Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

14
1 Ambient Nitrogen Oxide Concentrations During Peak Tourist Season in Yosemite National Park Bianca Auble 2011 School of Science Summer Research Abstract This study assessed the concentrations of nitrogen oxides and surfacelevel ozone in heavy traffic areas of Yosemite Valley in Yosemite National Park. Measurements were conducted in July and August, when visitor totals peak in the Park, and when ozone concentrations tend to be at their maximum. Ozone and nitrogen oxides were measured at two Valley sites–Camp 4 and Falls Lodge−using monitors deployed on a mobile trailer. Raw data were collected as 1minute averages, which were later converted into 1hour averages in order to improve the signal to noise ratio. Ozone measurements at an additional stationary site (the Schoolyard) were used for comparison purposes among the sites. Diurnal cycles showed that ozone at Camp 4, Falls Lodge, and the Schoolyard was low in the early morning hours and higher in the morning and afternoon hours. Nitrogen oxides at Camp 4 showed a trend with lower concentrations in the morning and higher concentrations in the afternoon. Falls Lodge showed opposite results, with the highest NO x values in the morning hours and the lowest in the afternoon. Nitrogen oxide and ozone concentrations were plotted against one another to visualize titration effects. Titration of ozone was not apparent at Camp 4, but may be occurring at Falls Lodge.

Transcript of Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

Page 1: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  1  

 

 

 

Ambient  Nitrogen  Oxide  Concentrations  During  Peak  Tourist  Season  in  Yosemite  National  Park  

 

Bianca  Auble  

2011  School  of  Science  Summer  Research  

 

Abstract  

This  study  assessed  the  concentrations  of  nitrogen  oxides  and  surface-­‐level  ozone  in  heavy  traffic  areas  of  Yosemite  Valley  in  Yosemite  National  Park.  Measurements  were  conducted  in  July  and  August,  when  visitor  totals  peak  in  the  Park,  and  when  ozone  concentrations  tend  to  be  at  their  maximum.  Ozone  and  nitrogen  oxides  were  measured  at  two  Valley  sites–Camp  4  and  Falls  Lodge−using  monitors  deployed  on  a  mobile  trailer.  Raw  data  were  collected  as  1-­‐minute  averages,  which  were  later  converted  into  1-­‐hour  averages  in  order  to  improve  the  signal  to  noise  ratio.  Ozone  measurements  at  an  additional  stationary  site    (the  Schoolyard)  were  used  for  comparison  purposes  among  the  sites.  Diurnal  cycles  showed  that  ozone  at  Camp  4,  Falls  Lodge,  and  the  Schoolyard  was  low  in  the  early  morning  hours  and  higher  in  the  morning  and  afternoon  hours.  Nitrogen  oxides  at  Camp  4  showed  a  trend  with  lower  concentrations  in  the  morning  and  higher  concentrations  in  the  afternoon.  Falls  Lodge  showed  opposite  results,  with  the  highest  NOx  values  in  the  morning  hours  and  the  lowest  in  the  afternoon.  Nitrogen  oxide  and  ozone  concentrations  were  plotted  against  one  another  to  visualize  titration  effects.  Titration  of  ozone  was  not  apparent  at  Camp  4,  but  may  be  occurring  at  Falls  Lodge.  

 

 

Page 2: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  2  

Introduction:    

Tropospheric  ozone  is  a  primary  component  of  photochemical  smog.  Due  to  its  

detrimental  effects  on  flora,  fauna,  and  humans,  ozone  is  categorized  as  one  of  the  six  

criteria  pollutants  that  are  regulated  via  a  National  Ambient  Air  Quality  Standard  set  by  the  

Environmental  Protection  Agency  (EPA).    In  humans,  high  levels  of  ozone  can  cause  

respiratory  problems,  headaches,  and  irritation  to  the  eyes,  especially  in  high-­‐risk  

individuals  (i.e.  children,  those  with  respiratory  conditions,  sensitive  adults,  etc.),  and  

permanent  lung  damage  remains  a  possibility  with  long-­‐term  exposure  (Six).    

Ozone  is  created  through  a  chemical  reaction  that  combines  its  two  main  

precursors⎯volatile  organic  compounds  (VOCs)  and  nitrogen  oxides  (NOx  =  NO  +  

NO2)⎯with  sunlight  (hν):  

(1)   VOC  +  NOx  +  hν    O3  +  other  pollutants  

Anthropogenic  VOCs  –  hydrocarbons  produced  by  factories  and  power  plants  –  and  

biogenic  VOCs–natural  sources  produced  by  plants−contribute  to  the  total  VOC  

concentration  in  a  given  area  (Volatile).  Sources  for  NO  include  byproducts  of  fuel  

combustion,  such  as  vehicular  emissions;  once  in  the  atmosphere,  NO  is  converted  to  NO2  

on  a  timescale  of  a  few  hours.  Areas  with  a  significant  amount  of  both  reactants  (VOCs  and  

NOx)  and  exposure  to  warm,  sunny  conditions  are  conducive  to  ozone  formation.    

Although  NOx  can  contribute  to  ozone  formation  through  the  photochemical  

reaction  above,  fresh  NO  plumes  can  also  remove  ozone  by  titration.  Titration  in  this  

fashion  produces  NO2  and  O2:  

Page 3: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  3  

(2)   NO  +  O3    NO2  +  O2  

During  daytime  hours,  it  is  difficult  to  observe  titration  effects  because  the  available  NOx  is  

used  in  the  formation  of  ozone  via  photochemical  equation  (1).  Titration  can  be  more  

readily  observed  during  nighttime  hours,  however,  because  the  absence  of  sunlight  

prevents  the  formation  of  ozone,  removing  (1)  as  a  complicating  factor  (Sillman).  

Significant  titration  is  most  often  observed  in  urban  areas  with  substantial  sources  of  fresh  

NO  plumes  (i.e.  vehicles,  power  plants).  

In  remote  areas  where  ozone  precursors  are  scarce,  such  as  Yosemite  National  Park  

located  in  the  Sierra  Nevada  Mountain  Range,  it  would  seem  intuitive  that  ozone  levels  

should  be  low.  However,  increased  vehicular  traffic  due  to  tourism  brings  an  influx  of  

nitrogen  oxide  and  VOC  emissions,  especially  in  the  summer  months  –  June,  July,  August,  

and  September.  Since  most  park  visitors  limit  their  stay  to  the  Valley,  this  traffic  increase  

primarily  affects  the  air  quality  in  the  Yosemite  Valley  region  rather  than  backcountry  

terrain.    

According  to  data  compiled  by  the  National  Park  Service  Public  Use  Statistics  Office,  

a  total  of  3,901,408  visitors  traveled  to  Yosemite  for  recreational  purposes  in  2010.  60%  of  

these  tourists  entered  the  Park  within  the  four  summer  months  of  June-­‐September;  nearly  

80%  of  the  total  Park  visitors  were  counted  in  only  the  six-­‐month  span  of  May  through  

October  (Figure  1,  NPS  Stats).    

To  date,  monitoring  of  ambient  nitrogen  oxide  levels  in  Yosemite  Valley  has  been  

very  limited,  and  the  extent  to  which  high  visit  totals  and  elevated  vehicular  traffic  might  

correlate  with  increased  air  pollution  has  not  been  well  understood.  To  address  this  

Page 4: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  4  

problem,  the  California  Air  Resources  Board  and  Yosemite  National  Park  developed  a  

mobile  monitoring  platform  that  could  be  deployed  in  multiple  locations  in  Yosemite  Valley  

to  measure  air  quality  data  during  the  summer  of  2011.  

 

Methods:  

A  mobile  trailer  (Figure  2)  was  constructed  for  the  purpose  of  measuring  ambient  

nitrogen  oxide  levels  at  multiple  sites  within  Yosemite  Valley.  Four  solar  panels  were  

attached  to  a  long,  flat  trailer  bed  to  allow  deployment  of  the  trailer  in  areas  with  no  AC  

power  capabilities.  The  solar  panels  were  used  to  recharge  three  12  V,  deep  cycle  batteries  

enclosed  in  a  weatherproof  steel  box  which  supplied  power  for  the  system  via  a  Samplex  

Power  600  W  DC-­‐AC  Power  Inverter.  A  second  weatherproof  steel  box  was  mounted  on  the  

trailer  to  house  the  Inverter  and  the  field  monitors.  A  sample  inlet  approximately  2.5  

meters  high  was  attached  to  metal  rod  secured  to  the  outside  of  the  trailer  and  sheltered  by  

a  metal  rain  shield.  The  air  sample  travelled  into  a  filter  and  through  2  meters  of  Teflon  

tubing,  an  unreactive  material  to  prevent  absorbance  of  the  air  sample  components,  before  

entering  the  monitors.  The  inlet  tubing  was  plumbed  into  the  all  the  monitors  so  they  all  

measured  data  on  the  same  air  sample.    

The  field  monitors  included  one  Model  202  2B  Technologies  Ozone  Monitor,  one  

Model  410  2B  Technologies  Nitric  Oxide  Monitor,  and  one  Model  401  2B  Technologies  

Nitrogen  Dioxide  Converter,  all  of  which  transmitted  their  data  to  a  CR23X  Campbell  

Scientific  Micrologger.  The  Model  410  was  attached  to  the  Model  401  and  set  to  collect  NOx  

rather  than  NO  or  NO2,  exclusively.  The  Model  201  O3  monitor  and  the  Model  410/401  NOx  

Page 5: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  5  

monitor  measured  values  for  their  respective  pollutants  at  10-­‐second  intervals,  and  

recorded  these  data  as  1-­‐minute  averages.  These  data  were  late  converted  to  1-­‐hour  

averages  to  allow  analysis  of  trends.    

A  Model  408  2B  Technologies  Nitric  Oxide  Calibration  Source  was  used  to  calibrate  

the  Nitric  Oxide  Monitor  multiple  times  during  the  deployment  at  each  site.    

The  deployment  sites  included  a  dirt  turnout  alongside  Valley  Loop  Road  across  

from  Camp  4  and  a  dirt  plot  at  the  intersection  of  Valley  Loop  Road  and  the  road  leading  to  

Yosemite  Lodge  near  the  base  of  Lower  Yosemite  Falls.    (These  sites  will  be  hereafter  

referred  to  as  Camp  4  and  Falls  Lodge.)  Measurements  were  taken  at  Camp  4  for  Julian  

days  194  -­‐  201  (July  13  –  July  20)  and  at  Falls  Lodge  from  Julian  days  208  –  213  (July  27  –  

August  1).  Frequent  equipment  failures  limited  the  amount  of  useable  data  acquired,  which  

resulted  in  short  monitoring  periods  at  each  site.  

A  stationary  monitoring  site  –  YOSE  Schoolyard  -­‐  was  located  in  Yosemite  Valley  off  

of  the  main  road,  and  had  reduced  exposure  to  ambient  nitrogen  oxides  from  vehicular  

emissions.  This  station  transmitted  ozone  data  (via  satellite)  that  are  publically  available  

via  an  online  database:  http://www.nature.nps.gov/air/monitoring/network.cfm.  Ozone  

hourly  averages  for  Julian  days  194-­‐213  (July  13  –  August  1)  were  used  for  comparison  

purposes  with  the  ozone  data  collected  from  Camp  4  and  Falls  Lodge.    

 

 

 

 

Page 6: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  6  

Results:  

 

Ozone  Concentrations:  

  Hourly  ozone  concentrations  at  Camp  4  over  Julian  Days  194-­‐201  did  not  exceed  60  

ppb  (Figure  3),  and  Schoolyard  displayed  similar  patterns:  an  increase  throughout  the  late  

morning,  peaking  in  the  early  to  mid  afternoon,  followed  by  a  subsequent  decrease  in  

ozone  concentration  in  the  evening  to  the  early  morning  hours.  The  most  significant  

variations  between  the  sites  occurred  for  maximum  and  minimum  ozone.  Concentrations  

of  ozone  at  Falls  Lodge  and  Schoolyard  over  Julian  Days  208-­‐213  differed  by  a  greater  

margin  at  the  maxima  and  minima  than  Camp  4  and  Schoolyard.  Falls  Lodge  showed  a  

greater  range  of  ozone  than  Schoolyard.  Maximum  ozone  concentrations  at  Falls  Lodge  

were  most  often  greater  than  maximum  values  at  Schoolyard,  but  only  by  3-­‐5  ppb.  

Similarly,  minimum  ozone  values  at  Falls  Lodge  were  more  often  than  not  lower  than  

Schoolyard  by  2-­‐4  ppb.    

 

Average  Diurnal  Variation  in  NOx  and  O3:  

Average  diurnal  curves  were  graphed  based  on  the  1-­‐hour  averaged  data  of  NOx  and  

O3.  Figure  5  depicts  the  diurnal  curve  for  NOx  at  Camp  4.  Maximum  NOx  concentrations  

occurred  between  hours  15:00  and  16:00  PST,  with  lower  levels  observed  in  the  evening  

and  early  morning.  Interestingly,  the  diurnal  curve  for  NOx  at  Falls  Lodge  (Figure  6)  

showed  drastically  different  results  than  Camp  4.  Maximum  NOx  concentrations  were  

observed  between  hours  6:00  and  8:00  PST  with  the  much  lower  values  in  the  afternoon.  

Page 7: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  7  

The  average  diurnal  curves  of  O3  concentration  for  Camp  4,  Falls  Lodge,  and  

Schoolyard  (Figure  7)  followed  similar  patterns.  Low  concentrations  of  ozone  were  found  

in  the  evening  and  early  morning  hours,  while  concentrations  between  40  and  50  ppb  

occurred  from  the  late  morning  into  the  early  evening,  10:00  to  20:00  PST.  

 

Titration:  

  Hourly  averages  of  NOx  and  O3  from  Camp  4  were  plotted  against  one  another  

(Figure  8),  and  a  similar  graph  was  plotted  for  Falls  Lodge  (Figure  9).  These  plots  were  

examined  for  instances  when  spikes  of  nitrogen  oxides  might  coincide  with  decreases  in  

ozone  concentration,  indicating  a  possible  titration  effect.  Camp  4  showed  little  to  no  

evidence  of  titration,  but  Falls  Lodge  may  have  had  a  few  instances  of  titration  where  

increases  in  nitrogen  oxides  occurred  with  decreases  in  ozone  levels.  The  morning  hours  of  

Julian  days  209,  210,  and  212  showed  a  dip  in  ozone  that  corresponded  to  a  peak  of  NOx  

(Figure  9).  The  diurnal  cycle  of  NOx  at  Falls  Lodge  (Figure  6)  showed  high  concentrations  

during  the  morning  hours,  the  same  time  of  day  when  ozone  in  the  area  dips.  

 

Discussion/Analysis:    

  Ozone  measurements  at  Camp  4,  Falls  Lodge,  and  Schoolyard  yielded  similar  1-­‐hr  

average  values,  and  displayed  similar  patterns  in  their  daily  cycles  and  diurnal  variation.  

The  Schoolyard  site  was  used  as  a  basis  for  background  ozone  because  it  was  close  to  the  

two  monitoring  sites  visited  by  the  mobile  monitoring  platform,  but  it  was  located  off  of  the  

Page 8: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  8  

main  road,  where  vehicle  emissions  of  NOx  would  be  reduced.  The  observation  of  similar  

ozone  concentrations  at  all  sites  does  not  support  the  ozone  titration  effect  due  to  fresh  

plumes  of  nitrogen  oxide  molecules  eliminating  ozone.  If  significant  titration  were  

occurring  Camp  4  and  Falls  Lodge,  then  the  ozone  levels  should  show  a  dip  when  nitrogen  

oxide  levels  are  high  at  these  locations.    

Indication  of  titration  during  the  daytime  could  be  masked  by  the  production  of  

ozone  when  sunlight  is  available.  During  nighttime  hours,  vehicular  traffic  (our  assumed  

source  of  fresh  nitrogen  oxide  for  titration)  was  considerably  lower,  as  most  visitors  do  not  

travel  in  the  middle  of  the  night.  Daytime  traffic  was  the  more  common  scenario,  and  thus  

higher  ambient  nitrogen  oxide  concentrations  were  assumed  more  common  in  the  daytime.  

Thus,  if  NO  was  titrating  ozone  during  the  daytime  hours  when  NOx  levels  were  highest,  the  

production  of  additional  ozone  may  make  it  difficult  to  observe  the  titration  taking  place  

because  ozone  concentration  would  not  dips  as  rapidly  as  expected.    

Despite  the  apparent  lack  of  titration  at  Camp  4,  Falls  Lodge  showed  the  possibility  

of  a  titration  effect,  although  it  was  difficult  to  make  clear  conclusions.  Ozone  levels  did  

tend  to  dip  when  nitrogen  oxide  concentrations  rose;  however,  this  result  was  not  

consistent  throughout  the  data.  A  longer  collection  period  should  be  utilized  to  obtain  a  

more  robust  assessment  of  the  titration  hypothesis.    

 

 

 

Page 9: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  9  

Conclusion:  

  Although  total  visitor  data  in  Yosemite  National  Park  supports  the  idea  that  more  

vehicles  enter  the  Park  during  the  summer  months,  the  data  do  not  indicate  significant  

titration  of  ozone  by  NOx  is  occurring  to  any  extent  in  the  Valley  region  of  Yosemite  

National  Park.  Further  testing  will  allow  for  a  greater  accumulation  of  data  for  analysis.    

 

Resources:  

"NPS:  Explore  Nature»  Air  Resources  Division-­‐Monitoring."  Nature.nps.gov  »  Explore  

Nature.  Web.  30  Sept.  2011.  

<http://www.nature.nps.gov/air/monitoring/network.cfm>.    

NPS  Stats.  Rep.  National  Park  Service  Public  Use  Statistics  Office.  Web.  

<http://www.nature.nps.gov/stats/>.    

Sillman,  Sandford.  The  Relation  Between  Ozone,  NOx,  and  Hydrocarbons  in  Urban  and  

Polluted  Rural  Environements.  Tech.  Atmospheric  Environment,  1999.  Print.    

"Six  Common  Air  Pollutants  |  Air  &  Radiation  |  US  EPA."  US  Environmental  Protection  

Agency.  01  July  2010.  Web.  30  Sept.  2011.  

<http://www.epa.gov/oaqps001/urbanair/>.    

"Volatile  Organic  Compounds  Emissions."  United  States  Environmental  Protection  Agency.  

  17  Feb.  2010.  Web.  

 

 

Page 10: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  10  

Figures:  

 

Figure  1:  “Visit  by  Month/Year  (2010)”:  National  Park  Service  Public  Use  Statistics  Office,  Yosemite  National  Park  Statistical  Report.  (NPS  Stats).    

 

Figure  2:  Image  of  mobile  monitoring  station  at  Camp  4  site.  

 

Page 11: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  11  

Figure  3:  O3  hourly  averages  comparison  between  Camp  4  and  Schoolyard  for  Julian  Days  194-­‐201.  

 

 

 

 

Figure  4:  O3  hourly  averages  comparison  between  Falls  Lodge  and  Schoolyard  for  Julian  Days  208-­‐213.  

 

Page 12: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  12  

Figure  5:  Diurnal  Curve  of  NOx  concentration  in  ppb  versus  hour  of  day  at  Camp  4  from  Julian  Day  194-­‐201.    

 

 

 

Figure  6:  Diurnal  Curve  of  NOx  concentration  in  ppb  versus  hour  of  day  at  Falls  Lodge  from  Julian  Day  208-­‐213.  

 

 

Page 13: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  13  

Figure  7:  Camp  4,  Falls  Lodge,  and  Schoolyard  O3  Diurnal  Curves  in  ppb  

 

 

 

 

Figure  8:  Hourly  averages  of  O3  and  NOx  (ppb)  at  Camp  4.  

 

Page 14: Ambient Nitrogen Oxide Concentrations During Peak Tourist ...

       

  14  

Figure  9:  Hourly  averages  of  O3  and  NOx  (ppb)  at  Falls  Lodge.