Alfven Waves in Toroidal Plasmas

40
Alfven Waves in Toroidal Plasmas S. Hu College of Science, GZU Supported by NSFC Summer School 2007, Chen gdu

description

Outline Introduction to Alfven waves Alfven waves in tokamaks Toroidicity-induced Alfven Eigenmodes (TAE) Energetic-particle modes (EPM) Discrete Alfven eigenmodes ( TAE) Summary

Transcript of Alfven Waves in Toroidal Plasmas

Page 1: Alfven Waves in Toroidal Plasmas

Alfven Wavesin Toroidal Plasmas

S. HuCollege of Science, GZU

Supported by NSFC

Summer School 2007, Chengdu

Page 2: Alfven Waves in Toroidal Plasmas

Outline

• Introduction to Alfven waves• Alfven waves in tokamaks• Toroidicity-induced Alfven Eigenmode

s (TAE)• Energetic-particle modes (EPM)• Discrete Alfven eigenmodes ( TAE)• Summary

Page 3: Alfven Waves in Toroidal Plasmas

Introduction to Alfven Waves

• Basic pictures of Alfven waves• Importance of Alfven waves• Alfven waves in nonuniform plasmas• Shear modes vs. compressional modes

Page 4: Alfven Waves in Toroidal Plasmas

Alfven Waves (Shear Modes)

m

FPA

PA

TVBV

xV

txV

t

2

00

202

2//

22

2

2

2//

22

2

2

0

~~~~

~~

String line Field

xxBB

xB

B

Page 5: Alfven Waves in Toroidal Plasmas

Alfven Waves & Energetic Particles• Importance in Fusion Studies: The Alfven frequencies are comparable t

o the characteristic frequencies of energetic / alpha particles in heating / ignition experiments.

• Basic Waves in Space Investigations: The Alfven waves widely exist in space,

e.g., the Earth’s magnetosphere, the solar-terrestrial region, and so on. The interactions between the Alfven waves and the energetic particles also play important roles in physical understandings.

Page 6: Alfven Waves in Toroidal Plasmas

Alfven Waves

0~~exp~~ ,

~~

~~~

const.0 ,0

~:ionLinearizat

0

22

2

222

2

22

20000

0//

//

0

2

2//

22

2

2

0

00

0

0

xzA

x

yzA

zAzyA

Az

AA

ukVx

u

kkV

kV

xtizikyikxQQ

xVxB

Bt

B

tB

BV

lV

t

QQQ

t

t

eB

u

uuB

Eu

BuEJB

EB

BJuuu

Page 7: Alfven Waves in Toroidal Plasmas

Alfven Waves(Compressional Modes)

componentnalcompressio

,~

~ tocoupled

~modeshear

~

ntsdisplaceme Fluid

eq-~ and eq-~

~ :component nalCompressio

~ ~ :componentShear

modenalcompressio

,0~~

modeshear ,0~0const.

0//

0

2

2//

22

2

2

//

222

2

2

2

22

2

0

BB

B

BBV

lV

ttB

B

ukkVx

u

ukVx

V

//

//A

A//

xyzA

x

xzA

A

uu

uB

Page 8: Alfven Waves in Toroidal Plasmas

Alfven Waves in Tokamaks

• Basic equations• Ballooning formalism• Shear Alfven equation• The s- diagram

[ Lee and Van Dam, 1977 Connor, Hastie, Taylor, 1978 ]

Page 9: Alfven Waves in Toroidal Plasmas

Basic Equations

00

0

0

0

0

00

022

0

//

////

uuu

u

J

JAAAABJB

BuE

AEBEB

BJuu

PPtP

t

Pt

t

ltAE

tt

Pt

P

q

P

Page 10: Alfven Waves in Toroidal Plasmas

Ballooning Formalism

//

//

11~ :1 ,0 :

21ˆ1ˆˆ

expˆexp,,,~

00

, :,,geometry Toroidal

l

mOrnqRmnqkmrnqr

mrnqmrnqmrnq

immrnqtinirt

qqrs

BRBrqBBq

rgf

Raqr

m

nmmm

m

PP

PPP

PP

P

eeB

BABABB

Page 11: Alfven Waves in Toroidal Plasmas

Shear Alfven Equation

drive ge/interchanballooning : termThird

oncontributi inertial : termSecond

bending line-field :First term

2 , ,

sin1 ,coscos

line field magnetic thealong coordinate extended the:,

cos1

~~ ,0~~cos21

~

200

2

222

0

21

2

2

2

2

BPqRVRq

sffsfV

BBf

V

AA

A

Page 12: Alfven Waves in Toroidal Plasmas

The s- Diagram

• First ballooning-mode stable regime (with the low pressure-gradient)

• Ballooning-mode unstable regime (with pressure-gradient inbetween)

• Second ballooning-mode stable regime (with the high pressure-gradient)

Page 13: Alfven Waves in Toroidal Plasmas

TAE

• Localized and extended potentials• Alfven continuum and frequency gap• Toroidicity-induced Alfven eigenmodes• TAE features

[ Cheng, Chen, Chance, AoP, 1985 ]

Page 14: Alfven Waves in Toroidal Plasmas

Localized and Extended Potentials

eigenmodesAlfven possible 1 ,0~~~:1~ potential Localized

spectrumfrequency Alfven 0~cos21~

equation sMathieu' : potential Extended

,sin1

coscos ,0~~cos21

~

22

2

22

2

2

222

2

2

O

Ω

Ωsf

fsfVVΩ

A

Page 15: Alfven Waves in Toroidal Plasmas

Alfven Frequency Spectrum

spectrum continumm with thecoupling No,

141 :1 of case The

~

:2

around gapsfrequency Alfven

,,2,1 ,, ;,0

sfrequencieAlfven of spectrum Continuum : of sEigenvalue

1 ,0~cos21~

:equation sMathieu'

222

2

2222

22

22222

22

2

UL

UL

jLjUjj

UjjLjj

UjLj

ΩΩΩ

Ωj

OΩΩΩ

ΩΩΩjΩΩ

jΩΩΩΩΩ

Ω

Ω

Page 16: Alfven Waves in Toroidal Plasmas

Toroidal Alfven Eigenmodes

22222

22222

22

22

2

222

2

2

,41~1

1

:1 ,1relation Dispersion

sin1

coscos ,0~~~

:1 with potential localized theofon Contributi

ULUL

U

L

ΩΩΩssC

ssCΩΩΩ

ssC

ΩΩΩΩs

sf

fsfVVΩ

Page 17: Alfven Waves in Toroidal Plasmas

TAE Features• Existence of the Alfven frequency gap due

to the finite-toroidicity coupling between the neighboring poloidal harmonics.

• Existence of eigenmodes with their frequencies located inside the Alfven frequency gap.

• These modes experience negligible damping due to their frequencies decoupled from the continuum spectrum.

Page 18: Alfven Waves in Toroidal Plasmas

EPM

• Gyro-kinetic equation• Vorticity equation• Wave-particle resonances• EPM features

[ Chen, PoP, 1994 ]

Page 19: Alfven Waves in Toroidal Plasmas

Gyro-Kinetic Equation

CCC

CCC

C

C

vOk

OLk

mcqBvvBvv

fcm

qfL

cmq

tLfL

QQQ

fcm

qftf

,~

~~~ :ordering-Gyro

,sincossign ,2 ,2

,,,,

,, :spacecenter -guiding tion toTransforma

~~~ˆ

ˆ ,0ˆ~

0 :equation Vlasov

21

//

021

//022

//

00

00000

eevVevxX

VXvx

vBvE

vBv

xv

vBvE

xv

Page 20: Alfven Waves in Toroidal Plasmas

Gyro-Kinetic Equation (cont.)

////

//

//1

0//

//

0

g0

00g0

g

////

1//

10

D0

0

0

0*

g0//g0D

D//

//

~~ ,exp formon perturbatiwith

exp~exp1~~

exp~~exp~~

~~~~

~

ˆ

~

XcAi

Ltidi

iLBck

JviLJX

viB

f

iLJQFfmqiLgf

vX

JiBck

JvJJ

J

QF

F

ffmqigii

Xv

Ck

kk

kk

C

vekXk

Xekvk

X

Page 21: Alfven Waves in Toroidal Plasmas

Vorticity Equation

j

j

j jj j

k

j j

B

BckJJvJ

Bf

BckJJvJJQFf

mq

gX

JvqigqJ

XJ

Bf

mvq

ckBk

XBc

QvBdddQ

//102

00

g0

//10

20D2

00g0

2

//

1//

D0

//

20

0

g02//

2

220

2

//02

2

//

02

000

~~1

~~~~

~~

~141

4

equationVoticity equation kinetic-Gyro

0

Page 22: Alfven Waves in Toroidal Plasmas

Vorticity Equation (cont.)

ncompressio Kinetic ~4

drive Ballooning

~ˆ4Inertial

~

bending line-Field~

~

~

2

1

~~

4

:equationAlfven Shear ~~0~

0~ ,0

0D2

02

2

2

22

//0

2

//0

2

2

20D02

00*

2

20

g02

D0

//0

2

//02

2

//

//g0

EE

CD*

ACE

EC

j j

j j

gJcq

ωFωmcqπ

Vk

XBk

XBnn

TT

JQFJFJf

mq

gqJXB

kX

Bc

E

Bf

Page 23: Alfven Waves in Toroidal Plasmas

Wave-Particle Resonances

K b

bbba

bbsa

sa

sa

sa

b

ab

b

ab

l

a

la

sa

sa

sa

sa

ba

b

l

a

ls

la

la

KI

ISIC

vdlQ

vdlQ

vdsI

CSSSSSCSIG

IiSvdsIiIiGg

bgbgagag

SSiS

vig

vi

Xg

DD

////D

//

2121

//

21//

D////

12

cotcot :Resonances

2 ,sin ,cos

,2 ,

~~~~cot2

exp~expexp~

,~,~,~,~

~~~~~

:equation kinetic-Gyro

Page 24: Alfven Waves in Toroidal Plasmas

EPM Features• The Alfven modes gain energy by resonant

interactions between Alfven waves and energetic particles.

• The mode frequencies are characterized by the typical frequencies of energetic particles via the wave-particle resonance conditions.

• The gained energy can overcome the continuum damping.

Page 25: Alfven Waves in Toroidal Plasmas

TAE

• Theoretical model• Bound states in the second

ballooning-mode stable regime• Basic features• Kinetic excitations

[ Hu and Chen, PoP, 2004 ]

Page 26: Alfven Waves in Toroidal Plasmas

Theoretical Model

Page 27: Alfven Waves in Toroidal Plasmas

Basic Equations

Page 28: Alfven Waves in Toroidal Plasmas

Some Definitions

Page 29: Alfven Waves in Toroidal Plasmas
Page 30: Alfven Waves in Toroidal Plasmas
Page 31: Alfven Waves in Toroidal Plasmas

TAE Features

• Existence of potential wells due to ballooning curvature drive.

• Bound states of Alfven modes trapped in the MHD potential wells.

• The trapped feature decouples the discrete Alfven eigenmodes from the continuum spectrum.

Page 32: Alfven Waves in Toroidal Plasmas
Page 33: Alfven Waves in Toroidal Plasmas
Page 34: Alfven Waves in Toroidal Plasmas
Page 35: Alfven Waves in Toroidal Plasmas
Page 36: Alfven Waves in Toroidal Plasmas
Page 37: Alfven Waves in Toroidal Plasmas
Page 38: Alfven Waves in Toroidal Plasmas
Page 39: Alfven Waves in Toroidal Plasmas

Summary

• Introduction to shear Alfven waves in tokamaks and their interaction with energetic particles.

• Discussions on the toroidicity-induced Alfven eigenmode (TAE), the energetic-particle continuum mode (EPM), as well as the discrete Alfven eigenmode ( TAE).

Page 40: Alfven Waves in Toroidal Plasmas

• alpha-TAE: Bound states in the potential wells due to the ballooning drive.

• EPM: Frequencies determined by the wave-particle resonance conditions.

• TAE: Frequencies located inside the toroidal Alfven frequency gap.

Alpha-TAE vs. EPM/TAE