Aging mechanisms in Lithium ion batteries revealed by GD ...

12
18. GDS Anwendertreffen 26.09.2019, Freiberg Karsten Richter, Thomas Waldmann, Michaela Memm, Michael Kasper, Peter Axmann, Margret Wohlfahrt-Mehrens Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) Aging mechanisms in Lithium ion batteries revealed by GD-OES depth profiling

Transcript of Aging mechanisms in Lithium ion batteries revealed by GD ...

18. GDS Anwendertreffen

26.09.2019, Freiberg

Karsten Richter, Thomas Waldmann, Michaela Memm, Michael Kasper,

Peter Axmann, Margret Wohlfahrt-Mehrens

Zentrum für Sonnenenergie- und Wasserstoff-Forschung

Baden-Württemberg (ZSW)

Aging mechanisms in Lithium ion batteries revealed

by GD-OES depth profiling

- 1 -

Why Lithium ion batteries?

PriceLifetime

Energy

densitySafety

- 2 -

Working principal and aging mechanism

Mechanism related to

Li deposition

SEI

Li

Li

Li

Li

Li

Li

Li Li Li

Anode

CathodeAmbient charging

conditions

Low currents /

room temp.

SEI

Li

LiLi

Li

Li

Li

Li

Li

Li

Challenging

charging conditions

high currents /

low temp.

[1] T. Waldmann, B.-I. Hogg, M. Wohlfahrt-Mehrens, J. Power Sources 2018, 384, 107–124.

- 3 -

Li metal deposition – Spatially resolved

0 2 4 6 80

5

10

15

20

25

30

35

40

C

P

Li

depth / µm

Li, O

, P

/ w

t.-%

O

0

20

40

60

80

100

C / w

t.-%

0 2 4 6 80

5

10

15

20

25

30

35

40

C

P

Li

O

depth / µm

Li, O

, P

/ w

t.-%

0

20

40

60

80

100

C / w

t.-%

- dominant

dendritic structure

Li metal

deposition

- inhomogeneous

and small dendritic

structures visible

[2] T. Waldmann, J. B. Quinn, K. Richter, M. Kasper, A. Tost, A. Klein, M. Wohlfahrt-Mehrens, J. Electrochem. Soc. 2017, 164, A3154–A3162.

SEM

CT

- 4 -

Li metal deposition – Effect of resting time

0 2 4 6 80

5

10

15

20

25

30

35

40

P

Li

O

depth / µm

Li, O

, P

/ w

t-%

C

0

20

40

60

80

100

C / w

t.-%

0 2 4 6 80

5

10

15

20

25

30

35

40

C

P

Li

depth / µm

Li, O

, P

/ w

t.-%

O

0

20

40

60

80

100

C / w

t.-%

8 h

GD

-OE

SS

EM

- after cell operation:

dominant Li metal

deposition and high

surface concentration of Li

- after resting broad and

flat Li distribution

GD-OES reveals

reintercalation of Li

No dendritic structure

visible

[2] T. Waldmann, J. B. Quinn, K. Richter, M. Kasper, A. Tost, A. Klein, M. Wohlfahrt-Mehrens, J. Electrochem. Soc. 2017, 164, A3154–A3162.

rest

- 5 -

Aging mechanism – Effect of operating temperature

0 2 4 6 80

5

10

15

20

25

30

35

40

PLi

O

depth / µm

Li, O

, P

/ w

t-%

C

0

20

40

60

80

100

C / w

t.-%

0 2 4 6 80

5

10

15

20

25

30

35

40

C

P

Li

depth / µm

Li, O

, P

/ w

t.-%

O

0

20

40

60

80

100

C / w

t.-%

0 2 4 6 80

5

10

15

20

25

30

35

40

P

Li O

C

depth / µm

Li, O

, P

/ w

t-%

0

20

40

60

80

100

C /

wt.-%

Fresh cell: initial SEICycling at 0 °C: Li metal

covers anode Surface

Cycling at 45 °C: Un-

ceasing film formation (e.g.

Li2O, Li2CO3)

[2] T. Waldmann, J. B. Quinn, K. Richter, M. Kasper, A. Tost, A. Klein, M. Wohlfahrt-Mehrens, J. Electrochem. Soc. 2017, 164, A3154–A3162.

Graphite, LiC6: 372 mAh g-1

Silicon, Li15Si4: 3579 mAh g-1

- 6 -

Increasing demand for energy

lithiation

delit

hia

tion

binder

conductive additive

passiv

atio

n

High volume expansion

- Particle cracking

- Contact loss

- Ongoing film formation and

Li+-Ion consumption

- Formation of passivation

layer and intrinsic

mechanical instability

(mixing, volume change)

- Anisotropic de-/lithiation

[3] M. N. Obrovac, L. Christensen, D. B. Le, J. R. Dahn, J. Electrochem. Soc. 2007, 154, A849. [4] M. N. Obrovac, V. L. Chevrier, Chem. Rev. 2014, 114, 11444–11502.

[5] P. Limthongkul, Y.-I. Jang, N. J. Dudney, Y.-M. Chiang, Acta Mater. 2003, 51, 1103–1113. [6] N. Delpuech, N. Dupre, P. Moreau, J.-S. Bridel, J. Gaubicher, B. Lestriez, D. Guyomard, ChemSusChem 2016, 9, 841–84

- 7 -

Si in LIB anodes – GD-OES approach

0 5 10 15 20 25 30 350

5

10

15

20

25

30

35 GD-OES

EDX

Quantified S

i (w

t.-%

)

Si in reference samples (wt.-%)0 2 4 6 8 10

0

10

20

30

40

50

60

70

80

90

100

(16.5 ± 2.5) wt.-%

(20.5 ± 1.9) wt.-%

(1.1 ± 0.1) wt.-%

(61.0 ± 0.9) wt.-%

(65.9 ± 1.5) wt.-%

Si (w

t.-%

)

depth (µm)

(99.7 ± 1.1) wt.-%

0 100 200 300 4000.0

0.1

0.2

0.3

0.4

Inte

nsity x

10

00

Si (a

.u.)

sputtering time (s)

Initial sputtering

1st interruption

2nd interruption

mean bulk intensity

0 2 4 6 80

5

10

15

20

25

P

Si

C

O

Li, O

, P

, S

i (w

t.-%

)

depth (µm)

Li20

30

40

50

60

70

80

90

100C

(w

t.-%

)

- covering 0-100 wt.-%

Si to analyse graphite

and Si dominant

composite electrodes

- unexpected Si

distribution observed

[7] K. Richter, T. Waldmann, M. Memm, M. Kasper, M. Wohlfahrt-Mehrens, J. Electrochem. Soc. 2018, 165, A3602–A3604

[8] K. Richter, T. Waldmann, M. Kasper, C. Pfeifer, M. Memm, P. Axmann, M. Wohlfahrt-Mehrens, J. Phys. Chem. C 2019, 123, 18795–18803

- 8 -

Si related aging mechanism – revealed by GD-EOS

0 2 4 6 80

5

10

15

20

25

P

Si

C

O

Li, O

, P

, S

i (w

t.-%

)

depth (µm)

Li20

30

40

50

60

70

80

90

100

C (

wt.

-%)

0 2 4 6 80

5

10

15

20

25

Li, O

, P

, S

i (w

t.-%

)

depth (µm)

Si

P

20

30

40

50

60

70

80

90

100C

(w

t.-%

)

O

C

Li

3x 60s dip washed

with DMC

- Si detectable in DMC with ICP-OES

5 SiO + 6 Li Li2O + Li4SiO4 + 4 Si

5 SiO2 + 4 Li 2 Li2Si2O5 + Si

Side reaction of active material

with electrolyte, consumes Li.

Additional film formation and

dissolution.

[7] K. Richter, T. Waldmann, M. Memm, M. Kasper, M. Wohlfahrt-Mehrens, J. Electrochem. Soc. 2018, 165, A3602–A3604

[8] K. Richter, T. Waldmann, M. Kasper, C. Pfeifer, M. Memm, P. Axmann, M. Wohlfahrt-Mehrens, J. Phys. Chem. C 2019, 123, 18795–18803

- 9 -

Si related aging mechanism – revealed by GD-EOS

0.0 0.5 1.0 1.5 2.00

5

10

15

20

25

30

35

40

Si / w

t.-%

depth / µm

Formation

50 Cy C/3 RT

50 Cy C/3 45 °C

40 Cy C/3 0 °C

0 2 4 6 8 100

5

10

15

20

25

30

35

40

Si / w

t.-%

depth / µm

Formation

50 Cy C/3 RT

50 Cy C/3 45 °C

40 Cy C/3 0 °C

0 2 4 6 8 100

5

10

15

20

25

30

35

Si / w

t.-%

depth / µm

Formation

50 Cy C/3 RT

50 Cy C/3 RT MdCh

25 Cy MdCh 25 Cy C/3 RT

0.0 0.5 1.0 1.5 2.00

5

10

15

20

25

30

35S

i / w

t.-%

depth / µm

Formation

50 Cy C/3 RT

50 Cy C/3 RT MdCh

25 Cy MdCh 25 Cy C/3 RT

- Si distribution depends on physical

and electrochemical operation

conditions

- 45 °C enhances film formation,

containing Si-rich species

- 0 °C shifts the Si distribution to

deeper levels of the electrode

- lower cut off potential increases Si

species on surface

Enhanced side reactions during

discharge

- 10 -

Conclusions

0 2 4 6 80

5

10

15

20

25

30

35

40

C

P

Li

depth / µm

Li, O

, P

/ w

t.-%

O

0

20

40

60

80

100

C /

wt.-%

- GDOES provides spatially resolved elemental

distribution

Covering the plating behaviour over the jelly

roll

- GDOES provides information about the aging

mechanism regarding cell operation conditions

Differentiation between, e.g. Li metal

deposition or electrolyte decomposition

- GDOES can be calibrated to novel battery

materials revealing material specific aging

mechanism

Film formation and dissolution on Si/C

composite materials

0 2 4 6 80

5

10

15

20

25

30

35

40

PLi

O

depth / µm

Li, O

, P

/ w

t-%

C

0

20

40

60

80

100

C / w

t.-%

0 2 4 6 80

5

10

15

20

25

30

35

40

C

P

Li

depth / µm

Li, O

, P

/ w

t.-%

O

0

20

40

60

80

100

C /

wt.-%

0 5 10 15 20 25 30 350

5

10

15

20

25

30

35 GD-OES

EDX

Quantified S

i (w

t.-%

)

Si in reference samples (wt.-%)

0 2 4 6 80

5

10

15

20

25

P

Si

C

O

Li, O

, P

, S

i (w

t.-%

)

depth (µm)

Li20

30

40

50

60

70

80

90

100

C (

wt.

-%)

0 2 4 6 80

5

10

15

20

25

Li, O

, P

, S

i (w

t.-%

)

depth (µm)

Si

P

20

30

40

50

60

70

80

90

100

C (

wt.-%

)

O

C

Li

electrode

washing

- 11 -

Widderstall:

Solar Test Facility

-// Energy with a future

-// Zentrum für Sonnenenergie- und Wasserstoff-

Forschung Baden-Württemberg (ZSW)

Thank you for your attention!

Stuttgart:

Photovoltaics, Energy

Policy and Energy

Carriers, Central

Division Finance,

Human Resources

& Legal

Ulm:

Electrochemical Energy Technologies - Main Building & eLaB

// Energy with a future

// Zentrum für Sonnenenergie- und Wasserstoff-

Forschung Baden-Württemberg (ZSW)

Funding:

MAT4BAT – EU (n° 608931)

LIB.DE – BMWi (n° 03ET6081A)

ZSW:

Niloofar Ghanbari (now Bosch)

Thomas Waldmann

Michaela Memm

Michael Kasper

Peter Axmann

Margret Wohlfahrt-Mehrens

Spectruma:

Rüdiger Meihsner

Tatjana Leibßle

Otto Paljok

Tahir Serbet

Michael Analytis