Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca...

19
Alessandra Babuscia Mark Van de Loo Mary Knapp Rebecca Jensen Clem Prof. Sara Seager iCubeSat 2012 29 th May

Transcript of Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca...

Page 1: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

Alessandra Babuscia

Mark Van de Loo Mary Knapp

Rebecca Jensen Clem Prof. Sara Seager

iCubeSat 2012 29th May

Page 2: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

State of the Art in CubeSat Communication Benefits of Inflatable Antennas for CubeSat Increased Data Rate for LEO and GEO Enables Interplanetary Communication

Previous works in Inflatable Antennas for CubeSat Trade Study Option 1: Flat Membrane Reflectarray Option 2: Parabolic Dish Reflector Comparison and Selection of

Risks and Mitigation Conclusions and Future Work

Page 3: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

Antennas Orbits: LEO

(between 200Km and 800Km)

Data rate

Data from Klofas and Anderson (2008)

0

2

4

6

8

10

12

Monopole Dipole Patch Turnstile

Typical Antennas Used for CubeSat Missions

0

5

10

15

20

1200 bps 2400 bps 9600 bps 16000 bps 38400 bps

Typical Data Rate for CubeSat Missions

Num

ber o

f Mis

sion

s N

umbe

r of M

issi

ons

Page 4: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

1. Improve link data rates for a CubeSat in LEO or GEO that uses a small university ground station antenna.

2. Enable CubeSat exploration of deep space by developing technology to maintain a low power communication link over a long transmission path.

Page 5: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

Assumptions: -1m dish -OSAGS 2.3 m dish at the receiver

Performance: Data rate increases of 5000%

GEO: 35,786 km LEO: 600 km

Page 6: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

Moon: 378,000 km

Earth-Sun L1/L2: 1,500,000 km

Assumptions: -1m dish -USN 13m dish at the receiver

Performance: Parabolic dish allows communication from a location that is 7 times further than the same CubeSat equipped with a patch antenna.

Page 7: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

Spartan 207/Inflatable Antenna Experiment (Freeland et al., 1997)

Flown on STS-77, May 1996 14 m antenna, three 28 m struts built by L’Garde, Inc Lenticular antenna structure supported by torus Partial deployment achieved

▪ Nominal deployment of torus and struts ▪ Lenticular antenna structure failed to deploy due to malfunction of gas inflation system ▪ Unexpected spacecraft dynamics during deployment due to residual air in structure

Inflatable Reflectarray by ILC Dover, Inc. (Cadogan et al., 1999)

Not flown to date 1 m antenna membrane assembly supported by inflatable torus Designed for X-band radar applications Not designed for compatibility with CubeSat form factor

Page 8: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

Project Objective: design and test an Inflatable High Gain (IHG) antenna for CubeSat: Diameter between 0.5 m and 1 m. Stowed size of 1 U-2 U.

Comparison of two options: Option 1: Flat Membrane Reflectarray Option 2: Parabolic Dish Reflector

Performance metrics: Gain Mass Volume

Page 9: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

1. Circular reflective membrane (1 m, less than 1000 microstrip elements, 1.5 cm each)

2. Tubular inflatable support structure

3. Compressed gas cylinder

4. Microstrip patch feed

5. Container for stowing packaged assembly

Page 10: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

Upper bound Gain of 33.7 dB (X-Band). Measured for a 1 m Reflectarray prototype with ~1000

microstrip elements (Cadogan et al., 1999).

Mass and Volume:

Page 11: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

1. Parabolic reflective membrane (12 µm Mylar with a 0.2 µm layer of vapor deposited aluminum )

2. Parabolic RF transparent canopy

3. Memory metal wire hoop structure

4. Microstrip patch feed 5. Container for stowing

packaged assembly

Page 12: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

Estimated Gain of 35.8 dB (X-Band). Mass and Volume:

Page 13: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

X-Band Ideal Gain

[dB]

Mass [kg]

Packaged Volume [L]

Challenges

Option 1 33.7 3.83 5.48 -Elements folding and spacing (radiation)

-Sequential and controlled deployment

Option 2 35.8 0.69 0.40 -Packaging and release of the

sublimating powder -Radiation

characterization

Page 14: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

Risks Mitigation Strategies

Attitude Control Momentum management and attitude control simulations

Deployment dynamics Deployment testing

Radiation characteristics Anechoic chamber testing

Micrometeoroid impact Investigate UV and radiation hardened materials for inflation chamber membranes

Page 15: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

Inflatable antenna for CubeSat will allow higher data rate links in LEO and GEO, and interplanetary communication.

2 Options have been compared Option 1: Flat Membrane Reflectarray Option 2:Parabolic Dish Reflector

Option 2 selected as most promising design solution. Future work will include the design and test of the

antenna. Testing will ensure the correct deployment and inflation,

and measure the radiation and the gain of the antenna on the different axes.

The radiation of the antenna will also be simulated to obtain a preliminary estimate of the expected radiation pattern.

Page 16: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat
Page 17: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat
Page 18: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat

1. Balanis Constantine (2008): Modern Antenna Handbook, Wiley. 2. Cadogan David P., Lin John K. and Grahne Mark S. (1999): The Development of Inflatable Space

Radar Reflectarrays, 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.

3. Freeland, R. E.; Bilyeu, G. D.; Veal, G. R.; Mikulas, M. M. (1998): Inflatable Deployable Space Structures Technology Summary, Proceedings of 49th International Astronautical Conference.

4. Freeland, R. E.; Bilyeu, G. D.; Veal, G. R.; Steiner, M. D.; Carson, D. E.(1997): Large Inflatable Deployable Antenna Flight Experiment Results, Acta Astronautica - vol. 41, pp: 267-277.

5. Freeland R. E. and Bilyeu G. D. (1993): In-step Inflatable Antenna Experiment, Acta Astronautica -vol. 30, pp: 29-40.

6. Freeland R. E., Bilyeu G. D. and Veal G. R.(1996): Development of Flight Hardware for a Large, Inflatable-Deployable Antenna Experiment, Acta Astronautica- vol. 38 pp: 251-260.

7. Larson Wiley J. and Wertz James R. (1999): Space Mission Analysis and Design, Microcosm. 8. Lin, John K.; Sapna, George A.; Scarborough, Stephen E.; Lopez, Bernardo(2003): Advanced

Precipitation Radar Antenna Singlt Curved Parabolic Antenna Reflector Development., AIAA Journal, vol. 1651, pp:1-10.

9. Lin, John K.; Cadogan, David P.; Huang, John; Feria, Alfonso (2000): An Inflatable Microstrip Reflectarray Concept for Ka-Band Applications, 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.

10. Lin, John K.; Fang, Houfei; Im, Eastwood; Quijano, Obaldo O. (2006): Concept Study of a 35-m Spherical Reflector System for NEXRAD in Space Application, 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.

11. Speretta, Stefano; Weggelaar, Wouter; Erasmus, Johan; Bonnema, Abe; Elstak, Joost (2011): Nanosatellite Communication System Trends, 62nd International Astronautical Conference. - Cape Town.

12. Xu Yan and Guan Fu-Ling (2012): Structure Design and Mechanical Measurement of Inflatable Antenna, Acta Astronautica, Vol. 76, pp 13-25.

Page 19: Alessandra Babuscia Mark Van de Loo Mary Knapp … Babuscia . Mark Van de Loo . Mary Knapp . Rebecca Jensen Clem . Prof. Sara Seager . iCubeSat 2012 29th May State of the Art in CubeSat