 H -2.033982 0.179413 -1.065491 C -2.350084 -1.817394 -0.771300 H -3.088018 -1.758265 -1.564398 H -2.869131 -1.911293 0.184098 H -1.768586 -2.718879 -0.943734 H -1.871447 0.454686 1.505152 3-12f X Y Z C -0.647911 -0.397674 0.239670 C 0.120487 0.876997 -0.022843 C 1.435449 0.945123 -0.184689 C 2.269051 -0.261665 -0.130896 C 1.583522 -1.529964 0.147716 C 0.267682 -1.586057 0.299327 O -1.321406 -0.292749 1.484143 O 3.467395 -0.205308 -0.297377 N -1.603342 -0.562228 -0.800347 Cl -0.844702 2.300388 -0.074558 H 1.942204 1.879606 -0.362834 H 2.209380 -2.405628 0.220785 H -0.225191 -2.520993 0.521414 H -2.154740 0.278324 -0.866643 C -2.460667 -1.727226 -0.712707 H -3.268589 -1.604582 -1.426295 H -2.890626 -1.872746 0.279014 H -1.916542 -2.622314 -1.001335 H -0.686147 -0.235411 2.198212

Page 194: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

179

3-12g X Y Z C -0.525772 -0.735369 -0.471489 C 0.773719 -1.458205 -0.658637 C 1.964834 -0.933640 -0.409710 C 2.112467 0.456344 0.041775 C 0.884117 1.260150 0.150887 C -0.293743 0.718469 -0.119733 O -1.200720 -0.837735 -1.686222 O 3.192965 0.935341 0.304057 N -1.283734 -1.424118 0.548110 H 0.650571 -2.475411 -0.998776 H 2.878698 -1.492592 -0.536499 H 0.997736 2.290713 0.446278 Cl -1.752419 1.638099 0.003952 H -2.256379 -1.172714 0.463098 C -0.818413 -1.274858 1.908405 H -1.419787 -1.908072 2.552749 H -0.862318 -0.250013 2.288642 H 0.210764 -1.617533 1.979224 H -1.943250 -0.231434 -1.690332 3-12h X Y Z C 0.546223 -0.707592 -0.465472 C 0.292552 0.739105 -0.102322 C -0.912009 1.246821 0.135683 C -2.121123 0.415505 0.067507 C -1.946565 -0.986272 -0.335767 C -0.741236 -1.471484 -0.605723 O 1.267278 -0.803535 -1.662612 O -3.212429 0.875723 0.322513 N 1.407719 -1.294181 0.518715 Cl 1.700858 1.705879 -0.002199 H -1.052438 2.284316 0.393176 H -2.844647 -1.579361 -0.413829 H -0.604748 -2.498562 -0.918650 H 1.677374 -2.213668 0.208740 C 0.945220 -1.269790 1.884813 H 1.648041 -1.828166 2.493987 H -0.053753 -1.691281 2.032300 H 0.939389 -0.245743 2.250967 H 0.704988 -0.543479 -2.391831 3-12i X Y Z C 0.440688 -0.750051 -0.315363 C 0.097980 0.713856 -0.115146 C -1.121430 1.149398 0.184916 C -2.275211 0.244470 0.200726 C -2.036005 -1.139127 -0.234201 C -0.809606 -1.570806 -0.487161 O 1.235267 -0.815814 -1.459499 O -3.377033 0.630200 0.524300 N 1.146671 -1.369719 0.781581 Cl 1.393884 1.830189 -0.264861 H -1.320453 2.190561 0.380427 H -2.905026 -1.770540 -0.333595 H -0.622687 -2.590640 -0.793584 H 0.511199 -1.590923 1.529954 C 2.369433 -0.767016 1.270272 H 2.893032 -1.503175 1.873497 H 2.217368 0.131845 1.868727 H 3.001734 -0.507659 0.427110 H 1.641131 -1.684074 -1.463629

3-12j X Y Z C -0.646145 -0.390834 0.256401 C 0.119746 0.880229 -0.009053 C 1.430737 0.944790 -0.191925 C 2.266872 -0.258003 -0.126186 C 1.585827 -1.521668 0.182043 C 0.272501 -1.574871 0.344626 O -1.257628 -0.190603 1.517575 O 3.463328 -0.205513 -0.307655 N -1.571739 -0.576541 -0.819058 Cl -0.849291 2.299376 -0.069963 H 1.932613 1.877515 -0.390591 H 2.213081 -2.394856 0.269013 H -0.207316 -2.515637 0.579655 H -2.118912 0.263337 -0.922560 C -2.428250 -1.737811 -0.758108 H -3.174261 -1.653601 -1.541198 H -2.962611 -1.854926 0.190894 H -1.862942 -2.644048 -0.955968 H -1.632875 -1.013462 1.827388 3-12k X Y Z C -0.436549 -0.750261 -0.305812 C 0.813998 -1.553574 -0.521640 C 2.037103 -1.122368 -0.257287 C 2.272289 0.247423 0.213796 C 1.116790 1.155976 0.196159 C -0.098476 0.708541 -0.082281 O -1.184081 -0.902846 -1.486643 O 3.368207 0.634609 0.552595 N -1.052879 -1.309500 0.865126 H 0.631926 -2.557699 -0.879235 H 2.907667 -1.747441 -0.376856 H 1.317230 2.200159 0.373069 Cl -1.410911 1.821959 -0.253313 H -1.073979 -2.310191 0.757342 C -2.353178 -0.825643 1.275506 H -2.751820 -1.520302 2.007670 H -3.078593 -0.746221 0.460626 H -2.268359 0.141743 1.759000 H -1.913305 -0.281510 -1.489436 3-12l X Y Z C 0.652494 -0.385258 0.254176 C -0.264075 -1.572324 0.373046 C -1.578298 -1.537911 0.189183 C -2.266882 -0.278738 -0.120244 C -1.440883 0.933616 -0.182612 C -0.123741 0.886742 -0.010425 O 1.396131 -0.265323 1.437766 O -3.463113 -0.232440 -0.307311 N 1.620850 -0.537483 -0.794296 H 0.239701 -2.498692 0.610788 H -2.197264 -2.419144 0.257662 H -1.957304 1.861673 -0.367956 Cl 0.825256 2.310226 -0.064883 H 1.180658 -0.447585 -1.694497 C 2.495444 -1.685149 -0.717313 H 3.286193 -1.560494 -1.450682 H 2.007968 -2.646200 -0.902167 H 2.955070 -1.707843 0.264799 H 0.801176 -0.276941 2.186627

Page 195: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

180

3-12m X Y Z C -0.448005 -0.739013 0.284750 C -0.064699 0.719126 0.084473 C 1.168319 1.134668 -0.188885 C 2.301569 0.201140 -0.197822 C 2.019557 -1.189516 0.183883 C 0.780098 -1.597574 0.417697 O -1.251606 -0.877922 1.421356 O 3.418942 0.573543 -0.480609 N -1.199150 -1.308507 -0.796630 Cl -1.349897 1.858903 0.201850 H 1.393330 2.171555 -0.380265 H 2.870150 -1.848776 0.260467 H 0.549183 -2.617141 0.688580 H -0.624627 -1.396981 -1.616696 C -2.530427 -0.823661 -1.087475 H -3.048706 -1.586271 -1.662379 H -2.559611 0.113368 -1.644645 H -3.063624 -0.688043 -0.153191 H -0.870947 -0.385516 2.147385 3-12n X Y Z C 0.447517 -0.744061 0.266666 C -0.787462 -1.593742 0.395684 C -2.025610 -1.178807 0.174759 C -2.296468 0.211403 -0.209218 C -1.155336 1.134472 -0.187998 C 0.078995 0.711527 0.058301 O 1.225787 -0.881179 1.438189 O -3.409671 0.594908 -0.492784 N 1.164542 -1.269524 -0.847882 H -0.578812 -2.618045 0.674696 H -2.878980 -1.833379 0.256637 H -1.376450 2.178046 -0.343499 Cl 1.354989 1.856314 0.219752 H 1.173402 -2.272456 -0.771874 C 2.502837 -0.776086 -1.118293 H 3.000310 -1.505472 -1.749515 H 3.094679 -0.630350 -0.215349 H 2.463486 0.156964 -1.670183 H 0.799998 -0.444048 2.175825 3-12o X Y Z C -0.445205 -0.725061 0.310248 C -0.058058 0.725829 0.093769 C 1.167852 1.141382 -0.195639 C 2.296827 0.199278 -0.196477 C 2.012970 -1.176963 0.231522 C 0.777468 -1.574611 0.497992 O -1.204024 -0.862699 1.467439 O 3.410557 0.560043 -0.505794 N -1.136998 -1.306685 -0.820186 Cl -1.360600 1.858173 0.199216 H 1.394285 2.174387 -0.404396 H 2.862992 -1.834252 0.325543 H 0.548747 -2.580231 0.816499 H -0.540557 -1.314495 -1.630594 C -2.486377 -0.898257 -1.131885 H -2.912589 -1.631422 -1.810973 H -2.579667 0.088889 -1.586782 H -3.085989 -0.922227 -0.226389 H -1.843184 -0.151134 1.521382

3-12p X Y Z C 0.447840 -0.730805 0.268661 C -0.776288 -1.597926 0.377013 C -2.016978 -1.192350 0.160323 C -2.302202 0.202668 -0.200793 C -1.171031 1.133135 -0.173863 C 0.065391 0.720628 0.076683 O 1.159091 -0.758720 1.486569 O -3.422141 0.572896 -0.476737 N 1.180829 -1.227715 -0.854582 H -0.571626 -2.630492 0.635223 H -2.864212 -1.855909 0.232325 H -1.397194 2.174667 -0.333711 Cl 1.338592 1.864519 0.217246 H 1.094373 -2.225556 -0.924906 C 2.535625 -0.773974 -1.095745 H 3.038325 -1.521233 -1.701490 H 3.103735 -0.627739 -0.176916 H 2.540611 0.157207 -1.653050 H 1.444374 -1.655445 1.659086 3-12αi X Y Z C 0.593461 -0.423277 0.539999 C -0.504786 -1.428179 0.706279 C -1.783214 -1.193868 0.438804 C -2.223570 0.094209 -0.113371 C -1.202014 1.138070 -0.270373 C 0.070245 0.894798 0.020022 O 1.411618 -0.349992 1.598311 O -3.378476 0.298141 -0.417213 N 1.665125 -0.957062 -0.446029 H -0.186910 -2.355894 1.160331 H -2.558172 -1.918346 0.635782 H -1.539251 2.100111 -0.620885 Cl 1.271106 2.113350 -0.168160 H 2.173338 -0.943226 0.628533 H 2.031993 -0.177438 -0.980556 C 1.444089 -2.123786 -1.287551 H 1.220702 -2.983220 -0.666962 H 0.617325 -1.955090 -1.972027 H 2.345891 -2.327416 -1.854931 3-12αii X Y Z C 0.461208 -0.725348 -0.544439 C 0.194013 0.721396 -0.192110 C -1.004490 1.201169 0.120658 C -2.189194 0.331165 0.131451 C -2.008270 -1.050250 -0.335465 C -0.805364 -1.514035 -0.650584 O 1.342433 -0.923576 -1.527966 O -3.269019 0.749077 0.488122 N 1.353077 -1.339505 0.568354 Cl 1.572324 1.742439 -0.256836 H -1.165895 2.242455 0.349245 H -2.903425 -1.645235 -0.428601 H -0.663531 -2.516032 -1.033301 H 2.059159 -1.176430 -0.383001 H 1.157047 -2.333365 0.566092 C 1.419818 -0.841242 1.936446 H 1.765260 0.184369 1.935331 H 0.439100 -0.892079 2.403195 H 2.117606 -1.449746 2.501782

Page 196: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

181

3-12βi X Y Z C 0.540909 -0.146712 -0.335915 C -0.504048 0.925654 -0.173025 C -1.805044 0.689595 -0.072666 C -2.329908 -0.685415 -0.094381 C -1.357159 -1.772118 -0.260149 C -0.055938 -1.526795 -0.336025 O 1.314340 0.062824 -1.407875 O -3.516834 -0.896167 0.021164 N 1.477762 -0.067389 0.883899 Cl 0.121477 2.527610 -0.132175 H -2.528570 1.483680 0.018326 H -1.762442 -2.769558 -0.330613 H 0.675109 -2.311652 -0.479151 H 1.829002 0.885445 0.874769 H 2.312831 -0.706209 0.515954 C 0.933542 -0.418308 2.192091 H 0.053107 0.180178 2.407351 H 1.687090 -0.242185 2.951531 H 0.662637 -1.467094 2.194690 H 2.218607 -0.670515 -1.222925 O 2.955755 -1.405803 -0.564807 H 3.882988 -1.361988 -0.777683 3-12βii X Y Z C 0.444066 -0.290602 -0.295698 C -0.495321 0.887716 -0.184957 C -1.795722 0.762869 0.059735 C -2.439227 -0.556176 0.150522 C -1.613008 -1.720785 -0.193190 C -0.310756 -1.594091 -0.409502 O 1.365932 -0.126621 -1.240502 O -3.605987 -0.662104 0.457643 N 1.202729 -0.478937 1.058203 Cl 0.194866 2.435849 -0.447806 H -2.443747 1.620687 0.141218 H -2.123563 -2.668311 -0.268664 H 0.322675 -2.433629 -0.662061 H 0.582304 -0.854879 1.763650 H 1.943018 -1.233356 0.714046 C 1.952307 0.677373 1.551623 H 2.656098 0.339127 2.304890 H 1.288004 1.421253 1.975225 H 2.490974 1.102134 0.712212 H 2.126208 -0.992426 -1.022197 O 2.660808 -1.884680 -0.353832 H 3.606150 -1.968050 -0.430719

3-12βiii X Y Z C -0.319793 -0.612071 -0.443725 C 0.834116 -1.559327 -0.599052 C 2.108703 -1.238404 -0.424196 C 2.503952 0.133816 -0.076299 C 1.435626 1.137963 -0.010210 C 0.160246 0.800173 -0.164054 O -1.157343 -0.706531 -1.475475 O 3.659635 0.430046 0.134493 N -1.090138 -1.078307 0.820165 H 0.536845 -2.552810 -0.908119 H 2.909883 -1.948093 -0.560499 H 1.739218 2.157985 0.162806 Cl -1.083377 1.973308 -0.065113 H -1.114312 -2.088779 0.749690 H -2.179127 -0.755659 0.561548 C -0.563862 -0.689303 2.125715 H 0.495691 -0.922932 2.195313 H -1.103728 -1.223952 2.899769 H -0.709386 0.374962 2.266565 H -2.281454 -0.492611 -1.060811 O -3.166865 -0.396205 -0.276240 H -3.882592 -1.001755 -0.451790 3-12βiv X Y Z C 0.313177 -0.406632 0.376890 C -0.718766 -1.473670 0.605901 C -2.023472 -1.317293 0.429151 C -2.582811 -0.043081 -0.040505 C -1.644508 1.073755 -0.200481 C -0.339793 0.912015 -0.009701 O 1.130349 -0.330534 1.426627 O -3.765016 0.091003 -0.268394 N 1.167801 -0.783428 -0.866866 H -0.315697 -2.392228 1.006003 H -2.733579 -2.099225 0.649372 H -2.067695 2.029183 -0.466043 Cl 0.746862 2.223687 -0.199091 H 0.759988 -0.405059 -1.711796 H 2.177678 -0.287413 -0.592071 C 1.455838 -2.209455 -1.014254 H 2.217290 -2.337438 -1.776561 H 0.567983 -2.768587 -1.288585 H 1.841205 -2.573169 -0.067175 H 2.223282 0.007965 1.029211 O 3.110855 0.191167 0.258019 H 3.890797 -0.319636 0.458233

Page 197: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

182

3-12γi X Y Z C 0.226531 -0.036246 -0.255929 C -0.974541 0.871453 -0.198752 C -2.231139 0.447646 -0.182420 C -2.546149 -0.989756 -0.201422 C -1.415379 -1.923420 -0.269086 C -0.162378 -1.488849 -0.259357 O 1.036996 0.264221 -1.277693 O -3.694481 -1.372670 -0.162522 N 1.047055 0.201954 1.023315 Cl -0.595468 2.549116 -0.163546 H -3.067737 1.127463 -0.165709 H -1.664177 -2.970853 -0.340548 H 0.682414 -2.161621 -0.328873 H 1.235361 1.199868 1.024791 H 2.014972 -0.300527 0.712178 C 0.472570 -0.225752 2.294882 H -0.516265 0.204086 2.428778 H 1.118913 0.093861 3.104773 H 0.395699 -1.306278 2.306342 H 2.046456 -0.306696 -0.991090 O 2.844749 -0.858933 -0.265956 C 4.187933 -0.530509 -0.434437 H 4.787236 -0.975658 0.359760 H 4.562082 -0.911412 -1.385058 H 4.355818 0.550771 -0.419786 3-12γii X Y Z C -0.084979 -0.514174 -0.379286 C 0.917857 -1.621738 -0.522593 C 2.231409 -1.477101 -0.410346 C 2.829630 -0.160565 -0.149172 C 1.916153 0.987179 -0.094410 C 0.601067 0.825490 -0.184796 O -0.965601 -0.531018 -1.377205 O 4.023670 -0.021138 0.002445 N -0.864731 -0.805241 0.929999 H 0.472273 -2.576792 -0.768175 H 2.918948 -2.298822 -0.537779 H 2.366526 1.960491 0.016873 Cl -0.462990 2.166204 -0.096892 H -1.037467 -1.803422 0.909169 H -1.921639 -0.327060 0.675985 C -0.235528 -0.444563 2.197153 H 0.780756 -0.828869 2.244425 H -0.816199 -0.859871 3.013919 H -0.216843 0.634590 2.292922 H -2.056467 -0.128875 -0.921497 O -2.869778 0.094045 -0.129587 C -4.017886 -0.692370 -0.264545 H -4.665815 -0.549055 0.598017 H -4.571045 -0.401700 -1.155582 H -3.781738 -1.757455 -0.348365

3-12γiii X Y Z C 0.165925 -0.116856 -0.258653 C -1.035369 0.798419 -0.200899 C -2.274010 0.364682 0.010261 C -2.580772 -1.069597 0.111551 C -1.486001 -2.003243 -0.184248 C -0.247491 -1.565761 -0.366568 O 1.050740 0.250843 -1.182108 O -3.696039 -1.452524 0.388292 N 0.903016 -0.098228 1.116659 Cl -0.734062 2.463971 -0.479368 H -3.113140 1.040203 0.054545 H -1.748864 -3.047389 -0.253881 H 0.577390 -2.230733 -0.584284 H 0.371962 -0.607980 1.810859 H 1.832563 -0.651200 0.793912 C 1.328002 1.212008 1.611069 H 2.057096 1.065768 2.401295 H 0.486647 1.781793 1.987897 H 1.787700 1.742502 0.784716 H 2.004242 -0.396461 -0.909053 O 2.726688 -1.084239 -0.204398 C 4.095858 -0.835117 -0.231080 H 4.594887 -1.372637 0.575706 H 4.532560 -1.172696 -1.171740 H 4.326933 0.229068 -0.120218 3-12γiv X Y Z C -0.023639 -0.360789 -0.324633 C 0.921827 -1.500948 -0.573562 C 2.241065 -1.432615 -0.457716 C 2.907334 -0.193091 -0.038610 C 2.055523 0.987842 0.145900 C 0.735780 0.912427 0.016469 O -0.869603 -0.237763 -1.346162 O 4.105567 -0.136319 0.131243 N -0.857001 -0.657571 0.953648 H 0.439531 -2.396669 -0.936098 H 2.885124 -2.265597 -0.693327 H 2.554447 1.915088 0.377727 Cl -0.250752 2.298187 0.235847 H -0.393928 -0.295231 1.776829 H -1.855723 -0.088759 0.691642 C -1.233083 -2.058618 1.137366 H -1.981112 -2.124170 1.920831 H -0.377247 -2.671481 1.399814 H -1.666895 -2.415289 0.208528 H -1.937216 0.196665 -0.903377 O -2.768959 0.419032 -0.117545 C -3.972866 -0.252167 -0.345805 H -4.569473 -0.268406 0.565120 H -4.548992 0.259311 -1.115235 H -3.814420 -1.283494 -0.674135

Page 198: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

183

3-13a X Y Z C -1.423408 -0.127434 -0.471783 C -0.131353 -0.886333 -0.410219 C 1.037862 -0.314254 -0.159298 C 1.158597 1.144738 0.092053 C -0.076895 1.923888 -0.060823 C -1.232518 1.352369 -0.372214 O -2.073441 -0.354772 -1.689379 O 2.208335 1.659380 0.387985 N -2.294722 -0.626239 0.575394 H -0.204529 -1.952507 -0.570661 Cl 2.494831 -1.215286 -0.092409 H 0.028683 2.990275 0.063848 H -2.129239 1.937259 -0.524959 H -3.164483 -0.116475 0.525041 C -1.766831 -0.614038 1.923534 H -2.564198 -0.885828 2.607473 H -1.361244 0.354196 2.230044 H -0.980157 -1.356214 2.020811 H -2.445779 -1.237652 -1.644744 3-13b X Y Z C 1.398860 -0.233152 -0.467116 C 1.250405 1.257896 -0.467268 C 0.095217 1.878217 -0.276252 C -1.154269 1.143584 -0.028587 C -1.062251 -0.334316 -0.113830 C 0.086068 -0.947267 -0.369982 O 1.984451 -0.672405 -1.660316 O -2.189488 1.712626 0.214332 N 2.294557 -0.609502 0.608958 H 2.165695 1.811226 -0.628884 H 0.006049 2.953391 -0.282256 Cl -2.530300 -1.197137 0.090490 H 0.133844 -2.021462 -0.475662 H 2.394641 -1.613815 0.593324 C 1.945504 -0.148993 1.936658 H 2.622500 -0.608394 2.649370 H 0.919249 -0.386066 2.230116 H 2.075846 0.927000 2.002172 H 2.918467 -0.461619 -1.603083 3-13c X Y Z C 1.337679 0.274491 0.274716 C 0.200898 -0.701811 0.348234 C -1.060468 -0.375814 0.099827 C -1.464630 1.017750 -0.203151 C -0.386201 2.016606 -0.170469 C 0.877495 1.682508 0.047873 O 1.994617 0.164288 1.509684 O -2.604968 1.321087 -0.452204 N 2.290391 -0.027944 -0.771706 H 0.466742 -1.715563 0.605880 Cl -2.323213 -1.536599 0.133543 H -0.694900 3.036816 -0.337268 H 1.661209 2.427726 0.060282 H 1.958212 0.311498 -1.659748 C 2.739174 -1.402466 -0.860051 H 3.610148 -1.445282 -1.506732 H 1.987802 -2.094115 -1.246188 H 3.041696 -1.739012 0.127451 H 2.850104 0.585134 1.406303

3-13d X Y Z C -1.249999 -0.265933 0.310952 C -1.106830 1.224131 0.375861 C 0.041276 1.860226 0.187056 C 1.303866 1.145554 -0.036315 C 1.221414 -0.336820 0.004016 C 0.067154 -0.969085 0.164429 O -1.869783 -0.631473 1.514619 O 2.343861 1.724643 -0.229607 N -2.082835 -0.721678 -0.782290 H -2.017883 1.768137 0.577479 H 0.116235 2.936266 0.206743 Cl 2.703461 -1.180511 -0.170241 H 0.024275 -2.048657 0.181470 H -1.556892 -0.746664 -1.640639 C -3.353228 -0.047095 -0.951951 H -3.971801 -0.630510 -1.627016 H -3.272292 0.967284 -1.348036 H -3.859711 -0.002511 0.007977 H -2.175468 -1.534134 1.407762 3-13e X Y Z C -1.327392 0.272197 0.214022 C -0.857441 1.674227 -0.020782 C 0.413327 2.008249 -0.195602 C 1.488428 1.008377 -0.196375 C 1.064436 -0.393391 0.044605 C -0.208316 -0.725840 0.215737 O -1.977910 0.213794 1.481022 O 2.642696 1.309525 -0.372888 N -2.272058 -0.042727 -0.803755 H -1.637207 2.423949 -0.018512 H 0.727315 3.028018 -0.353992 Cl 2.319515 -1.560773 0.094896 H -0.483534 -1.750939 0.410546 H -2.972670 0.680381 -0.828857 C -2.896636 -1.348882 -0.731917 H -3.724317 -1.367795 -1.433151 H -3.273485 -1.593010 0.261912 H -2.197340 -2.118100 -1.047521 H -1.342843 0.373543 2.179420 3-13f X Y Z C 1.252729 -0.225731 0.248836 C -0.051994 -0.950994 0.115269 C -1.222481 -0.342554 -0.018642 C -1.332994 1.135382 -0.068858 C -0.071291 1.874373 0.073698 C 1.098794 1.264003 0.203325 O 1.841363 -0.579708 1.497632 O -2.390319 1.698412 -0.207962 N 2.101449 -0.672305 -0.803952 H 0.007812 -2.029290 0.156714 Cl -2.691659 -1.216664 -0.147245 H -0.162939 2.949325 0.065055 H 2.008467 1.833032 0.325854 H 2.118167 -1.679240 -0.803518 C 3.451690 -0.145043 -0.819507 H 4.030673 -0.718569 -1.535774 H 3.946091 -0.195180 0.151211 H 3.450613 0.884459 -1.166561 H 1.294103 -0.261359 2.215767

Page 199: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

184

3-13g X Y Z C 1.415335 -0.123650 -0.469529 C 1.230452 1.351507 -0.285306 C 0.057843 1.919942 -0.038439 C -1.179973 1.137262 0.095925 C -1.050176 -0.325561 -0.123802 C 0.120344 -0.885474 -0.404088 O 2.027564 -0.377558 -1.710945 O -2.236635 1.655845 0.357801 N 2.376506 -0.595686 0.490171 H 2.140975 1.926295 -0.373902 H -0.055449 2.986073 0.083469 Cl -2.498016 -1.238817 -0.013291 H 0.199457 -1.950092 -0.575617 H 2.671892 -1.519940 0.216450 C 1.981118 -0.533285 1.877594 H 2.791870 -0.922789 2.484568 H 1.070601 -1.090589 2.115196 H 1.824822 0.502703 2.167286 H 1.409471 -0.172709 -2.411679 3-13h X Y Z C -1.403536 -0.165341 -0.471641 C -0.107458 -0.912161 -0.365023 C 1.056691 -0.325711 -0.117484 C 1.168101 1.140715 0.093037 C -0.077587 1.907813 -0.052641 C -1.233308 1.319400 -0.334351 O -2.014157 -0.445916 -1.707827 O 2.217275 1.673824 0.355831 N -2.323085 -0.703061 0.495347 H -0.187989 -1.979388 -0.506480 Cl 2.519434 -1.214284 -0.013914 H 0.019055 2.975478 0.070883 H -2.142535 1.894298 -0.453395 H -3.247994 -0.366875 0.276522 C -1.980633 -0.510835 1.884789 H -2.759271 -0.955782 2.495702 H -1.860147 0.534710 2.182685 H -1.053027 -1.031708 2.108049 H -1.495444 -0.053034 -2.408998 3-13i X Y Z C 1.329804 0.281735 0.230765 C 0.204031 -0.715635 0.270298 C -1.068796 -0.395175 0.069304 C -1.492317 1.004279 -0.182802 C -0.418742 2.008992 -0.176490 C 0.854299 1.683712 0.004883 O 2.034561 0.213791 1.449433 O -2.644414 1.303902 -0.375655 N 2.304697 -0.010196 -0.784829 H 0.486513 -1.739278 0.467073 Cl -2.319557 -1.569932 0.087820 H -0.739116 3.027717 -0.330745 H 1.641692 2.423133 0.007836 H 1.922775 0.187368 -1.694646 C 2.936451 -1.309942 -0.728812 H 3.762669 -1.319741 -1.432961 H 2.276504 -2.148347 -0.966764 H 3.344760 -1.456422 0.265271 H 1.414239 0.296453 2.172696

3-13j X Y Z C -1.252112 -0.228227 0.268368 C -1.089311 1.264517 0.257260 C 0.076880 1.877297 0.091554 C 1.333901 1.133171 -0.065479 C 1.221605 -0.346738 -0.006217 C 0.052190 -0.956373 0.140490 O -1.885851 -0.610069 1.467782 O 2.390761 1.691439 -0.225650 N -2.109984 -0.712067 -0.780364 H -1.999970 1.832121 0.386820 H 0.170145 2.952056 0.065705 Cl 2.691458 -1.219499 -0.137568 H -0.026856 -2.032016 0.181747 H -1.643006 -0.637802 -1.668571 C -3.453832 -0.179381 -0.822216 H -4.030531 -0.760979 -1.534821 H -3.519208 0.873291 -1.110082 H -3.908948 -0.304367 0.154368 H -1.401730 -0.242917 2.206417 3-13k X Y Z C 1.252367 -0.220821 0.270219 C -0.051872 -0.946654 0.138086 C -1.220738 -0.339970 -0.005612 C -1.331840 1.138825 -0.060698 C -0.075143 1.876585 0.106077 C 1.090736 1.268240 0.265173 O 1.826191 -0.496156 1.538632 O -2.389214 1.695967 -0.222083 N 2.068954 -0.625567 -0.833675 H -0.003715 -2.028094 0.161706 Cl -2.685987 -1.217046 -0.150013 H -0.166560 2.951328 0.104971 H 1.994973 1.835914 0.425298 H 2.026170 -1.622291 -0.965769 C 3.432429 -0.141126 -0.858686 H 3.971459 -0.672551 -1.636021 H 3.957350 -0.274477 0.088525 H 3.452573 0.912744 -1.122113 H 1.875400 -1.442784 1.669606 3-13l X Y Z C -1.328752 0.271144 0.244388 C -0.861447 1.676321 0.033035 C 0.402420 2.009304 -0.178807 C 1.478975 1.013419 -0.202835 C 1.064481 -0.386199 0.064024 C -0.203199 -0.719269 0.260092 O -1.948674 0.290747 1.521058 O 2.627955 1.312749 -0.414083 N -2.229935 -0.040826 -0.826198 H -1.639390 2.426568 0.068546 H 0.709943 3.030490 -0.339289 Cl 2.322366 -1.550269 0.108126 H -0.459543 -1.750291 0.459197 H -2.929815 0.681574 -0.881006 C -2.851595 -1.345136 -0.809715 H -3.604936 -1.377584 -1.589749 H -3.344642 -1.596835 0.135124 H -2.123199 -2.116760 -1.042002 H -2.118656 -0.602281 1.817529

Page 200: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

185

3-13m X Y Z C -1.325571 0.260878 0.237275 C -0.864127 1.667437 0.011966 C 0.401002 2.008415 -0.178734 C 1.480936 1.012813 -0.197093 C 1.069046 -0.385976 0.064477 C -0.195595 -0.722791 0.271436 O -1.908787 0.146910 1.526586 O 2.628139 1.322540 -0.403430 N -2.218904 -0.065848 -0.831763 H -1.641994 2.422342 0.008601 H 0.707428 3.029893 -0.340317 Cl 2.331100 -1.546514 0.106149 H -0.460609 -1.742987 0.501080 H -2.877541 0.678958 -0.987691 C -2.872437 -1.355970 -0.777342 H -3.646681 -1.381552 -1.536967 H -3.322961 -1.573095 0.192449 H -2.165538 -2.145307 -1.017437 H -2.602813 0.798974 1.620929 3-13n X Y Z C 1.249286 -0.237731 0.280413 C -0.059988 -0.953495 0.164825 C -1.220760 -0.337929 -0.002700 C -1.322899 1.138808 -0.062373 C -0.062774 1.871266 0.118828 C 1.099246 1.253273 0.269221 O 1.763754 -0.646430 1.538389 O -2.371754 1.708512 -0.235245 N 2.054096 -0.651965 -0.832037 H -0.009712 -2.030772 0.229477 Cl -2.691851 -1.204779 -0.152985 H -0.149061 2.946538 0.122027 H 2.004226 1.829334 0.409568 H 2.059229 -1.658257 -0.875524 C 3.401849 -0.136102 -0.901851 H 3.922070 -0.640171 -1.709535 H 3.989504 -0.283975 0.010478 H 3.392201 0.922631 -1.144618 H 2.534572 -0.125525 1.759790 3-13αi X Y Z C -1.358179 0.202023 -0.525396 C -0.165163 -0.701728 -0.543146 C 1.049415 -0.307911 -0.179061 C 1.317505 1.073965 0.294114 C 0.185503 2.007255 0.216304 C -1.024895 1.612541 -0.158936 O -2.163485 0.066711 -1.590867 O 2.401814 1.416312 0.696954 N -2.401114 -0.337292 0.511448 H -0.334945 -1.693074 -0.935641 Cl 2.407941 -1.351132 -0.264610 H 0.412945 3.032754 0.462681 H -1.845421 2.311548 -0.253489 H -2.884429 -0.477857 -0.561564 H -2.835328 0.445867 0.984161 C -2.088334 -1.405178 1.449857 H -1.771914 -2.285026 0.902496 H -1.292967 -1.104219 2.126165 H -2.976870 -1.649691 2.022299

3-13αii X Y Z C 1.250014 -0.344373 -0.549433 C 1.149686 1.143395 -0.657666 C 0.026049 1.815119 -0.438925 C -1.221666 1.146783 -0.041411 C -1.183863 -0.336335 -0.027771 C -0.062468 -1.006276 -0.265573 O 1.969394 -0.922964 -1.524240 O -2.218133 1.768395 0.234214 N 2.240290 -0.724146 0.604064 H 2.047337 1.641554 -0.994865 H -0.044272 2.884650 -0.563881 Cl -2.673953 -1.128237 0.277149 H -0.051992 -2.086656 -0.300458 H 2.750691 -1.066325 -0.408932 H 1.879588 -1.527445 1.104042 C 2.778643 0.264816 1.526441 H 3.295574 1.035405 0.967018 H 1.984050 0.722104 2.109555 H 3.485734 -0.216465 2.193775 3-13βi X Y Z C -0.998608 -0.282287 -0.400841 C 0.321558 -0.976676 -0.315133 C 1.469297 -0.331112 -0.152610 C 1.529782 1.152682 -0.069259 C 0.255933 1.859248 -0.256819 C -0.896263 1.215302 -0.389403 O -1.726434 -0.746349 -1.424683 O 2.565696 1.738036 0.126839 N -1.796376 -0.660332 0.882637 H 0.292066 -2.050892 -0.428948 Cl 2.971228 -1.151853 -0.071263 H 0.325289 2.935638 -0.288066 H -1.836483 1.730097 -0.535059 H -1.804873 -1.673532 0.900468 H -2.809970 -0.347359 0.563184 C -1.354980 -0.109320 2.160791 H -0.293688 -0.291144 2.303490 H -1.915145 -0.573368 2.965042 H -1.539299 0.957708 2.168868 H -2.809069 -0.337990 -1.185080 O -3.704630 0.119692 -0.481113 H -4.582442 -0.203390 -0.659602 3-13βii X Y Z C 1.089243 0.409874 -0.460337 C 0.480786 1.770574 -0.542881 C -0.814493 1.998187 -0.373569 C -1.771080 0.911958 -0.105834 C -1.214240 -0.462776 -0.121964 C 0.084338 -0.691591 -0.269485 O 1.921033 0.181798 -1.483735 O -2.938477 1.134319 0.099564 N 1.979277 0.382829 0.818739 H 1.171785 2.566323 -0.786141 H -1.246006 2.984067 -0.451894 Cl -2.350659 -1.735445 0.049991 H 0.493796 -1.692050 -0.292039 H 2.607920 1.171735 0.722732 H 2.580325 -0.524099 0.600884 C 1.319093 0.382052 2.121304 H 0.589091 1.184598 2.175296 H 2.061832 0.512349 2.900672 H 0.817930 -0.567398 2.263729 H 2.529086 -0.767928 -1.127121 O 2.968394 -1.573767 -0.315272 H 3.851041 -1.893310 -0.475005

Page 201: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

186

3-13βiii X Y Z C -0.958776 0.028434 -0.314590 C 0.292818 -0.784594 -0.396373 C 1.495211 -0.286266 -0.138174 C 1.693249 1.137425 0.240871 C 0.489475 1.979283 0.220928 C -0.715610 1.483353 -0.027969 O -1.737159 -0.176536 -1.383405 O 2.778282 1.576460 0.530433 N -1.775740 -0.453214 0.928284 H 0.171031 -1.804819 -0.726646 Cl 2.916727 -1.235278 -0.263322 H 0.656197 3.028786 0.408099 H -1.603660 2.100276 -0.058034 H -1.361864 -0.111952 1.786345 H -2.734246 0.048849 0.704299 C -2.006638 -1.897269 0.969029 H -2.802791 -2.113344 1.672854 H -1.105578 -2.423723 1.263398 H -2.310401 -2.204560 -0.026078 H -2.766038 0.286513 -1.052727 O -3.605910 0.711423 -0.255433 H -4.516914 0.513207 -0.448118 3-13βiv X Y Z C 0.981209 0.199250 -0.377668 C 0.531010 1.616510 -0.515803 C -0.730364 1.994019 -0.356845 C -1.802436 1.039314 -0.034680 C -1.406715 -0.389931 0.005451 C -0.145416 -0.772344 -0.149644 O 1.782844 -0.156530 -1.387627 O -2.934678 1.402445 0.166029 N 1.829787 0.074606 0.929251 H 1.298551 2.319796 -0.803819 H -1.048213 3.017410 -0.482829 Cl -2.678597 -1.515279 0.240403 H 0.146075 -1.813431 -0.138957 H 1.235199 0.085824 1.747971 H 2.267585 -0.925806 0.751299 C 2.919994 1.044720 1.030121 H 3.623061 0.716250 1.787622 H 2.540280 2.027504 1.286378 H 3.415989 1.075621 0.065787 H 2.262638 -1.160631 -1.005394 O 2.586759 -2.002851 -0.167233 H 3.423379 -2.438778 -0.294613

3-13γi X Y Z C -0.651465 -0.668954 -0.422319 C 0.194325 -1.887954 -0.588147 C 1.515319 -1.878676 -0.470816 C 2.265966 -0.646183 -0.182755 C 1.465441 0.601030 -0.116145 C 0.142095 0.590108 -0.210929 O -1.548969 -0.554936 -1.409223 O 3.461685 -0.655526 -0.025338 N -1.480458 -0.858956 0.880733 H -0.347646 -2.787698 -0.846384 H 2.116857 -2.763764 -0.608920 Cl 2.353946 2.054772 0.079324 H -0.442175 1.499093 -0.173206 H -1.947660 -1.751421 0.771492 H -2.263606 -0.066465 0.708351 C -0.782884 -0.779343 2.160794 H 0.092526 -1.422968 2.157099 H -1.454505 -1.084549 2.955787 H -0.471853 0.243801 2.332906 H -2.327248 0.242116 -0.974778 O -2.897773 0.881449 -0.121636 C -4.273101 1.050997 -0.255220 H -4.682789 1.525269 0.636620 H -4.502954 1.692806 -1.106332 H -4.796540 0.101296 -0.403484 3-13γii X Y Z C -0.638192 -0.225475 -0.306765 C 0.654163 -0.972810 -0.241657 C 1.835294 -0.373034 -0.165408 C 1.963942 1.108379 -0.167206 C 0.714253 1.861697 -0.335887 C -0.469312 1.264477 -0.380497 O -1.430327 -0.706274 -1.274197 O 3.032067 1.656072 -0.050988 N -1.391491 -0.500739 1.025766 H 0.573103 -2.049106 -0.294663 Cl 3.302299 -1.257130 -0.105128 H 0.828538 2.930643 -0.429251 H -1.390843 1.815723 -0.512412 H -1.428408 -1.510240 1.105718 H -2.422395 -0.170399 0.717011 C -0.877321 0.107358 2.249317 H 0.185418 -0.092489 2.354733 H -1.409088 -0.297809 3.103244 H -1.036073 1.177856 2.207961 H -2.499755 -0.255155 -0.992724 O -3.348327 0.228345 -0.276249 C -4.646046 -0.258837 -0.404910 H -5.283423 0.153809 0.377299 H -5.074252 0.028163 -1.365964 H -4.689453 -1.350295 -0.334588

Page 202: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

187

3-13γiii X Y Z C -0.585638 0.000507 -0.251953 C 0.679353 -0.785473 -0.381907 C 1.879850 -0.264847 -0.161292 C 2.062376 1.159292 0.221934 C 0.841780 1.976680 0.250350 C -0.360603 1.457526 0.038967 O -1.392051 -0.208650 -1.300169 O 3.147472 1.618996 0.477397 N -1.354799 -0.506340 1.007243 H 0.567340 -1.805704 -0.715583 Cl 3.314952 -1.184362 -0.342371 H 0.993740 3.027950 0.440190 H -1.260152 2.058407 0.044119 H -0.928813 -0.155205 1.855313 H -2.346307 -0.027975 0.798636 C -1.541292 -1.956662 1.051171 H -2.311319 -2.198025 1.775712 H -0.618138 -2.458579 1.319493 H -1.862750 -2.272715 0.064242 H -2.431283 0.217183 -0.924038 O -3.262241 0.580081 -0.105690 C -4.592621 0.235551 -0.320881 H -5.191176 0.463078 0.561791 H -5.010112 0.800050 -1.155860 H -4.716300 -0.828790 -0.545061 3-13γiv X Y Z C 0.582685 0.534267 -0.351248 C -0.171082 1.810180 -0.538453 C -1.488376 1.898868 -0.412008 C -2.326565 0.736858 -0.078811 C -1.621502 -0.565448 0.012618 C -0.303586 -0.658117 -0.110163 O 1.461507 0.338377 -1.341761 O -3.515877 0.841007 0.091225 N 1.413123 0.633891 0.965842 H 0.425582 2.660539 -0.834474 H -2.024112 2.821332 -0.574137 Cl -2.613755 -1.941276 0.262238 H 0.211700 -1.607374 -0.062468 H 0.817162 0.527495 1.776682 H 2.079229 -0.253673 0.808690 C 2.251130 1.829360 1.056426 H 2.995964 1.687891 1.831946 H 1.653900 2.706275 1.281040 H 2.746108 1.951936 0.098756 H 2.155388 -0.521454 -0.914451 O 2.658662 -1.224933 -0.052787 C 3.997363 -1.581561 -0.175236 H 4.346564 -2.062723 0.738861 H 4.137356 -2.289346 -0.993474 H 4.642403 -0.718493 -0.368087

3-14a X Y Z C 0.825123 -0.376196 -0.448046 C 0.279673 1.004201 -0.157839 C -1.019506 1.201716 0.057074 C -2.008944 0.121504 -0.006721 C -1.524077 -1.197889 -0.434792 C -0.238390 -1.397499 -0.694241 O 1.640812 -0.372507 -1.586565 O -3.177286 0.312591 0.260289 N 1.669923 -0.773944 0.668495 C 1.291900 2.090578 -0.092502 H -1.410531 2.181470 0.289602 H -2.268662 -1.969684 -0.554365 H 0.129422 -2.351625 -1.047428 H 1.996064 -1.712434 0.490432 C 1.085215 -0.678043 1.988800 H 1.746624 -1.168463 2.695707 H 0.093875 -1.133824 2.064535 H 0.998609 0.365004 2.281653 H 2.488258 -0.016430 -1.313034 H 0.849410 3.021637 0.245555 H 2.101469 1.812367 0.582460 H 1.731811 2.258673 -1.074771 3-14b X Y Z C -0.805885 -0.287487 -0.477025 C 0.218241 -1.366046 -0.666213 C 1.513197 -1.211565 -0.432062 C 2.042276 0.067570 0.063119 C 1.084333 1.164606 0.220517 C -0.214369 1.037086 -0.047194 O -1.464217 -0.038676 -1.691661 O 3.219415 0.206247 0.322301 N -1.812008 -0.778889 0.444636 H -0.183518 -2.308154 -1.015754 H 2.231094 -2.002129 -0.587406 H 1.500421 2.103057 0.556854 C -1.179794 2.158582 0.107133 H -2.581013 -0.125161 0.433298 C -1.368051 -1.021958 1.800098 H -2.208463 -1.383747 2.383938 H -0.951917 -0.138832 2.294364 H -0.605022 -1.795135 1.801793 H -1.993745 -0.813757 -1.886791 H -0.661615 3.094780 0.285831 H -1.794550 2.253414 -0.784834 H -1.848894 1.982598 0.950887

Page 203: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

188

3-14c X Y Z C 0.807587 -0.323686 -0.465437 C 0.229105 1.022714 -0.086642 C -1.074230 1.178888 0.147124 C -2.035066 0.074911 0.080953 C -1.513000 -1.241386 -0.317501 C -0.224485 -1.405968 -0.589638 O 1.500767 -0.221617 -1.689481 O -3.211220 0.235745 0.332833 N 1.832022 -0.670607 0.485222 C 1.217139 2.127177 0.006027 H -1.487285 2.142382 0.407977 H -2.232254 -2.043153 -0.388084 H 0.168433 -2.366868 -0.898027 H 2.312846 -1.492345 0.154501 C 1.403332 -0.800802 1.857472 H 2.245849 -1.138487 2.452321 H 0.570766 -1.494306 2.007675 H 1.098696 0.171032 2.240496 H 0.862058 -0.173121 -2.400124 H 0.730662 3.075923 0.207171 H 1.937393 1.913010 0.794307 H 1.790015 2.196079 -0.915729 3-14d X Y Z C 0.751951 -0.013354 0.293310 C 0.003860 -1.268585 0.625504 C -1.294748 -1.429441 0.409390 C -2.119392 -0.324822 -0.097806 C -1.458993 0.975164 -0.249344 C -0.155682 1.152783 -0.038683 O 1.543464 0.266125 1.417336 O -3.296367 -0.474375 -0.352724 N 1.640389 -0.178736 -0.845091 H 0.609558 -2.068480 1.026358 H -1.805083 -2.359093 0.608559 H -2.103093 1.798443 -0.521689 C 0.506026 2.481588 -0.136785 H 1.116488 -0.109738 -1.703103 C 2.480676 -1.358988 -0.837514 H 3.250992 -1.245237 -1.594483 H 1.945139 -2.291401 -1.027115 H 2.972274 -1.435968 0.128186 H 2.224843 0.876020 1.129366 H -0.177950 3.232498 -0.518070 H 0.846083 2.802892 0.847376 H 1.379068 2.431144 -0.785083

3-14e X Y Z C -0.783724 -0.351362 -0.470903 C 0.250682 -1.434078 -0.531673 C 1.538833 -1.243931 -0.278740 C 2.048048 0.079936 0.111161 C 1.075713 1.175050 0.176231 C -0.220036 1.004658 -0.087082 O -1.411899 -0.242060 -1.729179 O 3.221995 0.255561 0.361985 N -1.844368 -0.782413 0.402208 H -0.146123 -2.398615 -0.814681 H 2.267282 -2.037669 -0.343957 H 1.476059 2.139686 0.453354 C -1.212602 2.110117 -0.001054 H -2.667152 -0.235848 0.200481 C -1.526826 -0.801184 1.809086 H -2.386549 -1.173869 2.356734 H -1.244124 0.171911 2.225103 H -0.701664 -1.486871 1.985816 H -0.753772 -0.011923 -2.383947 H -0.721657 3.071236 0.110409 H -1.843539 2.129888 -0.887064 H -1.869496 1.965733 0.857702 3-14f X Y Z C -0.734310 -0.059883 0.216993 C 0.169938 1.122212 -0.058158 C 1.488024 0.977043 -0.187791 C 2.155446 -0.323787 -0.129948 C 1.303497 -1.493536 0.126478 C -0.009411 -1.370676 0.265297 O -1.352930 0.138108 1.491839 O 3.354952 -0.435703 -0.274948 N -1.753508 -0.088984 -0.779437 C -0.496367 2.451881 -0.137784 H 2.132940 1.827138 -0.355216 H 1.805052 -2.446336 0.198229 H -0.626127 -2.231459 0.478907 H -2.218910 0.803355 -0.787622 C -2.732621 -1.152690 -0.675150 H -3.568283 -0.909773 -1.323489 H -3.109282 -1.294048 0.339097 H -2.314980 -2.088989 -1.034597 H -0.694265 0.058075 2.182012 H 0.231736 3.253966 -0.075488 H -1.023344 2.561517 -1.085754 H -1.221328 2.566823 0.665229

Page 204: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

189

3-14g X Y Z C 0.734217 -0.051185 0.243102 C -0.007100 -1.349201 0.387432 C -1.315964 -1.481344 0.208428 C -2.155176 -0.319964 -0.119488 C -1.484108 0.979136 -0.201502 C -0.169101 1.131308 -0.039041 O 1.462006 0.184327 1.429916 O -3.349525 -0.435426 -0.301669 N 1.725859 -0.095062 -0.803084 H 0.607896 -2.201867 0.640577 H -1.821904 -2.430903 0.294974 H -2.126666 1.824937 -0.398030 C 0.511275 2.450486 -0.107629 H 1.267975 -0.098262 -1.699938 C 2.728976 -1.132177 -0.707233 H 3.509485 -0.923900 -1.433040 H 2.359228 -2.145019 -0.887202 H 3.175114 -1.093097 0.280759 H 0.882590 0.043952 2.177677 H -0.204775 3.253089 -0.250910 H 1.076362 2.624655 0.805192 H 1.235719 2.458283 -0.918868 3-14h X Y Z C 0.659931 -0.478518 -0.341285 C 0.148465 0.945034 -0.223690 C -1.121866 1.175254 0.113934 C -2.128186 0.115343 0.201042 C -1.717869 -1.218852 -0.267394 C -0.449236 -1.471267 -0.554390 O 1.558714 -0.484111 -1.415464 O -3.259242 0.329375 0.584556 N 1.356518 -0.972489 0.834397 C 1.092255 2.055146 -0.528671 H -1.488258 2.179684 0.266795 H -2.496385 -1.960143 -0.360840 H -0.125999 -2.450025 -0.881856 H 0.689519 -1.252040 1.534561 C 2.409984 -0.165180 1.406382 H 2.938119 -0.763135 2.143492 H 2.060535 0.749107 1.891791 H 3.119994 0.102485 0.628933 H 2.038456 -1.312343 -1.370001 H 0.631796 3.015040 -0.316686 H 2.026003 1.982980 0.018819 H 1.353952 2.011937 -1.584089

3-14i X Y Z C -0.739695 -0.041037 0.240895 C 0.171955 1.129588 -0.048461 C 1.482728 0.967604 -0.215503 C 2.144659 -0.332053 -0.124243 C 1.296891 -1.479965 0.227811 C -0.010463 -1.341810 0.388541 O -1.352686 0.282889 1.485992 O 3.336673 -0.463409 -0.309852 N -1.684119 -0.139420 -0.835619 C -0.481236 2.465913 -0.117947 H 2.127666 1.808794 -0.421527 H 1.797084 -2.428230 0.349598 H -0.618129 -2.196867 0.656564 H -2.148660 0.747868 -0.935626 C -2.663473 -1.198956 -0.753938 H -3.415077 -1.033283 -1.518899 H -3.180684 -1.256898 0.209703 H -2.204488 -2.160818 -0.963720 H -1.692650 -0.508712 1.899156 H 0.263140 3.254755 -0.145514 H -1.091732 2.562259 -1.015996 H -1.127733 2.615537 0.743545 3-14j X Y Z C 0.633445 -0.460484 0.195945 C -0.422477 -1.524637 0.120985 C -1.717190 -1.293789 -0.035775 C -2.223158 0.078237 -0.172838 C -1.237251 1.153321 -0.067464 C 0.071923 0.944003 0.079194 O 1.277265 -0.578196 1.464017 O -3.402651 0.304036 -0.346466 N 1.580338 -0.753479 -0.833525 H -0.044675 -2.532387 0.237717 H -2.448060 -2.086779 -0.069321 H -1.637699 2.155485 -0.117353 C 1.023310 2.086648 0.196000 H 1.665921 -1.751576 -0.913929 C 2.901306 -0.155630 -0.770681 H 3.584911 -0.798554 -1.316055 H 3.270952 -0.050000 0.248661 H 2.922385 0.812917 -1.259389 H 0.643286 -0.396121 2.157683 H 0.503312 2.980343 0.527186 H 1.824226 1.860708 0.894898 H 1.476713 2.307582 -0.768029

Page 205: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

190

3-14k X Y Z C -0.746619 -0.036604 0.259397 C 0.164614 1.134726 -0.045233 C 1.471443 0.965844 -0.230713 C 2.132340 -0.336346 -0.116011 C 1.298779 -1.459672 0.327085 C -0.003717 -1.313123 0.516319 O -1.451223 0.195038 1.470826 O 3.315893 -0.471472 -0.346579 N -1.606553 -0.218251 -0.874285 C -0.466963 2.484139 -0.120262 H 2.118307 1.798272 -0.465509 H 1.805256 -2.395822 0.503223 H -0.611759 -2.129095 0.878110 H -2.020571 0.652578 -1.158158 C -2.594511 -1.272167 -0.790851 H -3.301364 -1.147327 -1.604784 H -3.144855 -1.278426 0.152137 H -2.122981 -2.241937 -0.923632 H -2.037200 0.942120 1.354458 H 0.270484 3.235276 -0.382659 H -1.261034 2.534766 -0.865143 H -0.897978 2.768038 0.839581 3-14l X Y Z C -0.811477 -0.388290 -0.459675 C 0.261919 -1.412538 -0.656174 C 1.545124 -1.195637 -0.405603 C 2.017746 0.125273 0.028744 C 1.016475 1.194918 0.111799 C -0.274460 0.994042 -0.143800 O -1.536612 -0.375584 -1.657801 O 3.184050 0.330309 0.292339 N -1.683617 -0.882978 0.594011 H -0.109840 -2.371493 -0.985026 H 2.295915 -1.961928 -0.521042 H 1.395620 2.168551 0.386897 C -1.279547 2.090922 -0.055354 H -2.608746 -0.500397 0.481731 C -1.201776 -0.751694 1.947974 H -1.891541 -1.257413 2.616713 H -1.077132 0.281172 2.288928 H -0.237341 -1.246254 2.035427 H -2.170032 0.340644 -1.645977 H -0.822295 3.006916 0.303578 H -1.721911 2.312580 -1.027629 H -2.090905 1.828690 0.624564

3-14m X Y Z C -0.631808 -0.455952 0.227946 C -0.061572 0.948686 0.117370 C 1.243467 1.155300 -0.073045 C 2.221875 0.070775 -0.171702 C 1.714833 -1.297603 0.005097 C 0.421921 -1.524939 0.191793 O -1.347441 -0.564547 1.437989 O 3.398482 0.288417 -0.373679 N -1.575756 -0.804028 -0.804259 C -1.021816 2.084774 0.228480 H 1.647059 2.154123 -0.158033 H 2.445810 -2.091036 -0.023500 H 0.023859 -2.520789 0.321227 H -1.128347 -0.803348 -1.704268 C -2.892862 -0.212273 -0.821598 H -3.548726 -0.856755 -1.401173 H -2.946198 0.791711 -1.246513 H -3.275481 -0.180209 0.192449 H -0.744939 -0.405339 2.163227 H -0.510305 2.988451 0.545593 H -1.488280 2.290449 -0.733246 H -1.816724 1.857357 0.933525 3-14n X Y Z C 0.635506 -0.456528 0.235302 C -0.428223 -1.515203 0.223782 C -1.717129 -1.285447 0.032679 C -2.210708 0.082167 -0.182851 C -1.226069 1.155453 -0.076830 C 0.074546 0.947644 0.126224 O 1.288120 -0.469338 1.496744 O -3.382440 0.299165 -0.412575 N 1.510711 -0.764622 -0.859719 H -0.067112 -2.526612 0.377697 H -2.452805 -2.074535 0.023938 H -1.621376 2.157517 -0.154255 C 1.024553 2.084933 0.287306 H 1.550174 -1.755057 -1.017657 C 2.821819 -0.154978 -0.925310 H 3.502603 -0.844202 -1.415393 H 3.224121 0.074921 0.061314 H 2.809790 0.755695 -1.518031 H 1.582454 -1.359243 1.688497 H 0.484380 2.991997 0.539312 H 1.747788 1.873191 1.070097 H 1.573803 2.271808 -0.632649

Page 206: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

191

3-14o X Y Z C -0.655879 -0.498907 -0.324745 C 0.460938 -1.475734 -0.549397 C 1.724915 -1.208416 -0.260803 C 2.118391 0.126829 0.210558 C 1.104990 1.181591 0.098475 C -0.163606 0.932598 -0.219474 O -1.508368 -0.640668 -1.445861 O 3.242035 0.359492 0.603496 N -1.265350 -0.909998 0.913474 H 0.146182 -2.449908 -0.897849 H 2.510504 -1.941669 -0.353545 H 1.469169 2.191850 0.215057 C -1.111979 2.031670 -0.565701 H -1.508532 -1.884737 0.843124 C -2.363094 -0.143685 1.447745 H -2.778388 -0.685838 2.291217 H -3.184425 0.041810 0.743962 H -2.005801 0.810917 1.824016 H -2.290386 -0.104878 -1.318155 H -0.704831 2.993929 -0.272306 H -1.262152 2.047197 -1.645138 H -2.091288 1.925049 -0.105730 3-14p X Y Z C -0.637173 -0.382880 0.243940 C 0.000563 0.987272 0.119456 C 1.308677 1.122576 -0.093032 C 2.233186 -0.015999 -0.149965 C 1.660743 -1.346068 0.082176 C 0.361134 -1.498367 0.292916 O -1.366762 -0.492369 1.431488 O 3.416352 0.144765 -0.365117 N -1.504425 -0.661157 -0.900210 C -0.907426 2.168708 0.182455 H 1.760569 2.095108 -0.224415 H 2.348862 -2.176814 0.077889 H -0.084254 -2.465997 0.469194 H -1.113099 -0.278431 -1.743587 C -2.919846 -0.418769 -0.778658 H -3.383449 -0.652593 -1.732247 H -3.206091 0.607956 -0.519571 H -3.347627 -1.088197 -0.038791 H -2.003326 0.219478 1.484989 H -0.343340 3.089972 0.079654 H -1.652589 2.138543 -0.610667 H -1.440549 2.221075 1.132326

3-14αi X Y Z C 0.782063 0.038578 0.495784 C -0.062558 -1.111770 0.943846 C -1.360587 -1.211858 0.685682 C -2.063217 -0.167708 -0.076519 C -1.309175 1.052720 -0.375297 C -0.012241 1.183104 -0.092537 O 1.740550 0.395213 1.367570 O -3.222934 -0.300770 -0.409089 N 1.780691 -0.462870 -0.611878 H 0.458796 -1.849926 1.536914 H -1.962598 -2.036086 1.036905 H -1.880352 1.863070 -0.804401 C 0.741266 2.449889 -0.288628 H 2.433271 -0.158655 0.329092 H 1.850669 0.227329 -1.348438 H 0.108294 3.220149 -0.716363 H 1.132187 2.775746 0.672039 H 1.610614 2.324438 -0.935525 C 1.709398 -1.806064 -1.166450 H 1.799015 -2.531601 -0.366666 H 0.765139 -1.962098 -1.681013 H 2.529503 -1.949167 -1.862526 3-14αii X Y Z C 0.731141 -0.430855 -0.548627 C 0.217448 0.968057 -0.297104 C -1.058280 1.185019 0.025306 C -2.049504 0.106269 0.092826 C -1.616928 -1.224628 -0.362618 C -0.348797 -1.454903 -0.681424 O 1.727962 -0.509575 -1.444218 O -3.185025 0.305075 0.472757 N 1.624168 -0.836098 0.671791 C 1.214505 2.052724 -0.485680 H -1.436732 2.180121 0.209627 H -2.385661 -1.977801 -0.443510 H -0.013332 -2.415385 -1.050607 H 2.365376 -0.597140 -0.226489 H 1.598822 -1.847818 0.715885 H 0.802513 3.020109 -0.217162 H 2.121316 1.878512 0.093267 H 1.530667 2.058927 -1.526218 C 1.475482 -0.271920 2.005170 H 1.617559 0.800739 1.971016 H 0.479888 -0.481508 2.389614 H 2.216504 -0.708641 2.666636

Page 207: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

192

3-14βi X Y Z C 0.561963 0.159717 -0.345831 C -0.496304 1.211235 -0.122199 C -1.782775 0.878420 -0.022586 C -2.263504 -0.501717 -0.160047 C -1.268006 -1.521151 -0.517614 C 0.022074 -1.220439 -0.589312 O 1.447033 0.539469 -1.279338 O -3.433716 -0.781426 -0.003351 N 1.384516 0.047639 0.975755 C -0.013314 2.616865 -0.065867 H -0.844599 3.310732 0.000341 H 0.634554 2.798091 0.793930 H 0.576507 2.827302 -0.954280 H -2.548583 1.625219 0.129099 H -1.645976 -2.510792 -0.724253 H 0.777065 -1.948934 -0.853833 H 1.714742 0.987310 1.160831 H 2.258022 -0.510036 0.600317 C 0.738688 -0.530004 2.150835 H -0.215892 -0.044415 2.331737 H 1.383081 -0.403847 3.014061 H 0.573782 -1.586440 1.980511 H 2.338150 -0.214033 -1.127533 O 3.029703 -1.039825 -0.528500 H 3.970434 -0.966930 -0.655969 3-14βii X Y Z C -0.448614 -0.376122 -0.497720 C 0.631624 -1.376846 -0.771745 C 1.920755 -1.153988 -0.555495 C 2.384960 0.153380 -0.064401 C 1.378393 1.210461 0.054036 C 0.075696 1.003401 -0.143800 O -1.363295 -0.378197 -1.474657 O 3.551956 0.345717 0.206778 N -1.178897 -0.908558 0.782234 H 0.272082 -2.313260 -1.178171 H 2.682059 -1.892055 -0.756479 H 1.759829 2.191636 0.296874 C -0.934489 2.088267 -0.057660 H -0.461882 3.038090 0.169851 H -1.471976 2.163099 -1.000180 H -1.695767 1.876174 0.692444 H -1.293242 -1.902373 0.620866 H -2.202208 -0.484162 0.652680 C -0.550487 -0.678591 2.079649 H 0.489976 -0.990801 2.054238 H -1.081916 -1.241341 2.839570 H -0.599181 0.376771 2.318398 H -2.397614 -0.073689 -0.986744 O -3.241304 0.120278 -0.126727 H -4.073765 -0.310340 -0.299332

3-14βiii X Y Z C 0.389825 -0.163732 0.411191 C -0.583494 -1.242343 0.782049 C -1.886114 -1.176131 0.543900 C -2.476710 0.009946 -0.094982 C -1.592191 1.161428 -0.287719 C -0.283193 1.128458 -0.030586 O 1.312493 -0.013445 1.367766 O -3.647447 0.039984 -0.411759 N 1.146543 -0.640385 -0.877851 H -0.140875 -2.086793 1.290199 H -2.569562 -1.961948 0.827019 H -2.075443 2.069711 -0.617112 C 0.586122 2.327775 -0.145747 H 0.001121 3.197674 -0.425335 H 1.078000 2.509912 0.807261 H 1.390460 2.189586 -0.865534 H 0.606042 -0.424118 -1.705417 H 2.080043 -0.047156 -0.803665 C 1.562006 -2.043575 -0.857012 H 2.279446 -2.213871 -1.652670 H 0.710729 -2.702830 -0.981453 H 2.038927 -2.228700 0.099857 H 2.289411 0.389377 0.847959 O 3.087387 0.655337 -0.044364 H 3.968914 0.325877 0.104146 3-14βiv X Y Z C 0.466662 -0.055630 -0.361320 C -0.497528 1.109167 -0.340939 C -1.780498 0.910732 -0.032629 C -2.358456 -0.425151 0.158579 C -1.505849 -1.568789 -0.202597 C -0.218005 -1.396087 -0.471299 O 1.457443 0.123313 -1.238310 O -3.499187 -0.577567 0.542223 N 1.140012 -0.183531 1.056577 C 0.030563 2.431972 -0.768444 H -0.743855 3.190352 -0.713541 H 0.888537 2.758340 -0.188733 H 0.382123 2.342935 -1.794053 H -2.482782 1.730589 0.007684 H -1.985506 -2.534736 -0.243334 H 0.443290 -2.212095 -0.728580 H 0.477147 -0.557897 1.722978 H 1.919244 -0.914983 0.799643 C 1.801361 1.015027 1.564644 H 2.416371 0.746258 2.417061 H 1.071428 1.760434 1.860493 H 2.434135 1.399749 0.772407 H 2.224622 -0.708900 -0.949983 O 2.747907 -1.570540 -0.226128 H 3.696356 -1.644422 -0.256318

Page 208: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

193

3-14γi X Y Z C 0.185196 0.232281 -0.291576 C -0.968973 1.193684 -0.151143 C -2.226562 0.754668 -0.109730 C -2.581105 -0.663498 -0.240622 C -1.485749 -1.600552 -0.525939 C -0.223806 -1.191895 -0.536484 O 1.089178 0.668892 -1.181735 O -3.729817 -1.040322 -0.137078 N 0.934020 0.211400 1.075572 C -0.609710 2.636229 -0.104091 H -1.498819 3.257661 -0.089944 H -0.018930 2.887602 0.778773 H 0.000467 2.880199 -0.969884 H -3.059499 1.436132 -0.015016 H -1.767989 -2.621777 -0.731804 H 0.601546 -1.859246 -0.747007 H 1.160817 1.180075 1.266360 H 1.888201 -0.268288 0.748848 C 0.275843 -0.411936 2.219819 H -0.733927 -0.026557 2.330568 H 0.845946 -0.205380 3.119148 H 0.231939 -1.482647 2.064565 H 2.044031 0.006172 -0.946141 O 2.780409 -0.707417 -0.285529 C 4.143284 -0.437361 -0.335564 H 4.551729 -0.669850 -1.320372 H 4.369337 0.613488 -0.124480 H 4.678346 -1.046338 0.394099 3-14γii X Y Z C -0.112476 -0.326880 -0.452882 C 0.891628 -1.406099 -0.717448 C 2.198725 -1.261209 -0.546035 C 2.762009 0.029511 -0.119514 C 1.830555 1.154726 -0.013348 C 0.511971 1.026365 -0.166485 O -1.054255 -0.300993 -1.403851 O 3.946847 0.154578 0.110883 N -0.838822 -0.760249 0.864136 H 0.460097 -2.331372 -1.076650 H 2.903933 -2.055010 -0.739167 H 2.282263 2.116603 0.181546 C -0.424030 2.176786 -0.091473 H 0.113753 3.102024 0.087401 H -0.984657 2.253366 -1.020252 H -1.171382 2.041017 0.690073 H -1.020268 -1.750141 0.745573 H -1.848231 -0.267796 0.733534 C -0.159782 -0.525243 2.134548 H 0.858709 -0.902351 2.093655 H -0.702109 -1.026840 2.928922 H -0.135666 0.538701 2.336826 H -2.064025 0.080927 -0.888896 O -2.867607 0.327619 -0.026685 C -4.105649 -0.291896 -0.178214 H -4.653958 0.137357 -1.017325 H -4.014537 -1.368374 -0.360241 H -4.709747 -0.152373 0.718376

3-14γiii X Y Z C 0.028269 -0.164801 0.392395 C -0.943132 -1.240104 0.776763 C -2.249358 -1.168465 0.560151 C -2.845979 0.019897 -0.068361 C -1.959804 1.167320 -0.278188 C -0.647181 1.128141 -0.042363 O 0.961447 -0.011826 1.339543 O -4.022022 0.055493 -0.364307 N 0.771667 -0.642066 -0.901598 H -0.496325 -2.087126 1.276918 H -2.931091 -1.951836 0.853978 H -2.444273 2.076937 -0.602119 C 0.227423 2.321901 -0.175341 H -0.353680 3.192516 -0.460744 H 0.725187 2.511559 0.773198 H 1.026176 2.171628 -0.899208 H 0.227922 -0.416767 -1.724647 H 1.722041 -0.051889 -0.822635 C 1.172014 -2.050008 -0.891837 H 1.888022 -2.222794 -1.688378 H 0.314311 -2.700323 -1.020994 H 1.646908 -2.250221 0.063230 H 1.939987 0.384729 0.801693 O 2.735909 0.615773 -0.087342 C 4.015129 0.100133 0.096505 H 4.576743 0.700211 0.813884 H 4.001232 -0.930224 0.469042 H 4.568210 0.108459 -0.843532 3-14γiv X Y Z C 0.107731 0.088820 -0.342050 C -1.046071 1.066720 -0.357912 C -2.280301 0.651029 -0.067252 C -2.619189 -0.762389 0.137694 C -1.573158 -1.744243 -0.190894 C -0.330807 -1.351731 -0.441521 O 1.067663 0.424559 -1.208879 O -3.722396 -1.107474 0.505812 N 0.768763 0.099420 1.084147 C -0.749714 2.455292 -0.800094 H -1.648887 3.062847 -0.784918 H 0.015621 2.941185 -0.202609 H -0.353932 2.412790 -1.812465 H -3.115846 1.335607 -0.053016 H -1.876007 -2.779612 -0.223799 H 0.466535 -2.043566 -0.676270 H 0.174986 -0.384799 1.744885 H 1.684031 -0.480711 0.838881 C 1.188302 1.403438 1.589770 H 1.824601 1.259971 2.456819 H 0.328926 2.005892 1.863301 H 1.756084 1.892528 0.805751 H 1.970528 -0.250487 -0.884318 O 2.636951 -0.967115 -0.134490 C 4.018207 -0.823387 -0.126220 H 4.458195 -1.209718 -1.047650 H 4.330076 0.222009 -0.025556 H 4.456002 -1.380947 0.703259

Page 209: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

194

3-15a X Y Z C -1.201729 -0.001991 -0.469644 C -0.077118 -0.990958 -0.454948 C 1.194700 -0.691435 -0.207308 C 1.563998 0.711330 0.094345 C 0.514098 1.733118 -0.007927 C -0.733644 1.410524 -0.322312 O -1.900539 -0.054837 -1.683624 O 2.701366 1.003973 0.397682 N -2.148486 -0.358620 0.573002 H -0.372530 -2.013664 -0.655819 C 2.303869 -1.682426 -0.196950 H 0.827890 2.752902 0.153476 H -1.502812 2.161904 -0.441065 H -2.901407 0.313367 0.551032 C -1.618997 -0.492231 1.913102 H -2.448482 -0.626037 2.600201 H -1.029680 0.368215 2.242972 H -0.989840 -1.374976 1.975703 H -2.421630 -0.859648 -1.664877 H 1.937729 -2.681131 -0.413480 H 2.802348 -1.684676 0.769356 H 3.060133 -1.414592 -0.931127 3-15b X Y Z C 1.181930 -0.157466 -0.463498 C 0.759637 1.277878 -0.541467 C -0.490327 1.676857 -0.354631 C -1.562494 0.721201 -0.040005 C -1.225901 -0.719561 -0.041614 C 0.027994 -1.092575 -0.285716 O 1.821229 -0.547425 -1.649166 O -2.690004 1.100450 0.197008 N 2.160856 -0.293604 0.601144 H 1.552215 1.982499 -0.756347 H -0.784532 2.713306 -0.416381 C -2.351205 -1.662124 0.201263 H 0.294248 -2.141451 -0.329847 H 2.438937 -1.263408 0.638092 C 1.756663 0.168859 1.911799 H 2.520787 -0.113714 2.628887 H 0.797936 -0.237712 2.246002 H 1.682643 1.252273 1.916218 H 2.697126 -0.157270 -1.628250 H -2.010260 -2.692315 0.172957 H -3.130224 -1.524826 -0.544859 H -2.812446 -1.464767 1.166002

3-15c X Y Z C -1.017977 -0.260787 0.298501 C -0.676202 1.192074 0.430676 C 0.546239 1.670888 0.242313 C 1.682898 0.787131 -0.042622 C 1.432088 -0.672711 -0.064674 C 0.191000 -1.122827 0.096867 O -1.675939 -0.596779 1.493699 O 2.794425 1.230639 -0.240095 N -1.919486 -0.543929 -0.801091 H -1.500977 1.844166 0.679210 H 0.771722 2.724085 0.308822 C 2.619943 -1.543569 -0.272336 H -0.015321 -2.185893 0.072552 H -1.408544 -0.594791 -1.667187 C -3.086222 0.305143 -0.916949 H -3.787939 -0.153625 -1.607234 H -2.872012 1.317690 -1.266125 H -3.570240 0.371847 0.053350 H -2.085228 -1.451946 1.351169 H 2.338221 -2.591724 -0.289572 H 3.349779 -1.384582 0.518066 H 3.118445 -1.290653 -1.204886 3-15d X Y Z C -1.064363 -0.332246 0.271293 C -0.128201 0.832049 0.386127 C 1.180916 0.783473 0.151978 C 1.810147 -0.510198 -0.190525 C 0.954583 -1.705666 -0.200860 C -0.350572 -1.624869 0.015299 O -1.750681 -0.384386 1.496442 O 2.994579 -0.585630 -0.440862 N -2.049904 -0.189876 -0.783579 H -0.595923 1.763617 0.674402 C 2.089955 1.958761 0.231638 H 1.453720 -2.643004 -0.392715 H -0.981214 -2.503832 0.000281 H -1.645854 -0.435017 -1.672924 C -2.742086 1.080162 -0.849149 H -3.597956 0.979856 -1.509981 H -2.125671 1.908391 -1.205187 H -3.113598 1.330334 0.140617 H -2.505474 -0.960559 1.363420 H 1.542074 2.858295 0.494395 H 2.596950 2.113926 -0.717822 H 2.868803 1.788455 0.971118

Page 210: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

195

3-15e X Y Z C 1.056483 -0.318740 0.208437 C 0.341207 -1.607846 -0.053253 C -0.970691 -1.696670 -0.221811 C -1.828898 -0.506481 -0.184609 C -1.185072 0.799148 0.086135 C 0.134360 0.861058 0.249144 O 1.720698 -0.417359 1.469465 O -3.026537 -0.586565 -0.358686 N 2.040619 -0.160238 -0.811087 H 0.972178 -2.486569 -0.076587 H -1.469983 -2.636401 -0.400046 C -2.090981 1.976999 0.157921 H 0.608691 1.807838 0.468855 H 2.605099 -0.993909 -0.843704 C 2.885342 1.013476 -0.721069 H 3.706658 0.896103 -1.420632 H 3.295947 1.174876 0.276692 H 2.333135 1.898146 -1.025734 H 1.069772 -0.449025 2.170432 H -1.534884 2.885658 0.366427 H -2.844364 1.834182 0.928948 H -2.630367 2.096501 -0.778648 3-15f X Y Z C 1.017712 -0.211455 0.233673 C -0.174513 -1.100768 0.063028 C -1.430310 -0.683525 -0.071256 C -1.713317 0.768690 -0.077023 C -0.580609 1.686535 0.100749 C 0.663474 1.244603 0.227840 O 1.640099 -0.513837 1.483569 O -2.844358 1.184656 -0.214212 N 1.936724 -0.505145 -0.815878 H 0.051830 -2.160185 0.075549 C -2.602069 -1.586274 -0.228512 H -0.824577 2.737538 0.121616 H 1.484463 1.930275 0.378376 H 2.078858 -1.501560 -0.850764 C 3.210803 0.183803 -0.776981 H 3.866603 -0.273278 -1.511025 H 3.695001 0.144083 0.199457 H 3.086082 1.222973 -1.068830 H 1.032019 -0.318704 2.196412 H -2.298419 -2.628254 -0.208568 H -3.113249 -1.382230 -1.166304 H -3.328642 -1.410853 0.561270

3-15g X Y Z C -1.182579 -0.060765 -0.471731 C -0.047467 -1.032647 -0.373023 C 1.218723 -0.704880 -0.124984 C 1.572583 0.716884 0.096049 C 0.505983 1.720097 -0.034460 C -0.741345 1.365629 -0.318338 O -1.834447 -0.204553 -1.713873 O 2.709875 1.041975 0.363901 N -2.195999 -0.423032 0.485893 H -0.342416 -2.062179 -0.526321 C 2.336145 -1.683463 -0.039587 H 0.804917 2.748612 0.099523 H -1.527087 2.102026 -0.430009 H -3.033631 0.096260 0.273064 C -1.827537 -0.317724 1.877423 H -2.680471 -0.606822 2.483236 H -1.503227 0.680014 2.187930 H -1.020665 -1.013022 2.094210 H -1.237598 0.072555 -2.407857 H 1.981426 -2.695114 -0.209040 H 2.813638 -1.630647 0.935919 H 3.106638 -1.448620 -0.770230 3-15h X Y Z C 1.187816 -0.017734 -0.469772 C 0.727340 1.395329 -0.280315 C -0.533892 1.723022 -0.031581 C -1.584072 0.702025 0.095083 C -1.205906 -0.713583 -0.124360 C 0.063013 -1.009355 -0.400754 O 1.833749 -0.141643 -1.717361 O -2.727748 1.006907 0.359423 N 2.233667 -0.295900 0.481422 H 1.510477 2.134741 -0.368428 H -0.853999 2.746169 0.093456 C -2.302782 -1.714016 -0.026808 H 0.362808 -2.036648 -0.573687 H 2.688943 -1.152259 0.205712 C 1.841722 -0.311194 1.870492 H 2.714016 -0.542605 2.473497 H 1.051918 -1.029075 2.110820 H 1.494500 0.676502 2.163304 H 1.175345 -0.090514 -2.409084 H -1.932226 -2.718338 -0.206905 H -3.089290 -1.489913 -0.743500 H -2.765605 -1.675839 0.956455

Page 211: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

196

3-15i X Y Z C -1.017881 -0.225933 0.258161 C -0.661020 1.232560 0.295961 C 0.576484 1.686040 0.132726 C 1.707927 0.771431 -0.069848 C 1.430499 -0.683802 -0.061123 C 0.177970 -1.110374 0.085824 O -1.687714 -0.558778 1.456384 O 2.834612 1.190674 -0.230979 N -1.948974 -0.552239 -0.791058 H -1.485840 1.911473 0.461971 H 0.816369 2.738396 0.143960 C 2.606419 -1.580493 -0.224203 H -0.059487 -2.165552 0.093641 H -1.483886 -0.515130 -1.682467 C -3.202556 0.167434 -0.798500 H -3.867029 -0.305868 -1.515233 H -3.121085 1.226525 -1.058438 H -3.657811 0.082954 0.182582 H -1.137012 -0.304540 2.195576 H 2.305984 -2.623314 -0.211123 H 3.330576 -1.407800 0.568544 H 3.119787 -1.367811 -1.158842 3-15j X Y Z C -1.057679 -0.326092 0.228879 C -0.128876 0.852205 0.299354 C 1.188571 0.801076 0.105739 C 1.829857 -0.503578 -0.174306 C 0.973279 -1.697818 -0.198760 C -0.338523 -1.616348 -0.018653 O -1.775321 -0.416563 1.441920 O 3.024374 -0.583024 -0.369080 N -2.066932 -0.200654 -0.791894 H -0.607602 1.797716 0.519558 C 2.090713 1.983447 0.152818 H 1.477267 -2.636583 -0.370644 H -0.979333 -2.486053 -0.034291 H -1.646291 -0.310404 -1.699530 C -2.913774 0.969147 -0.726502 H -3.729265 0.843542 -1.432484 H -2.408833 1.912106 -0.953567 H -3.342110 1.033315 0.268137 H -1.155142 -0.365400 2.167873 H 1.534442 2.890337 0.368659 H 2.611873 2.102493 -0.794246 H 2.859687 1.847967 0.909658

3-15k X Y Z C 1.017678 -0.207208 0.256268 C -0.173319 -1.097427 0.083606 C -1.427040 -0.682492 -0.061897 C -1.711176 0.770657 -0.068605 C -0.584888 1.685944 0.140199 C 0.654564 1.245185 0.298085 O 1.619804 -0.445639 1.522481 O -2.841008 1.181290 -0.230490 N 1.897585 -0.456353 -0.847769 H 0.044773 -2.161274 0.075329 C -2.596097 -1.585021 -0.234236 H -0.829865 2.736141 0.172323 H 1.468832 1.927931 0.490380 H 1.987169 -1.445397 -1.011624 C 3.189273 0.194328 -0.818754 H 3.802690 -0.221858 -1.611446 H 3.713074 0.077227 0.131357 H 3.080332 1.255481 -1.025804 H 1.727589 -1.387658 1.649238 H -2.292832 -2.627457 -0.224241 H -3.104778 -1.369826 -1.170764 H -3.324412 -1.417854 0.555717 3-15l X Y Z C 1.055445 -0.308768 0.232942 C 0.347708 -1.604103 -0.018342 C -0.959664 -1.699884 -0.205488 C -1.823625 -0.512228 -0.186104 C -1.192593 0.791430 0.107876 C 0.120432 0.858566 0.303811 O 1.667500 -0.338943 1.516372 O -3.015733 -0.601585 -0.391861 N 1.990015 -0.129390 -0.839129 H 0.975851 -2.487648 -0.047166 H -1.451806 -2.642341 -0.388637 C -2.106673 1.962984 0.181840 H 0.583939 1.800991 0.559963 H 2.513197 -0.974797 -0.997528 C 2.859310 1.024864 -0.767691 H 3.630180 0.923844 -1.524871 H 3.336717 1.148696 0.206052 H 2.302110 1.928525 -0.998685 H 2.224816 -1.113908 1.582521 H -1.558828 2.871640 0.411096 H -2.867994 1.805031 0.941991 H -2.634454 2.092758 -0.759988

Page 212: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

197

3-15m X Y Z C 1.014854 -0.219752 0.263264 C -0.181355 -1.103517 0.105878 C -1.429636 -0.679815 -0.059016 C -1.707395 0.771659 -0.073305 C -0.577306 1.684262 0.142524 C 0.660526 1.236092 0.291986 O 1.572182 -0.588722 1.518122 O -2.831497 1.194543 -0.243368 N 1.888924 -0.481978 -0.845709 H 0.037920 -2.163452 0.140737 C -2.602481 -1.578774 -0.228682 H -0.818262 2.735570 0.172826 H 1.474223 1.929976 0.458923 H 2.011655 -1.477815 -0.933887 C 3.170010 0.184480 -0.848731 H 3.759881 -0.203818 -1.672728 H 3.753378 0.045135 0.067737 H 3.045252 1.249253 -1.025127 H 2.246229 0.040526 1.770829 H -2.302988 -2.621753 -0.200581 H -3.101906 -1.376158 -1.173085 H -3.336632 -1.397990 0.552784 3-15αi X Y Z C 1.091462 -0.320048 -0.507120 C 0.096390 0.788272 -0.626076 C -1.189434 0.689772 -0.291899 C -1.699116 -0.581369 0.272711 C -0.784939 -1.730768 0.306878 C 0.486680 -1.610651 -0.055090 O 1.936967 -0.423806 -1.547453 O -2.842229 -0.674351 0.668645 N 2.201430 0.076801 0.532752 H 0.480193 1.690968 -1.082985 C -2.188765 1.776816 -0.472389 H -1.216143 -2.669895 0.618059 H 1.157841 -2.459659 -0.073484 H 2.725912 0.040187 -0.524988 H 2.457806 -0.739647 1.073708 H -1.723947 2.671616 -0.874280 H -2.981472 1.457776 -1.145368 H -2.668072 2.013452 0.474437 C 2.088711 1.252031 1.382292 H 1.971204 2.133397 0.763256 H 1.230325 1.168376 2.043346 H 2.992503 1.356747 1.973663

3-15αii X Y Z C 1.025740 -0.352832 -0.523040 C 0.701185 1.087369 -0.759585 C -0.505662 1.598642 -0.548472 C -1.612058 0.775350 -0.039556 C -1.380987 -0.679758 0.102405 C -0.162803 -1.167905 -0.125654 O 1.805894 -0.905325 -1.468899 O -2.687881 1.266958 0.230818 N 2.096265 -0.463944 0.620936 H 1.502554 1.679020 -1.179338 H -0.745631 2.629043 -0.762532 C -2.562290 -1.503912 0.473908 H 0.028723 -2.232916 -0.068740 H 2.628991 -0.810384 -0.374704 H 1.878702 -1.267931 1.196357 H -2.293587 -2.551363 0.568590 H -2.989419 -1.155666 1.411211 H -3.345312 -1.406250 -0.274615 C 2.486984 0.673710 1.438929 H 2.861596 1.464884 0.800312 H 1.639804 1.049381 2.006427 H 3.274964 0.372746 2.121517 3-15βi X Y Z C -0.773280 -0.297109 -0.407225 C 0.462703 -1.130326 -0.332927 C 1.692247 -0.644837 -0.178119 C 1.885862 0.822227 -0.074209 C 0.710396 1.685262 -0.248807 C -0.508944 1.180181 -0.386035 O -1.563752 -0.671936 -1.422290 O 2.986750 1.287857 0.131113 N -1.601321 -0.590955 0.886300 H 0.294571 -2.193027 -0.457828 C 2.924089 -1.477056 -0.134898 H 2.685167 -2.533529 -0.205085 H 3.590669 -1.209635 -0.951510 H 3.476334 -1.292287 0.783211 H 0.903913 2.746937 -0.269179 H -1.386229 1.798042 -0.524676 H -1.717272 -1.597440 0.897715 H -2.569302 -0.171110 0.586202 C -1.091486 -0.098185 2.162057 H -0.051805 -0.387035 2.285477 H -1.684152 -0.509594 2.971869 H -1.166112 0.981924 2.179054 H -2.589679 -0.142187 -1.172285 O -3.429261 0.410891 -0.467698 H -4.336273 0.190172 -0.655089

Page 213: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

198

3-15βii X Y Z C -0.816470 -0.382511 -0.477039 C 0.017253 -1.613789 -0.608994 C 1.331303 -1.614656 -0.429051 C 2.064080 -0.379546 -0.105408 C 1.304502 0.889806 -0.078049 C -0.017985 0.863624 -0.230730 O -1.682605 -0.264016 -1.492419 O 3.256749 -0.403277 0.113775 N -1.702797 -0.573981 0.797214 H -0.522863 -2.506715 -0.894636 H 1.932666 -2.503987 -0.540404 C 2.100740 2.131937 0.113850 H 1.457728 3.005837 0.137315 H 2.672422 2.079968 1.037360 H 2.825345 2.247237 -0.689036 H -0.609546 1.770671 -0.222963 H -2.184115 -1.454156 0.654957 H -2.447406 0.215697 0.621621 C -1.056635 -0.523616 2.104902 H -0.198097 -1.188660 2.125205 H -1.766025 -0.819214 2.870294 H -0.727089 0.489929 2.295928 H -2.446012 0.549711 -1.100430 O -3.032759 1.233198 -0.268564 H -3.959231 1.376819 -0.434936 3-15βiii X Y Z C -0.707985 -0.014838 0.330956 C 0.436682 0.933817 0.469571 C 1.707456 0.620039 0.226856 C 2.049250 -0.753853 -0.213698 C 0.970567 -1.750106 -0.251913 C -0.290263 -1.419305 -0.003135 O -1.537004 0.056234 1.379696 O 3.188552 -1.044619 -0.510432 N -1.551805 0.409801 -0.922974 H 0.170666 1.913902 0.841681 C 2.849154 1.557201 0.400841 H 2.506161 2.537682 0.715751 H 3.547111 1.171562 1.140332 H 3.408121 1.651434 -0.526967 H 1.270154 -2.762206 -0.477258 H -1.097293 -2.139758 -0.011298 H -1.073318 0.159149 -1.778468 H -2.436381 -0.211697 -0.754666 C -1.963306 1.812844 -0.915436 H -2.763615 1.957791 -1.632845 H -1.127974 2.458513 -1.161844 H -2.325385 2.036533 0.082470 H -2.489581 -0.521005 1.005579 O -3.257476 -1.022311 0.179207 H -4.187943 -0.949730 0.366325

3-15βiv X Y Z C -0.715107 -0.162682 -0.381807 C -0.048085 -1.485271 -0.572977 C 1.254219 -1.663088 -0.393599 C 2.139595 -0.555323 -0.001033 C 1.553024 0.800378 0.085867 C 0.242049 0.957425 -0.087897 O -1.562103 0.106413 -1.383157 O 3.316158 -0.746563 0.222210 N -1.586958 -0.240635 0.920216 H -0.689385 -2.285553 -0.913061 H 1.736067 -2.615366 -0.554446 C 2.501807 1.915786 0.348822 H 1.977967 2.863746 0.416085 H 3.050100 1.740493 1.271226 H 3.244962 1.976968 -0.442989 H -0.224655 1.933625 -0.045957 H -1.001808 -0.200292 1.744502 H -2.169604 0.678934 0.789771 C -2.512399 -1.372048 0.955774 H -3.267167 -1.197234 1.714726 H -1.984464 -2.294391 1.170777 H -2.985628 -1.431539 -0.018696 H -2.195543 1.003769 -0.962721 O -2.667297 1.748878 -0.100965 H -3.566824 2.030395 -0.234352 3-15γi X Y Z C -0.393307 -0.294107 -0.323974 C 0.841535 -1.132171 -0.304079 C 2.080085 -0.651439 -0.222309 C 2.286126 0.815628 -0.151562 C 1.106912 1.682588 -0.275580 C -0.120126 1.181668 -0.338681 O -1.238373 -0.677119 -1.292003 O 3.398497 1.278760 -0.013296 N -1.153053 -0.564934 1.012771 H 0.662026 -2.195733 -0.403477 C 3.308360 -1.490082 -0.231975 H 3.060620 -2.546044 -0.273515 H 3.932047 -1.238715 -1.086682 H 3.909458 -1.295276 0.652779 H 1.304003 2.742765 -0.322457 H -0.999455 1.804055 -0.439324 H -1.264875 -1.571278 1.049424 H -2.145683 -0.147907 0.745619 C -0.578159 -0.049506 2.251175 H 0.469265 -0.328616 2.322907 H -1.122398 -0.452813 3.098254 H -0.659704 1.030324 2.257200 H -2.256824 -0.149348 -0.983810 O -3.065103 0.383009 -0.244068 C -4.401698 0.036213 -0.399895 H -4.795501 0.409652 -1.346891 H -4.557204 -1.047865 -0.382761 H -5.002940 0.471377 0.399549

Page 214: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

199

3-15γii X Y Z C -0.394262 -0.522833 -0.445017 C 0.582613 -1.629680 -0.667454 C 1.892646 -1.471265 -0.532523 C 2.476506 -0.168901 -0.172941 C 1.564887 0.990844 -0.056560 C 0.251325 0.802336 -0.164594 O -1.308192 -0.468017 -1.424264 O 3.670424 -0.049247 0.004143 N -1.197351 -0.882807 0.844991 H 0.148089 -2.570476 -0.978524 H 2.596045 -2.270778 -0.708409 C 2.206128 2.314281 0.168988 H 1.460347 3.097448 0.259739 H 2.818309 2.293227 1.067402 H 2.876195 2.557186 -0.652588 H -0.447140 1.626804 -0.091573 H -1.560687 -1.814038 0.679553 H -2.055802 -0.186088 0.721254 C -0.513360 -0.800281 2.131428 H 0.430226 -1.337305 2.091719 H -1.143657 -1.227340 2.904021 H -0.320814 0.239870 2.362931 H -2.165652 0.211355 -0.955615 O -2.819476 0.742269 -0.079397 C -4.201344 0.739345 -0.229516 H -4.506495 1.384434 -1.055209 H -4.598055 -0.261886 -0.429258 H -4.682334 1.114107 0.674887 3-15γiii X Y Z C 0.324050 0.068638 -0.282623 C -0.878892 0.931710 -0.475815 C -2.132170 0.534774 -0.265501 C -2.392245 -0.850774 0.193550 C -1.248875 -1.768158 0.287020 C -0.006979 -1.354315 0.069853 O 1.176354 0.173264 -1.311245 O -3.517603 -1.215196 0.460716 N 1.101145 0.574579 0.980352 H -0.669723 1.920903 -0.859967 C -3.329517 1.386924 -0.494267 H -3.044730 2.382596 -0.819399 H -3.975306 0.939837 -1.246453 H -3.923035 1.460099 0.413768 H -1.484633 -2.794107 0.525215 H 0.846211 -2.017751 0.118455 H 0.621212 0.302916 1.828628 H 2.042525 0.014642 0.836945 C 1.406225 2.004479 0.958315 H 2.174330 2.221089 1.692760 H 0.519329 2.590466 1.171982 H 1.776737 2.240116 -0.033828 H 2.161291 -0.319430 -0.892031 O 2.948844 -0.721432 -0.039581 C 4.307253 -0.524992 -0.249905 H 4.678911 -1.171636 -1.047302 H 4.542944 0.508267 -0.527052 H 4.872059 -0.762860 0.652946

3-15γiv X Y Z C -0.311704 -0.395539 -0.357779 C 0.593601 -1.560076 -0.593422 C 1.909518 -1.487357 -0.441645 C 2.573522 -0.238981 -0.035578 C 1.738768 0.975774 0.098470 C 0.418852 0.880430 -0.049060 O -1.211537 -0.269632 -1.342740 O 3.769626 -0.203779 0.161402 N -1.130505 -0.666450 0.949158 H 0.111303 -2.461429 -0.943195 H 2.561730 -2.325094 -0.635759 C 2.461225 2.246283 0.376282 H 1.767306 3.074676 0.475463 H 3.050289 2.158633 1.285970 H 3.163998 2.466291 -0.424117 H -0.224618 1.748106 0.026874 H -0.552409 -0.527250 1.767659 H -1.892184 0.129049 0.837009 C -1.815115 -1.958326 0.972359 H -2.577115 -1.949594 1.744148 H -1.114069 -2.763872 1.160884 H -2.283790 -2.092655 0.003033 H -2.005397 0.473825 -0.884848 O -2.613509 1.071718 -0.003736 C -3.986867 1.224725 -0.142646 H -4.224126 1.940353 -0.932263 H -4.490270 0.283489 -0.388969 H -4.424555 1.602570 0.782700 3-16a X Y Z C -0.455479 0.071872 0.303093 C 0.659164 1.043293 -0.087363 C 1.940663 0.511813 -0.505355 C 2.208296 -0.787762 -0.317486 C 1.254885 -1.705544 0.277521 C 0.024002 -1.313228 0.593354 O -1.089650 0.547248 1.458954 H 3.179471 -1.174811 -0.589973 N -1.287799 0.059280 -0.866861 O 0.389720 2.226814 -0.058557 H 2.665260 1.206298 -0.898948 H 1.575003 -2.716767 0.474697 H -0.681287 -1.980352 1.065377 H -1.503429 1.014154 -1.112783 C -2.486084 -0.747944 -0.783542 H -3.113606 -0.525908 -1.640736 H -3.059772 -0.568971 0.127779 H -2.230963 -1.802849 -0.836987 H -1.089329 1.506761 1.395110

Page 215: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

200

3-16b X Y Z C 0.338022 -0.469898 0.303361 C -0.826052 -1.408670 0.331248 C -2.036512 -1.030368 -0.067100 C -2.294152 0.338059 -0.482531 C -1.375838 1.305311 -0.367820 C -0.091218 0.996376 0.239423 O 1.107173 -0.669802 1.449827 H -3.276582 0.576126 -0.863474 N 1.036671 -0.701568 -0.937329 H -0.615181 -2.416564 0.658806 H -2.855272 -1.732855 -0.078881 H -1.580763 2.336054 -0.608557 O 0.665922 1.838045 0.673512 H 1.110325 -1.692264 -1.099575 C 2.329759 -0.064691 -1.074591 H 2.764524 -0.379650 -2.018060 H 3.022791 -0.316168 -0.269603 H 2.219328 1.014974 -1.105933 H 1.505318 0.178662 1.667937 3-16c X Y Z C 0.617398 -0.226389 -0.476186 C 0.094010 1.115822 0.053475 C -1.305075 1.211354 0.428949 C -2.151968 0.229543 0.085075 C -1.734894 -0.944982 -0.659484 C -0.457052 -1.124139 -0.992511 O 1.528930 0.001161 -1.491073 H -3.198553 0.319773 0.338294 N 1.309720 -0.868754 0.628427 O 0.884184 2.026973 0.148270 H -1.627908 2.108524 0.932730 H -2.489761 -1.654062 -0.962147 H -0.125480 -1.975493 -1.569900 H 1.693456 -1.739524 0.293546 C 0.590914 -1.039816 1.868349 H 1.196368 -1.643527 2.536681 H -0.387041 -1.520159 1.758877 H 0.442214 -0.072962 2.344289 H 2.103750 0.705279 -1.174940 3-16d X Y Z C -0.324150 -0.509677 0.320715 C 0.047771 0.972119 0.304666 C 1.306519 1.346273 -0.326487 C 2.256501 0.413454 -0.474758 C 2.058141 -0.973247 -0.077410 C 0.869866 -1.406033 0.335672 O -1.132220 -0.758167 1.414686 H 3.221986 0.692358 -0.871515 N -1.043639 -0.798602 -0.912727 O -0.744549 1.774837 0.752164 H 1.468988 2.387482 -0.555335 H 2.904253 -1.641491 -0.117930 H 0.690364 -2.426901 0.635203 H -0.417998 -0.779595 -1.702078 C -2.256213 -0.048694 -1.146601 H -2.742524 -0.457478 -2.027384 H -2.115708 1.025861 -1.288023 H -2.926635 -0.196022 -0.305404 H -1.513714 0.087469 1.671967

3-16e X Y Z C 0.462980 0.157537 0.304127 C 0.055122 -1.206724 0.766526 C -1.126466 -1.725291 0.437010 C -2.110204 -0.941144 -0.289209 C -1.933192 0.357620 -0.572405 C -0.729076 1.028429 -0.106860 O 1.159802 0.774766 1.327806 H -3.031765 -1.426844 -0.576295 N 1.295973 0.098385 -0.886307 H 0.791383 -1.771118 1.319054 H -1.382169 -2.736053 0.714588 H -2.690321 0.957797 -1.051237 O -0.603494 2.229299 -0.054839 H 0.746540 -0.116649 -1.703869 C 2.463422 -0.750620 -0.788697 H 3.121052 -0.536880 -1.626189 H 2.246853 -1.821703 -0.784536 H 2.994813 -0.498609 0.124176 H 1.185833 1.710001 1.101774 3-16f X Y Z C -0.581597 -0.231414 -0.505020 C 0.524165 -1.110152 -0.990054 C 1.788901 -0.898339 -0.636591 C 2.158458 0.245805 0.182023 C 1.282692 1.191493 0.551308 C -0.092729 1.094820 0.099104 O -1.422207 0.070783 -1.565990 H 3.193683 0.338068 0.477891 N -1.338545 -0.976820 0.486727 H 0.217668 -1.951109 -1.592660 H 2.571231 -1.568898 -0.956852 H 1.568264 2.062130 1.120045 O -0.901468 1.994430 0.200186 H -2.240026 -0.531112 0.570776 C -0.722944 -1.164997 1.780566 H -1.347117 -1.828921 2.370781 H -0.569388 -0.242463 2.349440 H 0.242640 -1.649248 1.656020 H -1.819407 0.924292 -1.364116 3-16g X Y Z C 0.459073 -0.184313 0.497293 C -0.324325 -1.434869 0.233800 C -1.595941 -1.402579 -0.153480 C -2.272908 -0.144401 -0.423963 C -1.650220 1.037876 -0.351998 C -0.229821 1.090310 -0.037669 O 0.514110 0.039641 1.883386 H -3.315962 -0.183073 -0.702770 N 1.802951 -0.306707 0.017540 H 0.179258 -2.365489 0.457135 H -2.158254 -2.317087 -0.263910 H -2.142169 1.970279 -0.579135 O 0.439026 2.086078 -0.182187 H 2.248582 0.581008 0.208833 C 1.923916 -0.608079 -1.393990 H 2.976836 -0.663949 -1.651149 H 1.451460 0.135491 -2.041883 H 1.478504 -1.576897 -1.604972 H 1.177355 -0.562760 2.225535

Page 216: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

201

3-16h X Y Z C -0.441459 -0.040230 0.167471 C 0.597127 1.069865 -0.080224 C 2.006725 0.704108 -0.135782 C 2.365667 -0.583427 -0.198971 C 1.393315 -1.663907 -0.188731 C 0.092340 -1.422776 -0.047618 O -0.834661 0.070972 1.536255 H 3.411311 -0.844624 -0.273726 N -1.535660 0.240737 -0.681193 O 0.218043 2.212753 -0.178102 H 2.721698 1.510729 -0.165956 H 1.753402 -2.674704 -0.303609 H -0.625830 -2.228416 -0.028125 H -1.683658 1.238981 -0.675737 C -2.757382 -0.492122 -0.440405 H -3.529175 -0.087934 -1.087639 H -3.098586 -0.437105 0.593430 H -2.635113 -1.538321 -0.710800 H -0.169487 -0.322638 2.100852 3-16i X Y Z C -0.325932 -0.504839 0.279317 C 0.070566 0.981284 0.294147 C 1.403060 1.345956 -0.185509 C 2.333261 0.410342 -0.402136 C 2.061254 -1.003830 -0.205127 C 0.845016 -1.429008 0.122147 O -0.991443 -0.742608 1.480007 H 3.326475 0.699551 -0.713434 N -1.223787 -0.779211 -0.821242 O -0.736568 1.815777 0.625555 H 1.604755 2.400469 -0.289014 H 2.873944 -1.704399 -0.321281 H 0.633288 -2.477804 0.274557 H -0.716049 -0.940959 -1.675061 C -2.355820 0.107111 -1.002843 H -3.068524 -0.381338 -1.661475 H -2.099427 1.084060 -1.414492 H -2.827892 0.275146 -0.040589 H -1.524395 -1.527697 1.345009 3-16j X Y Z C 0.453714 -0.245833 0.495242 C -0.379711 -1.447352 0.170374 C -1.642640 -1.342267 -0.236335 C -2.257128 -0.044650 -0.475067 C -1.581369 1.104871 -0.354993 C -0.162096 1.079418 -0.015240 O 0.548624 -0.126648 1.898531 H -3.295926 -0.026019 -0.771757 N 1.796203 -0.417033 0.050024 H 0.085611 -2.400965 0.372401 H -2.243289 -2.225261 -0.392629 H -2.026635 2.065938 -0.559518 O 0.543104 2.057698 -0.094509 H 2.321454 0.374583 0.392463 C 1.938176 -0.531430 -1.383799 H 2.987077 -0.678238 -1.620713 H 1.580451 0.341592 -1.937740 H 1.395607 -1.406072 -1.736756 H -0.325266 -0.011273 2.270813

3-16k X Y Z C 0.334057 -0.465586 0.244677 C -0.800726 -1.432684 0.082505 C -2.041967 -1.057593 -0.205188 C -2.375970 0.343759 -0.380623 C -1.472234 1.312682 -0.205178 C -0.106871 1.005558 0.210788 O 0.933131 -0.633683 1.508426 H -3.390925 0.596067 -0.650506 N 1.210296 -0.656147 -0.868872 H -0.552914 -2.479892 0.208882 H -2.824486 -1.792307 -0.315497 H -1.715714 2.358461 -0.305108 O 0.684495 1.871243 0.495154 H 1.313127 -1.632297 -1.086950 C 2.479945 0.043957 -0.869385 H 3.103655 -0.395773 -1.641509 H 2.996682 -0.013793 0.088279 H 2.337217 1.092665 -1.106445 H 1.222871 -1.541137 1.596741 3-16αi X Y Z C -0.367700 -0.045273 0.433665 C 0.538744 1.066986 -0.103060 C 1.953315 0.771179 -0.253048 C 2.344834 -0.507856 -0.317351 C 1.424500 -1.619468 -0.147547 C 0.141164 -1.418405 0.149111 O -0.636718 0.122849 1.757255 O 0.054143 2.145389 -0.376058 N -1.767293 0.234687 -0.060215 H 2.627865 1.598883 -0.402029 H 3.383694 -0.738685 -0.503529 H 1.819903 -2.621113 -0.216752 H -0.516150 -2.245757 0.371718 H -1.841976 0.250416 1.129112 H -1.757355 1.196120 -0.396813 C -2.480206 -0.669419 -0.946566 H -1.955264 -0.788583 -1.890339 H -2.587504 -1.638520 -0.472974 H -3.469473 -0.267934 -1.137696 3-16αii X Y Z C -0.286696 -0.470050 0.430506 C 0.141313 0.996998 0.277089 C 1.526994 1.280138 -0.070672 C 2.347238 0.289357 -0.442085 C 1.932832 -1.102512 -0.457870 C 0.706911 -1.458259 -0.079158 O -0.708707 -0.734136 1.684873 O -0.670212 1.871948 0.479142 N -1.662780 -0.648701 -0.222547 H 1.835101 2.313518 -0.049415 H 3.363223 0.516841 -0.730666 H 2.657665 -1.848739 -0.744716 H 0.415996 -2.498140 -0.013717 H -1.859463 -0.582289 0.955716 C -2.198903 0.152826 -1.318889 H -1.569756 0.064091 -2.201085 H -3.193583 -0.209689 -1.556666 H -2.255162 1.186792 -1.009967 H -1.741338 -1.634955 -0.437294

Page 217: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

202

3-16βi X Y Z C 0.218040 -0.042715 -0.277708 C -0.971260 0.904501 -0.454488 C -2.304126 0.338493 -0.371963 C -2.469049 -0.867439 0.189685 C -1.359430 -1.684614 0.650313 C -0.097798 -1.292200 0.487059 O 0.708673 -0.354665 -1.497904 O -0.747582 2.079881 -0.649326 N 1.287705 0.754277 0.433314 H -3.131127 0.952544 -0.690066 H -3.467465 -1.261745 0.312582 H -1.582974 -2.645000 1.088488 H 0.746499 -1.919042 0.739892 H 1.313367 1.626291 -0.091091 C 1.079644 1.016818 1.853593 H 2.182835 0.156016 0.188738 H 1.050885 0.075570 2.390005 H 1.899262 1.618249 2.230374 H 0.145020 1.549036 2.001337 H 1.760819 -0.778619 -1.236576 O 2.774904 -0.967616 -0.531286 H 3.604853 -0.951095 -0.997709 3-16βii X Y Z C -0.147501 -0.119038 0.195878 C 0.900650 1.002235 0.285647 C 2.304131 0.660764 0.097796 C 2.670942 -0.582361 -0.236265 C 1.710961 -1.659538 -0.395147 C 0.408169 -1.453385 -0.221815 O -0.832407 -0.204804 1.342847 O 0.541160 2.133256 0.516211 N -1.166591 0.232841 -0.917144 H 3.015062 1.460593 0.231483 H 3.717224 -0.809354 -0.381253 H 2.082319 -2.646354 -0.625421 H -0.319326 -2.251319 -0.280806 C -1.840523 1.533401 -0.805639 H -0.770250 0.086904 -1.836780 H -1.917024 -0.534182 -0.682059 H -2.761197 1.487907 -1.378401 H -2.056937 1.695393 0.243337 H -1.208139 2.334454 -1.163131 H -1.737989 -0.897627 1.046594 O -2.519730 -1.474273 0.286054 H -3.430767 -1.482199 0.562820

3-16γi X Y Z C -0.126826 -0.008287 -0.177730 C -1.367548 0.769299 -0.623584 C -2.633328 0.061509 -0.657568 C -2.756169 -1.092145 0.013861 C -1.649482 -1.721829 0.714053 C -0.424639 -1.201528 0.678677 O 0.564957 -0.386277 -1.276505 O -1.239325 1.936836 -0.923468 N 0.742057 0.974801 0.569736 H -3.462144 0.538208 -1.155594 H -3.716180 -1.586913 0.045012 H -1.836218 -2.652069 1.227962 H 0.430975 -1.696288 1.118078 H 0.746316 1.789299 -0.040855 C 0.309403 1.348014 1.912155 H 1.731950 0.459690 0.502108 H 0.308747 0.468491 2.545540 H 0.997014 2.080860 2.319297 H -0.689582 1.772401 1.879428 H 1.619926 -0.634610 -0.830850 O 2.545817 -0.597389 -0.011341 C 3.831723 -0.447930 -0.516480 H 4.540987 -0.265234 0.292407 H 4.154882 -1.350965 -1.037733 H 3.908532 0.385545 -1.222739 3-16γii X Y Z C -0.197022 -0.040171 -0.144386 C -1.428037 0.858683 -0.345643 C -2.752714 0.264429 -0.223397 C -2.902654 -1.014287 0.142275 C -1.771096 -1.885318 0.402675 C -0.521560 -1.441316 0.297241 O 0.565801 -0.034400 -1.245623 O -1.272676 2.028886 -0.606636 N 0.663926 0.530623 1.006995 H -3.590003 0.911150 -0.432586 H -3.895489 -1.429827 0.236229 H -1.965834 -2.916862 0.653149 H 0.336154 -2.085746 0.433910 C 1.088087 1.931235 0.880208 H 0.244450 0.339823 1.907950 H 1.567920 -0.091138 0.836676 H 1.956564 2.081314 1.513641 H 1.347453 2.096647 -0.158664 H 0.293112 2.610311 1.156909 H 1.570800 -0.525567 -0.860347 O 2.404964 -0.889862 -0.039883 C 3.740355 -0.641559 -0.334311 H 4.364800 -0.826084 0.541229 H 4.093855 -1.296991 -1.132446 H 3.911876 0.391449 -0.655462

Page 218: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

203

3-17a X Y Z C 0.357917 0.974039 0.017933 C -0.358801 0.528685 1.257917 C -1.487360 -0.167924 1.243981 C -2.122221 -0.573268 -0.020146 C -1.506502 -0.077072 -1.259301 C -0.409773 0.670228 -1.231179 O 0.548196 2.362477 0.028844 O -3.114701 -1.269145 -0.035589 N 1.675808 0.367270 -0.001363 H 0.115616 0.812164 2.188274 H -1.989191 -0.474912 2.148659 H -2.013590 -0.327526 -2.178296 H 0.023487 1.072471 -2.137249 H 2.142752 0.664641 -0.847346 C 1.741525 -1.076951 0.126285 H 1.058689 -1.582335 -0.565301 H 1.423288 -1.344243 1.131469 H 1.265080 2.535730 0.641963 C 3.155783 -1.552042 -0.105419 H 3.223505 -2.628071 0.027927 H 3.840766 -1.074656 0.590518 H 3.487569 -1.324968 -1.117549 3-17b X Y Z C 0.303843 0.539752 0.328008 C -0.317301 -0.660760 0.978574 C -1.542051 -1.094103 0.707067 C -2.423849 -0.371381 -0.219513 C -1.902769 0.883546 -0.784247 C -0.668604 1.296383 -0.528015 O 0.759649 1.343784 1.385234 O -3.531532 -0.778359 -0.496328 N 1.437709 0.220133 -0.515276 H 0.311157 -1.175710 1.690792 H -1.955326 -1.979457 1.165075 H -2.580419 1.441648 -1.411795 H -0.284772 2.215837 -0.949816 H 1.125066 -0.084568 -1.424033 C 2.427409 -0.690513 0.032018 H 2.059020 -1.719112 0.089633 H 2.636611 -0.367956 1.050146 H 1.363236 1.983438 1.003398 C 3.690084 -0.647092 -0.795543 H 4.440242 -1.319933 -0.387735 H 4.099603 0.359127 -0.817802 H 3.496120 -0.952637 -1.822280

3-17c X Y Z C -0.313546 0.407016 0.342646 C 0.638245 1.317736 -0.372570 C 1.898486 1.007229 -0.647035 C 2.460519 -0.299514 -0.278811 C 1.568804 -1.223730 0.437582 C 0.307474 -0.909250 0.705450 O -0.736861 1.047759 1.546506 O 3.605177 -0.598464 -0.542351 N -1.446207 0.217976 -0.499790 H 0.228488 2.282427 -0.641750 H 2.563848 1.688214 -1.154666 H 2.001199 -2.167331 0.732866 H -0.328025 -1.590182 1.252797 H -1.801831 1.122558 -0.770561 C -2.528781 -0.602771 0.016095 H -2.767063 -0.350811 1.052023 H -2.215433 -1.644740 -0.009017 H 0.011596 1.151377 2.134210 C -3.751060 -0.435839 -0.854357 H -4.557381 -1.077629 -0.510358 H -3.525298 -0.689952 -1.886957 H -4.114036 0.590628 -0.827292 3-17d X Y Z C 0.514564 0.961482 0.171049 C -0.009980 0.068619 1.254527 C -1.166993 -0.575310 1.176684 C -2.039180 -0.446207 -0.002197 C -1.624191 0.520304 -1.028479 C -0.490749 1.202081 -0.911704 O 0.848566 2.221047 0.683796 O -3.059806 -1.091588 -0.107788 N 1.737599 0.389851 -0.368000 H 0.632172 -0.030250 2.119383 H -1.525488 -1.218669 1.965425 H -2.304036 0.662779 -1.854219 H -0.198386 1.943950 -1.642709 H 2.080044 1.025592 -1.071654 C 1.684178 -0.975861 -0.875487 H 2.232433 -1.005433 -1.814528 H 0.656645 -1.260686 -1.116381 H 1.670703 2.113252 1.165744 C 2.290398 -1.973403 0.086633 H 2.266063 -2.975125 -0.337206 H 1.744882 -1.997029 1.025913 H 3.323412 -1.713246 0.302007

Page 219: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

204

3-17e X Y Z C -0.686671 -0.881577 -0.045194 C 0.048251 -0.596321 1.230249 C 1.286927 -0.123281 1.274499 C 2.036148 0.191349 0.047485 C 1.376956 -0.116052 -1.228131 C 0.147029 -0.612419 -1.263270 O -0.996466 -2.252454 -0.120416 O 3.147309 0.674865 0.092673 N -1.945863 -0.170179 -0.041929 H -0.493197 -0.833910 2.136519 H 1.805961 0.048562 2.204903 H 1.947206 0.083406 -2.122070 H -0.332442 -0.861527 -2.200554 H -2.383680 -0.261535 -0.946450 C -2.019981 1.195500 0.442517 H -3.077925 1.450082 0.459921 H -1.691459 1.201924 1.480113 H -1.783989 -2.375679 0.413107 C -1.253988 2.243860 -0.340132 H -1.486332 3.237116 0.037891 H -1.517650 2.216147 -1.396200 H -0.180229 2.101023 -0.259864 3-17f X Y Z C 0.354710 0.923794 0.027197 C -0.363849 0.478928 1.266145 C -1.506561 -0.196808 1.254098 C -2.155273 -0.586646 -0.008028 C -1.509535 -0.143166 -1.253680 C -0.382172 0.558975 -1.230664 O 0.536712 2.321105 0.059783 O -3.180341 -1.233267 -0.021069 N 1.696730 0.403850 0.052463 H 0.126584 0.763234 2.186281 H -2.011333 -0.496264 2.159862 H -2.010072 -0.410772 -2.171797 H 0.088347 0.896929 -2.145388 H 2.238283 0.891834 -0.646200 C 1.839493 -1.031768 -0.063603 H 1.404397 -1.428117 -0.987810 H 1.291201 -1.490113 0.758012 H -0.315607 2.745704 -0.030193 C 3.297824 -1.414370 0.021624 H 3.415251 -2.493044 -0.038438 H 3.729968 -1.067709 0.956262 H 3.867066 -0.974963 -0.796080

3-17g X Y Z C 0.389622 0.752533 0.184502 C -0.047807 -0.450362 0.968663 C -1.237415 -1.024836 0.838962 C -2.258921 -0.476999 -0.062301 C -1.917506 0.768549 -0.767475 C -0.718934 1.324117 -0.649611 O 0.809076 1.681732 1.151392 O -3.335802 -1.013521 -0.210926 N 1.497617 0.508508 -0.713197 H 0.683729 -0.835212 1.665185 H -1.517006 -1.904790 1.397459 H -2.695470 1.198274 -1.379560 H -0.469119 2.236623 -1.174563 H 1.178805 0.127729 -1.589465 C 2.651220 -0.205781 -0.193229 H 3.545275 0.231455 -0.636393 H 2.711064 0.005947 0.872939 H 1.310926 2.353649 0.686594 C 2.645514 -1.698821 -0.452384 H 3.542976 -2.162774 -0.048841 H 2.623975 -1.903599 -1.521648 H 1.780697 -2.182955 -0.005818 3-17h X Y Z C 0.398679 0.500992 0.213392 C -0.102324 -0.856197 0.609818 C -1.360327 -1.250440 0.458455 C -2.391790 -0.345844 -0.068332 C -1.975406 1.036250 -0.350088 C -0.711623 1.416283 -0.216344 O 1.026881 1.021938 1.359523 O -3.532575 -0.714239 -0.247347 N 1.354332 0.476840 -0.877050 H 0.637532 -1.517714 1.037066 H -1.690688 -2.240530 0.732438 H -2.752654 1.714653 -0.666444 H -0.405979 2.433264 -0.424341 H 0.869588 0.592241 -1.751701 C 2.300658 -0.624747 -0.970484 H 2.814690 -0.496234 -1.920373 H 1.799445 -1.596061 -1.017573 H 1.655313 1.674300 1.045962 C 3.321367 -0.625005 0.145380 H 4.051004 -1.414240 -0.019160 H 2.862927 -0.782781 1.117455 H 3.848645 0.325875 0.177834

Page 220: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

205

3-17i X Y Z C 0.311327 0.432581 0.347920 C -0.325645 -0.856180 0.788014 C -1.577146 -1.199230 0.501177 C -2.459445 -0.305064 -0.262991 C -1.897960 0.993571 -0.667226 C -0.641618 1.322554 -0.391851 O 0.798918 1.110066 1.486708 O -3.597137 -0.618369 -0.539828 N 1.460011 0.239360 -0.496435 H 0.311173 -1.513198 1.364187 H -2.006753 -2.138774 0.813801 H -2.565391 1.656272 -1.196539 H -0.219222 2.273193 -0.684199 H 1.166375 -0.046145 -1.416874 C 2.523985 -0.603420 0.013169 H 2.247135 -1.662578 0.047832 H 2.723928 -0.284580 1.032626 H 0.094682 1.176359 2.130388 C 3.763061 -0.433846 -0.834158 H 4.574315 -1.051470 -0.456744 H 4.083198 0.604138 -0.832913 H 3.576871 -0.728098 -1.865886 3-17j X Y Z C -0.397351 0.445356 0.160168 C 0.699595 1.398466 -0.212888 C 1.977646 1.057396 -0.320319 C 2.419087 -0.323746 -0.089069 C 1.382772 -1.291615 0.303482 C 0.104638 -0.947233 0.398366 O -1.002688 0.908923 1.370444 O 3.580371 -0.651952 -0.203032 N -1.353002 0.478120 -0.891732 H 0.375284 2.415975 -0.386990 H 2.744202 1.766728 -0.591057 H 1.725381 -2.292514 0.516626 H -0.638209 -1.663342 0.719423 H -1.717976 1.412897 -0.980234 C -2.410778 -0.511571 -0.958079 H -2.965852 -0.293472 -1.868098 H -1.953764 -1.485196 -1.125806 H -0.336327 0.961026 2.056553 C -3.366051 -0.572241 0.219419 H -4.162020 -1.286746 0.017686 H -3.817904 0.399909 0.403539 H -2.860610 -0.866738 1.134714

3-17k X Y Z C -0.305965 0.519959 0.314376 C 0.656971 1.271405 -0.551977 C 1.889552 0.862637 -0.815727 C 2.425721 -0.375996 -0.238422 C 1.545601 -1.106767 0.685442 C 0.307396 -0.701920 0.931742 O -0.651993 1.437580 1.342495 O 3.542587 -0.771251 -0.494748 N -1.415711 0.146733 -0.514853 H 0.272306 2.194733 -0.963772 H 2.554869 1.418743 -1.457393 H 1.967770 -1.983584 1.151450 H -0.314021 -1.250276 1.627969 H -1.770614 0.973293 -0.972084 C -2.503751 -0.584501 0.100146 H -2.855052 -0.117859 1.029709 H -2.154944 -1.584141 0.350795 H -1.169068 0.992077 2.012259 C -3.661353 -0.692359 -0.863775 H -4.471633 -1.271562 -0.429836 H -3.343964 -1.175242 -1.784021 H -4.055459 0.291316 -1.113915 3-17l X Y Z C -0.308161 0.470830 0.339808 C 0.645248 1.288025 -0.479021 C 1.890877 0.925540 -0.749518 C 2.440454 -0.345047 -0.254540 C 1.561772 -1.153537 0.599952 C 0.320681 -0.779214 0.877715 O -0.681506 1.193069 1.505596 O 3.567246 -0.697372 -0.529452 N -1.412020 0.139103 -0.509943 H 0.250042 2.222667 -0.861720 H 2.553019 1.533381 -1.346205 H 1.990437 -2.058648 1.001158 H -0.299640 -1.362349 1.542118 H -1.737535 0.954636 -1.005972 C -2.521255 -0.586393 0.079817 H -2.822363 -0.155756 1.038274 H -2.201647 -1.609257 0.269844 H -1.000775 2.059159 1.254019 C -3.689641 -0.603814 -0.876286 H -4.513692 -1.179844 -0.464697 H -3.402055 -1.045449 -1.827004 H -4.057417 0.403826 -1.066932

Page 221: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

206

3-17m X Y Z C 0.656200 -0.858644 -0.070057 C -0.149597 -0.488288 -1.281025 C -1.385663 -0.005902 -1.228189 C -2.048606 0.256229 0.057736 C -1.300113 -0.089083 1.278111 C -0.075222 -0.598538 1.216233 O 0.961605 -2.236879 -0.139334 O -3.164558 0.726278 0.114464 N 1.957646 -0.234551 -0.128927 H 0.360527 -0.665327 -2.216862 H -1.951179 0.238201 -2.114306 H -1.811998 0.080957 2.213123 H 0.464214 -0.877104 2.111922 H 2.613151 -0.892254 0.262961 C 2.125626 1.083860 0.452135 H 3.194909 1.281257 0.435762 H 1.813235 1.126301 1.501836 H 0.146628 -2.734660 -0.190777 C 1.410261 2.169620 -0.318872 H 1.706838 3.147201 0.053274 H 0.331130 2.095390 -0.215279 H 1.655331 2.111176 -1.376653 3-17n X Y Z C -0.655906 -0.886629 -0.040446 C 0.081207 -0.595020 1.231591 C 1.307039 -0.086150 1.270867 C 2.034590 0.275682 0.043533 C 1.360255 0.002273 -1.232876 C 0.137600 -0.516886 -1.263995 O -0.925220 -2.274701 -0.113531 O 3.140873 0.770262 0.086830 N -1.951892 -0.280292 0.004323 H -0.448933 -0.876120 2.130734 H 1.831430 0.082068 2.199084 H 1.906425 0.259301 -2.127488 H -0.361752 -0.718837 -2.203109 H -2.452536 -0.461814 -0.850376 C -2.109901 1.078397 0.472902 H -3.182227 1.259064 0.510606 H -1.763602 1.121352 1.504722 H -0.105682 -2.737094 -0.290067 C -1.435727 2.175593 -0.329873 H -1.736320 3.152263 0.043808 H -1.710859 2.118499 -1.381893 H -0.352863 2.115327 -0.262892

3-17o X Y Z C 0.405390 0.464327 0.180483 C -0.103101 -0.918642 0.477019 C -1.374835 -1.283259 0.353270 C -2.406931 -0.330448 -0.079961 C -1.968748 1.052347 -0.325145 C -0.694177 1.405993 -0.212249 O 1.041092 0.963101 1.343731 O -3.564028 -0.663690 -0.218543 N 1.387210 0.503761 -0.867659 H 0.641475 -1.624524 0.818290 H -1.712858 -2.285349 0.569008 H -2.740027 1.755214 -0.600566 H -0.364519 2.420634 -0.387735 H 0.930925 0.641050 -1.752945 C 2.390623 -0.542064 -0.962334 H 2.945633 -0.333354 -1.874325 H 1.950767 -1.536802 -1.091463 H 0.428025 0.903194 2.076432 C 3.351696 -0.550348 0.205011 H 4.156679 -1.256535 0.014683 H 2.862895 -0.831990 1.133046 H 3.774517 0.439403 0.351124 3-17p X Y Z C 0.396132 -0.417594 0.198736 C -0.699739 -1.401659 -0.091472 C -1.977803 -1.077446 -0.233311 C -2.428430 0.320199 -0.138596 C -1.399109 1.323332 0.156326 C -0.121760 0.990637 0.305738 O 1.007207 -0.782424 1.428962 O -3.593442 0.619458 -0.287834 N 1.370897 -0.505649 -0.850797 H -0.374403 -2.432940 -0.141964 H -2.743057 -1.815305 -0.419183 H -1.738655 2.344600 0.234353 H 0.618270 1.745392 0.518491 H 1.289703 -1.393189 -1.316193 C 2.771435 -0.256994 -0.537511 H 3.314712 -0.491565 -1.450336 H 3.132887 -0.929378 0.242181 H 0.380256 -0.653800 2.140226 C 3.077366 1.167826 -0.138869 H 4.154213 1.316920 -0.114177 H 2.699845 1.389621 0.855860 H 2.651288 1.873100 -0.848965

Page 222: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

207

3-17q X Y Z C -0.391887 0.429477 0.184777 C 0.688836 1.392148 -0.210797 C 1.968199 1.066389 -0.330863 C 2.430139 -0.305524 -0.083739 C 1.416606 -1.271509 0.363562 C 0.140391 -0.937509 0.491552 O -0.964690 0.850647 1.418361 O 3.591193 -0.622801 -0.228339 N -1.305918 0.374873 -0.910060 H 0.359247 2.405941 -0.408709 H 2.721817 1.780952 -0.622814 H 1.775963 -2.261027 0.599852 H -0.584537 -1.645091 0.867268 H -1.597221 1.292908 -1.201474 C -2.385383 -0.589740 -0.940860 H -2.871009 -0.469718 -1.907113 H -1.947343 -1.585955 -0.959261 H -1.347891 1.719943 1.306150 C -3.419297 -0.496176 0.166694 H -4.216148 -1.217615 -0.004090 H -3.868338 0.495506 0.197106 H -2.980767 -0.688064 1.141374 3-17r X Y Z C 0.394206 -0.427451 0.236662 C -0.702611 -1.404792 -0.072754 C -1.973057 -1.071447 -0.245382 C -2.418061 0.328253 -0.138822 C -1.397686 1.312957 0.228964 C -0.130488 0.968432 0.419694 O 0.987157 -0.754332 1.477054 O -3.574572 0.634907 -0.333242 N 1.328627 -0.459758 -0.863759 H -0.389375 -2.440252 -0.152112 H -2.736713 -1.800973 -0.466851 H -1.736407 2.330882 0.342061 H 0.600414 1.705735 0.709745 H 1.201366 -1.284377 -1.423923 C 2.738611 -0.216894 -0.617382 H 3.235984 -0.394118 -1.568450 H 3.161634 -0.926397 0.100108 H 1.253308 -1.673476 1.471746 C 3.052364 1.185083 -0.148875 H 4.127714 1.345810 -0.164829 H 2.716120 1.342804 0.872241 H 2.585217 1.923224 -0.796557

3-17s X Y Z C -0.377013 -0.454353 0.256176 C 0.141006 0.935227 0.502144 C 1.400980 1.298543 0.294316 C 2.419451 0.326739 -0.135904 C 1.981953 -1.066997 -0.282296 C 0.720338 -1.420455 -0.073881 O -1.001507 -0.962061 1.401583 O 3.564789 0.665480 -0.342889 N -1.307458 -0.493396 -0.865210 H -0.591177 1.666433 0.818851 H 1.740946 2.312916 0.436002 H 2.742830 -1.781014 -0.556611 H 0.386056 -2.442466 -0.171713 H -0.940263 0.028351 -1.643968 C -2.711926 -0.236415 -0.640616 H -3.206852 -0.440054 -1.587971 H -3.077889 -0.987105 0.055455 H -1.503352 -0.270864 1.831203 C -3.112500 1.151844 -0.164606 H -4.195233 1.258475 -0.185188 H -2.686915 1.926685 -0.799972 H -2.795936 1.350261 0.858840 3-17αi X Y Z C 0.232148 0.916212 0.231842 C -0.337125 0.000988 1.270734 C -1.483769 -0.653093 1.120665 C -2.278543 -0.537745 -0.111858 C -1.814581 0.437657 -1.109558 C -0.674386 1.099413 -0.945475 O 0.757243 2.052480 0.724264 O -3.280906 -1.197788 -0.285193 N 1.590099 0.344399 -0.294224 H 0.221027 -0.044227 2.195271 H -1.902128 -1.273597 1.898508 H -2.461759 0.596673 -1.958439 H -0.346201 1.848779 -1.654350 H 1.846393 1.347527 0.277912 H 1.650881 0.478977 -1.297096 O 2.087581 -0.976693 0.078484 H 2.123101 -1.018417 1.162899 H 1.375715 -1.730012 -0.254814 C 3.456743 -1.218801 -0.509525 H 3.827601 -2.192946 -0.204297 H 3.430394 -1.202345 -1.597394 H 4.165179 -0.466370 -0.173062

Page 223: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

208

3-17αii X Y Z C -0.563428 -0.985863 0.051698 C 0.076630 -0.398920 1.271813 C 1.290989 0.139861 1.273483 C 2.084746 0.243236 0.038988 C 1.532787 -0.402907 -1.160647 C 0.327853 -0.962274 -1.148781 O -1.176154 -2.162502 0.280077 O 3.152062 0.819024 0.017503 N -1.877605 -0.208317 -0.271205 H -0.490301 -0.515969 2.185050 H 1.761710 0.506603 2.172922 H 2.168554 -0.412301 -2.032587 H -0.067276 -1.475621 -2.015953 H -2.206647 -1.266817 0.151563 H -2.016510 -0.234417 -1.275196 C -2.186274 1.122590 0.248989 H -1.980496 1.114225 1.315029 H -3.255630 1.277390 0.126173 C -1.395265 2.204216 -0.448049 H -1.636523 3.177319 -0.029758 H -0.326858 2.042991 -0.332380 H -1.622284 2.232995 -1.512027 3-17βi X Y Z C -0.228267 -0.727383 0.424704 C 0.741644 -0.226870 1.445808 C 1.967250 0.185465 1.147080 C 2.469089 0.160056 -0.237963 C 1.584988 -0.426324 -1.255156 C 0.350494 -0.816002 -0.959434 O -0.810678 -1.868215 0.820135 O 3.567593 0.590185 -0.516762 N -1.377772 0.319793 0.335734 H 0.383538 -0.256360 2.466452 H 2.662818 0.527189 1.898256 H 2.002464 -0.530297 -2.245018 H -0.311025 -1.258874 -1.692288 H -1.709083 0.436775 1.287370 H -2.136591 -0.281979 -0.184147 C -1.104670 1.617694 -0.288849 C -2.249408 2.575313 -0.064694 H -2.041561 3.521754 -0.554907 H -2.397751 2.778968 0.994109 H -3.177076 2.182454 -0.472864 H -0.174483 2.007531 0.120030 H -0.949331 1.436719 -1.347275 H -1.726633 -1.968582 0.084372 O -2.573521 -1.584956 -0.720740 H -3.434757 -1.981647 -0.634265

3-17βii X Y Z C 0.079426 0.319664 0.473256 C -0.701104 -0.826743 1.032673 C -1.960531 -1.079713 0.698270 C -2.692067 -0.228193 -0.254858 C -2.000485 0.978216 -0.731834 C -0.739466 1.230440 -0.400793 O 0.748182 0.969764 1.434540 O -3.817823 -0.502492 -0.610214 N 1.152453 -0.249802 -0.510514 H -0.182429 -1.419521 1.772314 H -2.518406 -1.897723 1.127748 H -2.580942 1.647926 -1.347787 H -0.217344 2.119457 -0.728899 H 0.723918 -0.543158 -1.379856 H 1.762158 0.648202 -0.645600 C 2.008758 -1.301599 0.055254 C 3.229202 -1.519227 -0.805060 H 3.862861 -2.282258 -0.362224 H 3.810482 -0.605010 -0.891459 H 2.960744 -1.852146 -1.805603 H 1.425965 -2.213514 0.152845 H 2.278651 -0.955627 1.049359 H 1.499003 1.633617 0.833652 O 2.162210 1.992120 -0.151733 H 3.025220 2.356158 0.016923 3-17βiii X Y Z C -0.325484 -0.850693 0.182384 C 0.788203 -1.041443 1.159878 C 2.022300 -0.597999 0.954572 C 2.389152 0.101563 -0.289121 C 1.353753 0.195743 -1.328153 C 0.113907 -0.228520 -1.112304 O -1.030605 -1.976739 0.008637 O 3.499560 0.560520 -0.449196 N -1.322032 0.163918 0.830024 H 0.522229 -1.595528 2.050290 H 2.818885 -0.751445 1.666401 H 1.666071 0.611540 -2.273971 H -0.657115 -0.184719 -1.869745 H -1.566213 -0.258835 1.717203 H -2.189911 0.003968 0.172701 C -0.908469 1.570319 0.990609 C -1.524328 2.456275 -0.064603 H -1.181664 3.478265 0.069965 H -2.609161 2.447286 -0.001630 H -1.243093 2.133667 -1.062373 H -1.205137 1.895535 1.983661 H 0.178373 1.607110 0.950513 H -1.999841 -1.597528 -0.535205 O -2.842614 -0.770257 -0.899908 H -3.744129 -1.076399 -0.913802

Page 224: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

209

3-17βiv X Y Z C -0.265364 -0.406509 0.410008 C 0.497441 0.740492 0.990976 C 1.784230 0.957026 0.747615 C 2.561878 0.072033 -0.134910 C 1.876199 -1.124576 -0.643575 C 0.589873 -1.344204 -0.397641 O -0.988772 -1.026240 1.350796 O 3.717278 0.312754 -0.410893 N -1.288857 0.138047 -0.642429 H -0.059573 1.361134 1.678744 H 2.328389 1.771312 1.201164 H 2.481857 -1.816505 -1.208581 H 0.074074 -2.228574 -0.747683 H -0.820149 0.408209 -1.498575 H -1.879713 -0.775799 -0.778210 C -2.187808 1.198886 -0.153260 C -1.731947 2.581104 -0.550757 H -2.414355 3.324476 -0.148455 H -1.723801 2.696098 -1.633139 H -0.735648 2.802245 -0.178841 H -3.177771 0.994176 -0.552288 H -2.248717 1.068278 0.924278 H -1.708723 -1.710757 0.724544 O -2.309062 -2.097730 -0.283016 H -3.196418 -2.416408 -0.151790 3-17βv X Y Z C -0.526278 -0.538518 0.413246 C 0.532784 -0.251339 1.429412 C 1.828615 -0.228935 1.146680 C 2.313315 -0.410585 -0.230870 C 1.305909 -0.712632 -1.258881 C 0.009662 -0.750942 -0.972527 O -1.282999 -1.565182 0.834744 O 3.491786 -0.321558 -0.502317 N -1.496364 0.676762 0.321037 H 0.172412 -0.148560 2.444441 H 2.584565 -0.080238 1.902206 H 1.685343 -0.923183 -2.247130 H -0.738602 -1.007402 -1.711529 H -1.726874 0.927728 1.275751 H -2.376141 0.163635 -0.101542 C -1.168624 1.869115 -0.476061 C 0.020261 2.653357 0.018855 H 0.084791 3.588697 -0.530031 H 0.949410 2.114506 -0.129380 H -0.069079 2.893431 1.076689 H -2.064197 2.486138 -0.476298 H -1.013839 1.530815 -1.496156 H -2.235628 -1.526589 0.133345 O -3.048370 -1.021348 -0.624574 H -3.954815 -1.268738 -0.469573

3-17βvi X Y Z C 0.188279 0.216827 0.343400 C -0.542957 -1.043683 0.679155 C -1.846418 -1.202200 0.484540 C -2.679842 -0.129065 -0.083859 C -2.023117 1.164032 -0.322903 C -0.718537 1.321874 -0.132224 O 0.983105 0.603381 1.348614 O -3.855205 -0.303455 -0.322205 N 1.091359 -0.053245 -0.909644 H 0.053431 -1.815394 1.144857 H -2.364399 -2.108353 0.759200 H -2.663020 1.972356 -0.642261 H -0.218465 2.269374 -0.285075 H 0.522461 0.039240 -1.742028 H 1.771629 0.801972 -0.831340 C 1.847258 -1.318468 -0.963950 C 2.845250 -1.456101 0.160235 H 3.421536 -2.365136 0.010261 H 2.361821 -1.495641 1.129789 H 3.528111 -0.611290 0.174990 H 1.136419 -2.141303 -0.970067 H 2.359853 -1.323787 -1.923313 H 1.698511 1.387313 0.850258 O 2.269083 1.971296 -0.073790 H 3.157229 2.274290 0.084922 3-17γi X Y Z C -0.005951 -0.539725 0.490830 C 1.093236 -0.223856 1.453134 C 2.365947 -0.106647 1.094711 C 2.790944 -0.302746 -0.302038 C 1.757449 -0.723500 -1.258753 C 0.481359 -0.816107 -0.903636 O -0.809275 -1.505310 0.961402 O 3.944048 -0.138625 -0.638075 N -0.898965 0.729260 0.382441 H 0.781020 -0.128475 2.484779 H 3.150593 0.104996 1.804922 H 2.099650 -0.961250 -2.254386 H -0.290459 -1.133716 -1.592347 H -1.152878 0.961530 1.336721 H -1.801664 0.275915 -0.081211 C -0.374881 1.904185 -0.319737 C -1.268166 3.101932 -0.106742 H -0.879418 3.955971 -0.653342 H -1.318944 3.379653 0.944373 H -2.277810 2.908631 -0.460207 H 0.636540 2.095832 0.033974 H -0.312082 1.647546 -1.372145 H -1.764813 -1.420552 0.263913 O -2.549072 -0.889778 -0.505061 C -3.904290 -1.120328 -0.301805 H -4.161818 -2.158476 -0.518954 H -4.214054 -0.912061 0.727879 H -4.500596 -0.489906 -0.962965

Page 225: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

210

3-17γii X Y Z C 0.193725 -0.181433 0.449068 C 1.151272 0.800077 1.046039 C 2.440503 0.841597 0.732236 C 3.029396 -0.098331 -0.235775 C 2.148263 -1.155554 -0.753897 C 0.858098 -1.195118 -0.442404 O -0.585822 -0.735680 1.387920 O 4.190628 -0.013664 -0.572217 N -0.756095 0.582253 -0.524296 H 0.730861 1.455453 1.795197 H 3.123583 1.541251 1.189041 H 2.614441 -1.898843 -1.382411 H 0.199137 -1.974935 -0.801205 H -0.279461 0.813082 -1.387316 H -1.522332 -0.206669 -0.666264 C -1.423067 1.754430 0.058825 C -2.592709 2.184875 -0.792303 H -3.083054 3.042663 -0.341015 H -3.325133 1.386354 -0.880974 H -2.276166 2.473477 -1.792563 H -0.697171 2.555910 0.167502 H -1.745662 1.445318 1.049781 H -1.455541 -1.227298 0.761512 O -2.191236 -1.411611 -0.202055 C -3.551143 -1.531203 0.052651 H -3.781688 -2.490540 0.519499 H -3.922525 -0.744398 0.720006 H -4.121226 -1.475006 -0.876533 3-17γiii X Y Z C -0.048924 -0.729856 0.291334 C 1.095060 -1.006426 1.211769 C 2.358989 -0.739374 0.906182 C 2.727640 -0.167263 -0.400112 C 1.645519 -0.000544 -1.381233 C 0.379415 -0.246530 -1.064846 O -0.899673 -1.764163 0.231596 O 3.873596 0.134125 -0.655584 N -0.865142 0.438443 0.926797 H 0.821256 -1.468232 2.151131 H 3.175290 -0.952749 1.579165 H 1.944233 0.314915 -2.369297 H -0.427258 -0.146994 -1.778786 H -1.094609 0.105379 1.855140 H -1.800283 0.340795 0.329187 C -0.272017 1.787486 0.965458 C -0.846754 2.680982 -0.106619 H -0.373714 3.657869 -0.062388 H -1.917518 2.813571 0.024131 H -0.676463 2.267989 -1.096211 H -0.456172 2.206772 1.950486 H 0.805886 1.684807 0.855578 H -1.861459 -1.286132 -0.264849 O -2.628419 -0.393766 -0.599067 C -3.990052 -0.632569 -0.456708 H -4.332471 -1.384755 -1.169527 H -4.249788 -0.986953 0.546636 H -4.558218 0.279611 -0.644885

3-17γiv X Y Z C -0.010382 -0.197928 0.416511 C 1.038329 0.702822 0.985375 C 2.334321 0.561543 0.734752 C 2.838210 -0.505877 -0.144654 C 1.851228 -1.475021 -0.641764 C 0.555224 -1.335993 -0.388568 O -0.866208 -0.597582 1.367055 O 4.013891 -0.588777 -0.427475 N -0.859037 0.592857 -0.631058 H 0.674903 1.455182 1.671208 H 3.081149 1.201002 1.179968 H 2.243441 -2.308228 -1.204566 H -0.181936 -2.050325 -0.730629 H -0.344754 0.718240 -1.494472 H -1.685313 -0.135108 -0.745820 C -1.430823 1.862446 -0.147342 C -0.619483 3.066194 -0.558841 H -1.073309 3.969964 -0.162031 H -0.586017 3.165381 -1.642298 H 0.401346 3.012477 -0.191685 H -2.441931 1.933700 -0.539806 H -1.517851 1.761889 0.931683 H -1.754331 -1.059506 0.747085 O -2.457145 -1.256626 -0.241941 C -3.831729 -1.359425 -0.071740 H -4.096630 -2.296023 0.422660 H -4.240997 -0.541397 0.530786 H -4.338170 -1.345929 -1.038164 3-17γv X Y Z C -0.203342 -0.394544 0.447378 C 0.911273 -0.243059 1.432964 C 2.190028 -0.409126 1.120865 C 2.609671 -0.681151 -0.262935 C 1.544284 -0.855267 -1.261800 C 0.263520 -0.704199 -0.945104 O -1.085371 -1.299731 0.904872 O 3.781633 -0.764613 -0.562955 N -0.996039 0.940034 0.351865 H 0.594807 -0.072690 2.453536 H 2.977978 -0.355878 1.856180 H 1.865309 -1.134330 -2.253763 H -0.531084 -0.864543 -1.662668 H -1.162987 1.239171 1.305942 H -1.959890 0.538101 -0.040976 C -0.525521 2.059506 -0.477770 C 0.771062 2.682428 -0.025047 H 0.954649 3.585425 -0.600595 H 1.612551 2.014755 -0.172959 H 0.737232 2.959039 1.027102 H -1.326981 2.794796 -0.474593 H -0.441087 1.683767 -1.493115 H -2.051325 -1.127408 0.230482 O -2.815130 -0.520231 -0.485922 C -4.172249 -0.642866 -0.207979 H -4.533498 -1.640926 -0.460793 H -4.398731 -0.466845 0.848691 H -4.746081 0.073611 -0.796926

Page 226: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

211

3-17γvi X Y Z C 0.107007 -0.049387 0.330324 C 1.065937 1.037662 0.697798 C 2.377407 0.943909 0.514842 C 2.992314 -0.258864 -0.071612 C 2.099703 -1.395412 -0.341049 C 0.787618 -1.300221 -0.161175 O -0.757703 -0.293791 1.323662 O 4.181222 -0.311494 -0.300529 N -0.713745 0.413222 -0.920398 H 0.625650 1.901246 1.175811 H 3.058468 1.726625 0.812072 H 2.573885 -2.306190 -0.673452 H 0.115631 -2.130202 -0.336579 H -0.167803 0.222742 -1.751462 H -1.559301 -0.292872 -0.855676 C -1.201813 1.804313 -0.956173 C -2.172942 2.113143 0.157546 H -2.552223 3.122890 0.025503 H -1.709786 2.030780 1.134347 H -3.013119 1.424279 0.139282 H -0.342754 2.470574 -0.933433 H -1.686172 1.930730 -1.921872 H -1.616317 -0.900910 0.801988 O -2.297523 -1.323418 -0.129458 C -3.655328 -1.536775 0.056020 H -3.833570 -2.354507 0.757301 H -4.171249 -0.652795 0.448269 H -4.132501 -1.805526 -0.887816

3-18 X Y Z N 4.780218 -0.310728 0.273805 H 4.837257 -0.072997 1.250890 H 4.828340 -1.314360 0.203627 C 3.562808 0.197242 -0.317460 H 3.587316 1.284950 -0.252349 H 3.584267 -0.038929 -1.381555 C 2.264232 -0.312957 0.284681 H 2.248466 -0.074575 1.350840 H 2.243269 -1.403356 0.214612 C 1.035901 0.271129 -0.384651 H 1.062978 0.044495 -1.452981 H 1.041205 1.356659 -0.299201 C -0.258329 -0.257498 0.198714 H -0.276916 -0.081772 1.276690 H -0.324634 -1.334734 0.052244 C -1.488749 0.407214 -0.415731 H -1.433148 0.282710 -1.497546 N -1.516010 1.810793 -0.109698 C -2.729195 -0.319176 0.051529 H -1.770526 1.942280 0.857953 H -2.217379 2.285126 -0.654655 O -3.535560 0.123159 0.822932 O -2.833639 -1.541217 -0.473791 H -3.626355 -1.947209 -0.112943 3-19 X Y Z C -3.200501 -1.129199 -0.179646 C -3.587269 -0.195786 -1.285009 C -3.982189 1.056196 -1.089238 C -4.177664 1.590477 0.266202 C -3.946453 0.662524 1.384717 C -3.495412 -0.567663 1.179510 O -3.929556 -2.307038 -0.394651 O -4.528165 2.735294 0.455850 N -1.795928 -1.487686 -0.241212 H -3.481583 -0.605499 -2.280750 H -4.207526 1.726745 -1.904092 H -4.158851 1.044117 2.371535 H -3.310257 -1.243661 2.004041 H -1.614659 -1.867726 -1.160447 C -0.832897 -0.447838 0.068066 H -1.006209 0.465003 -0.513332 H -0.947206 -0.177201 1.116315 C 0.574012 -0.947410 -0.173463 H 0.677224 -1.245364 -1.219848 H 0.734334 -1.846515 0.422357 C 1.623069 0.096907 0.151916 H 1.508673 0.415285 1.190245 H 1.479021 0.983369 -0.463332 C 3.033890 -0.414364 -0.054588 H 3.143666 -0.798073 -1.071371 H 3.237396 -1.243468 0.621696 C 4.080784 0.677248 0.158945 H 3.923781 1.105321 1.149288 N 3.940764 1.714730 -0.825096 C 5.456083 0.049846 0.158466 H 4.304767 1.394537 -1.710249 H 4.479603 2.527070 -0.573087 O 6.268507 0.177514 -0.715639 O 5.676073 -0.697513 1.241274 H 6.553416 -1.081004 1.158967 H -3.497032 -2.993929 0.116275

Page 227: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

212

3-19βi X Y Z C -3.205928 0.709631 0.407318 C -3.396958 -0.403749 1.385966 C -3.644127 -1.656967 1.025837 C -3.765691 -2.038196 -0.392037 C -3.687590 -0.954109 -1.381473 C -3.416078 0.294909 -1.021672 O -3.924818 1.789438 0.746969 O -3.938639 -3.192172 -0.720527 N -1.716388 1.153388 0.504296 H -3.354123 -0.108265 2.426021 H -3.797983 -2.446798 1.745087 H -3.875120 -1.232293 -2.407330 H -3.364892 1.107917 -1.733930 H -1.560686 1.357360 1.485767 H -1.778581 2.122999 -0.005810 C -0.676717 0.262846 -0.017772 H -0.855177 -0.741853 0.362804 H -0.791466 0.231713 -1.097126 C 0.702998 0.752263 0.360581 H 0.789636 0.794798 1.448617 H 0.836860 1.770852 -0.006134 C 1.790383 -0.147567 -0.193505 H 1.693800 -0.205938 -1.279260 H 1.673227 -1.160808 0.187014 C 3.180089 0.343488 0.155027 H 3.266770 0.473820 1.235869 H 3.363787 1.315629 -0.300127 C 4.261165 -0.637252 -0.295467 H 4.133013 -0.812862 -1.363710 N 4.134486 -1.886544 0.402774 C 5.617443 0.004430 -0.108633 H 4.510919 -1.794278 1.334764 H 4.669155 -2.609852 -0.049497 O 6.417278 -0.317586 0.725670 O 5.830334 1.002662 -0.966168 H 6.694687 1.376772 -0.774486 H -3.457583 2.640154 0.080842 O -2.604752 3.186219 -0.621295 H -2.512082 4.126165 -0.501083

3-19βii X Y Z C 3.248567 -0.691646 0.368003 C 3.378525 0.364233 1.418048 C 3.534449 1.652865 1.140566 C 3.612463 2.133505 -0.250112 C 3.627126 1.112001 -1.306843 C 3.446021 -0.174023 -1.029427 O 4.010246 -1.757303 0.644441 O 3.675051 3.317380 -0.503889 N 1.773789 -1.201559 0.421728 H 3.365946 -0.003083 2.435722 H 3.640216 2.402890 1.909490 H 3.800847 1.468243 -2.310791 H 3.458955 -0.941076 -1.792387 H 1.611523 -1.455850 1.390197 H 1.887066 -2.145449 -0.138250 C 0.712772 -0.325692 -0.079153 H 0.893116 0.683750 0.289393 H 0.799415 -0.300932 -1.161473 C -0.653904 -0.818849 0.338919 H -0.720921 -0.830001 1.428968 H -0.788972 -1.847868 0.005125 C -1.763782 0.048153 -0.224720 H -1.711909 0.033916 -1.315217 H -1.599833 1.084346 0.078230 C -3.137446 -0.411344 0.218011 H -3.206439 -0.387358 1.308295 H -3.310103 -1.444433 -0.075050 C -4.262422 0.428231 -0.359536 H -4.178127 0.424946 -1.447786 N -4.298258 1.814732 0.069927 C -5.613150 -0.227363 -0.077427 H -3.946242 1.928218 1.007932 H -6.173759 1.509222 0.177513 O -6.585028 0.627535 0.180355 O -5.774978 -1.412808 -0.118426 H -3.780078 2.426677 -0.535840 H 3.576875 -2.590078 -0.075472 O 2.748527 -3.122136 -0.805093 H 2.687853 -4.070058 -0.737258

Page 228: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

213

3-19βiii X Y Z C -3.100222 -0.106590 -0.408402 C -2.542946 0.833061 -1.429980 C -2.014640 2.011484 -1.126797 C -1.866999 2.444990 0.271718 C -2.429550 1.564816 1.306746 C -2.973870 0.392428 1.001595 O -4.365883 -0.419278 -0.732430 O -1.311006 3.485149 0.554424 N -2.316737 -1.451487 -0.462573 H -2.679632 0.520054 -2.456659 H -1.669769 2.703502 -1.879549 H -2.391429 1.937938 2.318799 H -3.420248 -0.250299 1.749451 H -2.256717 -1.704363 -1.442356 H -3.072349 -2.109805 -0.002470 C -1.018314 -1.616738 0.207360 H -0.762861 -2.671563 0.119204 H -1.177976 -1.415032 1.262973 C 0.099214 -0.759420 -0.338397 H -0.084958 0.284443 -0.095348 H 0.117455 -0.825743 -1.428823 C 1.439476 -1.183460 0.230533 H 1.636944 -2.224864 -0.033235 H 1.419115 -1.137357 1.318158 C 2.577778 -0.318898 -0.270590 H 2.370666 0.729243 -0.045175 H 2.667080 -0.399301 -1.352770 C 3.910752 -0.697266 0.370059 H 4.089502 -1.755571 0.174676 N 3.868417 -0.490228 1.790325 C 5.028738 0.065258 -0.305968 H 3.885497 0.498401 1.992754 H 4.681214 -0.883536 2.236022 O 5.697920 0.911027 0.218543 O 5.193132 -0.297635 -1.579506 H 5.903869 0.235280 -1.946277 H -4.611158 -1.358629 -0.056861 O -4.367163 -2.338246 0.630966 H -4.938521 -3.086902 0.489978

Page 229: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

214

APPENDIX C

Sample Gaussian Input Files

This appendix includes different sample input files, that were used in the calculations of

energies of the energy minima and saddle points, using the mPW1B95-44/6-31+G(d,p)

level of theory.

Page 230: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

215

A sample input file for calculation in gas phase using internal coordinate system # mPWB95/6-31+G(d,p) IOp(3/76=0560004400) SCF=(Conver=9,MaxCycle=200) Integral=(grid=ultrafine) OPT=(Verytight,Calcall,Maxcycle=20) 1,4-Benzoquinone (C6H4O2) 0 1 C1 C2 C1 R2 C3 C2 R3 C1 A3 C4 C3 R4 C2 A4 C1 D4 C5 C4 R5 C3 A5 C2 D5 C6 C1 R6 C2 A6 C3 D6 O7 C1 R7 C2 A7 C3 D7 O8 C4 R8 C5 A8 C6 D8 H9 C2 R9 C1 A9 O7 D9 H10 C3 R10 C4 A10 O8 D10 H11 C5 R11 C4 A11 O8 D11 H12 C6 R12 C1 A12 O7 D12 R2=1.52 R3=1.34 R4=1.52 R5=1.52 R6=1.52 R7=1.25 R8=1.25 R9=1.09 R10=1.09 R11=1.09 R12=1.09 A3=122. A4=122. A5=116. A6=116. A7=122. A8=122. A9=119. A10=119. A11=119. A12=119. D4=0. D5=0. D6=0. D7=180. D8=180. D9=0. D10=0. D11=0. D12=0.

Page 231: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

216

A sample input file for calculation in aqueous phase using Cartesian coordinates system %mem=200MB # mPWB95/6-31+G(d,p) IOp(3/76=0560004400) SCF=(Conver=9,MaxCycle=200) Integral=(grid=ultrafine) SCRF=(PCM,Solvent=water) OPT=(Verytight,Calcall,Maxcycle=20) 1,4-Benzoquinone (C6H4O2) 0 1 C1 0.000000 0.000000 1.421845 C2 0.000000 1.264600 0.665458 C3 0.000000 1.264600 -0.665458 C4 0.000000 0.000000 -1.421845 C5 0.000000 -1.264600 -0.665458 C6 0.000000 -1.264600 0.665458 O7 0.000000 0.000000 2.637385 O8 0.000000 0.000000 -2.637385 H9 0.000000 2.178043 1.247850 H10 0.000000 2.178043 -1.247850 H11 0.000000 -2.178043 -1.247850 H12 0.000000 -2.178043 1.247850

Page 232: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

217

A sample input file for a saddle point calculation in gas phase using Cartesian coordinates system # mPWB95/6-31+G(d,p) IOp(3/76=0560004400) SCF=(Conver=9,MaxCycle=200) Integral=(grid=ultrafine) OPT=(TS,Noeigentest,Verytight,Calcall,Maxcycle=20) 1,4-Benzoquinone + NH3 + H2O (C6H9NO3) saddle point 0 1 C1 0.685357 0.361683 -0.158419 C2 -0.338039 1.485284 -0.182552 C3 -1.646475 1.201046 -0.129594 C4 -2.107275 -0.244974 -0.045389 C5 -1.083878 -1.368574 -0.021256 C6 0.224557 -1.084336 -0.074215 O7 1.873263 0.589606 -0.921198 O8 -3.327830 -0.510121 0.004013 N9 1.217510 0.535500 1.200809 H10 -0.007597 2.522232 -0.242936 H11 -2.380358 2.006786 -0.146899 H12 -1.414320 -2.405523 0.039128 H13 0.958440 -1.890076 -0.056909 H14 1.430197 1.516635 1.311434 H15 0.497185 0.232937 1.840877 H16 2.052805 -0.325511 1.231517 H17 2.534766 -0.629748 -1.109853 O18 2.675686 -0.829311 -0.037325 H19 3.631876 -0.878386 0.032617

Page 233: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

218

A sample input file for a saddle point calculation in gas phase using mixed coordinates system # mPWB95/6-31+G(d,p) IOp(3/76=0560004400) SCF=(Conver=9,MaxCycle=200) Integral=(grid=ultrafine) OPT=(TS,Noeigentest,Verytight,Calcall,Maxcycle=20) 1,4-Benzoquinone + C2H5NH2 + H2O 0 1 C1 -0.563423 -0.254176 0.480159 C2 0.497818 0.186704 1.435710 C3 1.788184 0.220067 1.127203 C4 2.271383 -0.204565 -0.198324 C5 1.271760 -0.752310 -1.126627 C6 -0.021638 -0.761265 -0.826514 O7 -1.422643 -1.104706 1.056471 O8 3.442491 -0.118010 -0.498230 N9 -1.406869 1.009708 0.123686 H10 0.140711 0.450374 2.422481 H11 2.545150 0.525140 1.833468 H12 1.652946 -1.153042 -2.053485 H13 -0.770389 -1.167909 -1.493378 H14 -1.708458 1.385126 1.015252 H15 -2.289262 0.520738 -0.320272 C16 -0.794318 2.040603 -0.709211 C17 C16 R17 N9 A17 H14 D17 H18 C17 R18 C16 A18 N9 D18 H19 C17 R19 C16 A19 N9 D19 H20 C17 R20 C16 A20 N9 D20 H21 -1.441139 2.910579 -0.740018 H22 -0.668161 1.655003 -1.713100 H23 -2.332208 -1.118306 0.300734 O24 -3.042003 -0.703512 -0.608949 H25 -3.978295 -0.836073 -0.497543 R17=1.54 R18=1.09 R19=1.09 R20=1.09 A17=109. A18=109. A19=109. A20=109. D17=60. D18=180. D19=60. D20=-60.

Page 234: AN ABSTRACT OF A THESIS THEORETICAL STUDIES ON … · Corelation functional method CPCM Conductor-like polar izable continuum model DFT Density functional theory FEP Free energy perturbation

219

VITA

J. M. Roshan C. Fernando was born in Kalutara, Sri Lanka, on April 02, 1978. In

May 2004, he graduated from University of Peradeniya, Sri Lanka, with a Bachelor of

Science degree in Chemistry. He entered Tennessee Technological University, in

Cookeville, TN in January 2008 and will graduate in August 2009 with his Master of

Science degree in Chemistry. Roshan will continue his studies toward Ph.D. at Case

Western Reserve University, Cleveland, OH starting in Fall 2009.