Alexandros Lattas Poster - UCL - London's Global University

19
AvatarMe: Realistically Renderable 3D Facial Reconstruction “in-the-wild” Alexandros Lattas, Stylianos Moschoglou, Baris Gecer, Stylianos Ploumpis, Vasileios Triantafyllou, Abhijeet Ghosh, Stefanos Zafeiriou

Transcript of Alexandros Lattas Poster - UCL - London's Global University

Page 1: Alexandros Lattas Poster - UCL - London's Global University

AvatarMe: Realistically Renderable 3D Facial Reconstruction “in-the-wild”

Alexandros Lattas, Stylianos Moschoglou, Baris Gecer, Stylianos Ploumpis,

Vasileios Triantafyllou, Abhijeet Ghosh, Stefanos Zafeiriou

Page 2: Alexandros Lattas Poster - UCL - London's Global University

Facial Reconstruction Head ReconstructionInput

Realistically Renderable 3D Facial Reconstruction “in-the-wild”AvatarMe

Page 3: Alexandros Lattas Poster - UCL - London's Global University

Realistically Renderable 3D Facial Reconstruction “in-the-wild”

Input

Cathedral + Point lights Sunset + Point light Underpass + Point lights

AvatarMe

Page 4: Alexandros Lattas Poster - UCL - London's Global University

Data

Page 5: Alexandros Lattas Poster - UCL - London's Global University

Light Stage Captures

Imperial College Multispectral Light Stage

Diffuse Albedo Diffuse Normals (Object Space)

Specular Albedo Specular Normals (Tangent Space)

Over 200 individuals captured using unpolarized binary1, 2 and polarized3 gradient illumination.

RealFaceDB: Visit github.com/lattas/AvatarMe

Data

Page 6: Alexandros Lattas Poster - UCL - London's Global University

Method

Page 7: Alexandros Lattas Poster - UCL - London's Global University

1. Base Reconstruction

Input

Reconstruction 𝑺

Completed Texture𝐓

Shape Normals (Object) 𝑵𝑶

Shape Normals (Tangent) 𝑵𝑻

Depth (Object) 𝑫𝑶

Method

3DMM fitting using GANFIT4:• GAN-generated texture• Deep identity features optimization

(576×384)

Page 8: Alexandros Lattas Poster - UCL - London's Global University

2. Inverse Rendering

Relighted UV map 𝑨𝑫𝑻 from captured reflectance

Estimated the point light sources (●) and camera (●) directions used for training and the environment

illumination using a Cornea model5.

Method

Reconstructed Sample 𝔼𝒕∈ 𝑻𝟏,𝑻𝟐,…,𝑻𝒏

Cornea Reflection

Page 9: Alexandros Lattas Poster - UCL - London's Global University

3. Super Resolution

Completed Texture 𝑻

(8×) Completed Texture 𝑻

Deep Residual Channel Attention Networks (RCAN)6, trained on GANFIT-like illuminated RealFaceDB data.

Method

(768×512) (6144×4096)

𝜁(𝑻)

Page 10: Alexandros Lattas Poster - UCL - London's Global University

3. Reflectance InferenceMethod

Image translation network, based on

pix2pixHD6.

- Adversarial loss- Feature Matching Loss- No VGG perpetual loss

Texture 𝑻 Depth 𝑫𝑶 Diffuse Albedo 𝑨𝑫

[512, 512]

[Z][R, G, B]

Diffuse Albedo

(6144×4096)[R, G, B]

𝛿(𝑻,𝑫𝑶)

Delighting of the super-resolved textures 𝑻 from the previous step, trained on the relighted captured data 𝑨𝑫𝑻 .

Page 11: Alexandros Lattas Poster - UCL - London's Global University

4. Head Completion

Geometry 𝑺Diffuse Albedo 𝑨𝑫 Specular Albedo 𝑨𝑺 Specular Normals 𝑵𝑺

We regress the head geometry and translate textures to head topology using the Universal Head Model (UHM)7.

Method

Page 12: Alexandros Lattas Poster - UCL - London's Global University

OverviewMethod

[6144, 4096]

[6144, 4096]

Page 13: Alexandros Lattas Poster - UCL - London's Global University

Results

Page 14: Alexandros Lattas Poster - UCL - London's Global University

Rendered Head ReconstructionResults

Reconstruction DetailInput

Page 15: Alexandros Lattas Poster - UCL - London's Global University

Rendering in different Environments

Examples rendered with an environment and point light sources.

Cathedral + Point lights

Sunset + Point light

Results

Page 16: Alexandros Lattas Poster - UCL - London's Global University

Consistency with different inputs

Input Diffuse Albedo Specular Albedo Normals Rendering

Results

Page 17: Alexandros Lattas Poster - UCL - London's Global University

Ablation

Input Reconstruction Super Resolution Delighting Full Model

Results

Details of rendering after each step of AvatarMe:

Page 18: Alexandros Lattas Poster - UCL - London's Global University

github.com/lattas/AvatarMe

@alexlattas

[email protected]

Realistically Renderable 3D Facial Reconstruction “in-the-wild”AvatarMe

Page 19: Alexandros Lattas Poster - UCL - London's Global University

1. C. Kampouris, S. Zafeiriou, and A. Ghosh, “Diffuse-Specular Separation using Binary Spherical Gradient Illumination,” Eurographics Symposium on Rendering, 2018.

2. A. Lattas, M. Wang, S. Zafeiriou, and A. Ghosh, “Multi-view facial capture using binary spherical gradient illumination,” in ACM SIGGRAPH 2019 Posters, Los Angeles, California, Jul. 2019.

3. A. Ghosh, G. Fyffe, B. Tunwattanapong, J. Busch, X. Yu, and P. Debevec, “Multiview face capture using polarized spherical gradient illumination,” ACM Trans. Graph., vol. 30, no. 6, pp. Dec. 2011.

4. B. Gecer, S. Ploumpis, I. Kotsia, and S. Zafeiriou, “GANFIT: Generative Adversarial Network Fitting for High Fidelity 3D Face Reconstruction,” Proceedings of the IEEE conference on computer vision and pattern recognition, , 2019.

5. K. Nishino and S. K. Nayar, “Eyes for relighting,” ACM Trans. Graph., vol. 23, no. 3, pp. 704–711, Aug. 2004.

6. T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs,” Proceedings of the IEEE conference on computer vision and pattern recognition, Aug. 2018.

7. S. Ploumpis et al., “Towards a complete 3D morphable model of the human head,” arXiv:1911.08008 [cs], Feb. 2020.

8. A. Chen, Z. Chen, G. Zhang, Z. Zhang, K. Mitchell, and J. Yu, “Photo-Realistic Facial Details Synthesis from Single Image,” The IEEE International Conference on Computer Vision (ICCV), 2019.

9. S. Yamaguchi et al., “High-fidelity facial reflectance and geometry inference from an unconstrained image,” ACM Trans. Graph., vol. 37, no. 4, pp. 162:1–162:14, Jul. 2018.

References