AFM and double pass techniques - unipr.it › html › Ghidini.pdf23/04/2009 M. Ghidini, Grenoble,...

38
23/04/2009 M. Ghidini, Parma, CIM 1 AFM and double pass techniques Outline 1. Introduction to Scanning Probe Microscopy : basic concepts. 2. Force Microscopy concept and Instrumental Aspects relevant forces operation modes in force microscopy 3. Tapping AFM 4. Magnetic Force Microscopy 5. Electrical Force Microscopies Massimo Ghidini, Dip.to di Fisica dell’Università di Parma

Transcript of AFM and double pass techniques - unipr.it › html › Ghidini.pdf23/04/2009 M. Ghidini, Grenoble,...

  • 23/04/2009 M. Ghidini, Parma, CIM 1

    AFM and double pass techniques

    Outline

    1. Introduction to Scanning Probe Microscopy : basic concepts.

    2. Force Microscopy • concept and Instrumental Aspects

    • relevant forces

    • operation modes in force microscopy

    3. Tapping AFM

    4. Magnetic Force Microscopy

    5. Electrical Force Microscopies

    Massimo Ghidini, Dip.to di Fisica dell’Universitàdi Parma

  • 23/04/2009 M. Ghidini, Parma, CIM 2

    1. Introduction to Scanning Probe Microscopy : basic concepts.

    deflection sensor

    approach

    Data acquisition

    tipfeedback

    force sensor

    vibration damping

    sample

    G. Binnig, Ch. Gerber and C.F. Quate, Phys. Rev. Lett. 56, 930 (1986)

    The birth of the AFM

  • 23/04/2009 M. Ghidini, Parma, CIM 3

    1. Introduction to Scanning Probe Microscopy : basic concepts.

    General Physical principle of scanning probes : interaction between probe and sample

    STM

  • 23/04/2009 M. Ghidini, Parma, CIM 4

    1. Introduction to Scanning Probe Microscopy : basic concepts.

    Scanning and Control : Actuators

    PZT-5H d31= 0.262 nm/V

    Horizontal scanning obtained by the bending of the tube

    Dh

    Uldx x

    2

    3122

    Vertical movement : elongation of a tube

  • 1. Introduction to Scanning Probe Microscopy : basic concepts.

    23/04/2009 M. Ghidini, Parma, CIM 5

    Problems limiting position performance of scanners

    •Non –linearity

    •Hysteresis in scanning

    •Creep

    •Noise and drift in high voltage supply

    •Thermal drift of mechanical set up

  • Force Microscopy: concept and instrumental aspects

    Mesurement of forces between a sharp tip and sample: static vs. dynamic

    23/04/2009 M. Ghidini, Parma, CIM 6

    f1 f2 f3

    f

    A

    DC: zDC= F/k QzmFQ

    zDC2

    0

    AC

  • Force Microscopy: concept and instrumental aspects

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    7

    Change in resonance

    curve can be detected by:

    Lock-in (A or ) (as in Tapping™

    mode)

    FM detection (PLL, f)

    Albrecht, Grutter, Horne and RugarJ. Appl. Phys. 69, 668 (1991)

    Force gradient F’ :additional

    stiffness in series

    F’= 2k f/f

    (if d2V / dz2 constant)

    AC :

  • 23/04/2009 M. Ghidini, Parma, CIM 8

    Force sensors and measurements : static (or DC) vs. dynamic (or AC modes)

    Atomic Forces :1 nN; Magnetic:1-10 pN; Precessional forces: 1fN

    Tkzk B2

    1

    2

    1 2

    Force resolution and thermal noise

    Q

    TkkzkF Bstatic

    0

    2

    min

    2

    DC: Off-resonance bandwidth convenient

    Ultimate force resolution determined by thermal noise (ideal case)

    Q

    Tkkz

    Q

    kF Bdyn

    0

    2

    min

    2

    0

    AC: resonance bandwidth convenient

  • 23/04/2009 M. Ghidini, Grenoble, Institut Néel

    9

    Displacement sensors

  • Force Microscopy: concept and instrumental aspects

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    10

    3

    3

    4l

    Ewtkn

    For silicon: E=1.69 1011 N/m2

    Cantilever

    type

    L

    (micr)

    W

    (micr)

    T

    (micr)

    K

    (N/m)

    f0

    (kHz)

    NSC18 230 3.0 2-5.5 75

    NSC 21 290 40 2.0 1 25

    CSC38/Pt (3 levers per chip)

    350

    300

    250

    35 1.0

    0.03

    0.05

    0.08

    12

  • Force Microscopy: concept and instrumental aspects

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    11

  • Operation modes

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    12

  • Contact Mode

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    13

    file:///E:/Documents%20and%20Settings/Massimo/Desktop/constforcemode.SWF

    file:///E:/Documents%20and%20Settings/Massimo/Desktop/constant_height_mode.s

    wf

    file:///E:/Documents and Settings/Massimo/Desktop/constforcemode.SWFfile:///E:/Documents and Settings/Massimo/Desktop/constforcemode.SWFfile:///E:/Documents and Settings/Massimo/Desktop/constant_height_mode.swffile:///E:/Documents and Settings/Massimo/Desktop/constant_height_mode.swffile:///E:/Documents and Settings/Massimo/Desktop/constant_height_mode.swf

  • Point Mass Modeling in the harmonic approximation...

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    14

  • ...And its limitations

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    15

  • Operation modes

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    16

  • Operation modes

    Contrast formation : non-contact (dynamic) vs. Contact (static)

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    17

  • Fts term : relevant forces

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    18

  • Relevant Forces....

    ...are ultimately of electromagnetic origin. But different effects give rise to specific distance dependences. So the following contributions can be identified:

    Long-range acttractive Van der Waals arising from e.m. Fluctuations. Therefore they are universally present regardless of tip/sample system.

    Contact and short-range repulsive forces : Pauli exclusion principle and ionic repulsion. However if contact area involoves 10-100 atoms usually microscopic picture is replaced with continuum models of between elastic bodies.

    Capillary : meniscus or liquid bridge formed between tip and surface. This implies actractive force.

    Electrostatic forces : due to charges trapped on dielectric surfaces.

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    19

  • Tapping mode (semicontact, intermittent contact...)

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    20

    Principle: amplitude modulation- cantilever excited near resonance. Oscillation amplitude used as feedback parameter to measure the topography

    Tapping (or intermittent contact) is usually associated with measurements in ambient conditions

    starting idea was to use high amplitudes(100 nm) and stiff cantilevers (40 N/m);

    file://E:/Documents%20and%20Settings/Massimo/Desktop/semicontact_mode.swf

    file:///E:/Documents and Settings/Massimo/Desktop/semicontact_mode.swffile:///E:/Documents and Settings/Massimo/Desktop/semicontact_mode.swf

  • Comparison with Non-Contact

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    21

    Tapping Non-contact

    file://E:/Documents%20and%20Settings/Massimo/Desktop/semicontact_mode.swf

    file:///E:/Documents and Settings/Massimo/Desktop/semicontact_mode.swffile:///E:/Documents and Settings/Massimo/Desktop/semicontact_mode.swf

  • Tapping AFM dynamics

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    22

  • Tapping AFM dynamics

    23/04/2009 Massimo Ghidini , Parma, CIM 23

  • Resolution

    23/04/2009 M. Ghidini , Grenoble, Institut Néel

    24

    Thermal noise: for k= 40 N/m -> 0.01 nm

    Vertical resolution 0.1 nm or better

    Lateral resolution : difficult to define . Presence of elangerment

    DNA

  • Magnetic Force Microscopy

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    25

    dVHME sampletip 0 stipz HzMF

    0

    If modifications induced by tip can be neglected

    Co tip

    Ni sample

    F=qtipHsample= 8.65.10-10

    N~1 nN

    Upper limit in ideal case 1 nNTypically force are smaller 1-10 pN

    If force and tip are aligned along z:

    z

    FFkk

    k

    Fz

    magnonmag

    leff

    eff

    mag

    mag

    ;

  • 23/04/2009 M. Ghidini, Grenoble, Institut Néel

    26

    Amplitude and phase variation in the presence of a magnetic forces gradient

    F m z zH xe x z

    H z e z

    fz

    F z m z

    2

    z2

    H z

    Close to resonance

  • Lift Mode

    23/04/2009 M.Ghidini, CIM, Parma 27

    file:///E:/Documents%20and%20Settings/Massimo/Desktop/ac_mfm.swf

    Most used method of tip/sample distance control: topography can be made dominant contribution even if tip is magneticOn the other hand the 2° pass method technique can be either static or dynamic

    file:///E:/Documents and Settings/Massimo/Desktop/ac_mfm.swffile:///E:/Documents and Settings/Massimo/Desktop/ac_mfm.swf

  • Contrast categories

    Negligible modification : Mtip and Hsample do not change with tip-sample position, and so does contrast

    Reversible modification: contrast is a function of tip/sample distance only

    Hysteretic or irreversible modification: Mtip and Hsample are changed irreversibly during scan. Contrast depends also on the history of tip-sample position.

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    28

  • 23/04/2009 M. Ghidini , Grenoble, Institut Néel

    29

    When life is “easy”…...

    ẑz)ndz(

    z)1(tM4

    x̂z)ndx(

    ndx)1(tM4)z,x(H

    22n

    n

    r

    22n

    n

    r

    d

    t

    D.Rugar et al. J. Appl. Phys, 68,1169, 1990

  • Hard disks

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    30

  • Hard Materials: CoPt

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    31

    M. Ghidini et al, J. Appl. Phys. 2006

  • Soft Materials: flux closures in Fe (110) dots

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    32

    Compact 3D dots

    300K 500K 700K 900K

    ~750K ?

    1AL

    2AL

    3AL

    4AL

    >6AL

    Deposition temperature, T (K)S

    Not explored

    Nom

    ina

    l co

    ve

    rage (

    ato

    mic

    layers

    , A

    L)

    T =700K, [2AL,6AL]t=6AL (for Mo)

    rQ T 6AL

    (for Mo)r

    Q T >400K, >6AL (for Mo)r

    Q

    Flat islandst~1nm

    (for Fe/Mo)

    Compact 3D dotst>30nm

    [-110]

    [001]

    (110)

    Q~3.5AL

    1 m

    5m

    2m

    500n

    m

    O. Fruchart et al., J. Phys.: Condens. Matter 19, 053001, Topical Review (2007). Presented at JEMS08

  • 23/04/2009 M. Ghidini, Grenoble, Institut Néel

    33

    Types of contrast

    A

    B

    A

    B

  • 23/04/2009 M. Ghidini Grenoble, Institut Néel

    34

    Tip-sample interaction

  • Electrostatic Force Microscopy

    23/04/2009 M. Ghidini, Scuola CIM 35

    file:///E:/Documents%20and%20Settings/Massimo/Desktop/efm/efm.swf

    KPFM

    SCM

    file:///E:/Documents and Settings/Massimo/Desktop/efm/efm.swffile:///E:/Documents and Settings/Massimo/Desktop/efm/efm.swf

  • Cristian Staii et al., Quantitative analysis of Scanning Conductance Microscopy, Nanoletters, 2004, 4 (5), 859-862

    Figure 1. (a) Schematic of SCM. In the interleave scan, theDCvoltage-biased AFM cantilever is driven at its resonant frequency at afixed height h above the sample. The phase of the cantilever oscillation isrecorded as a function of tip position. (b) 30 ím 30 ím SCM image of carbonnanotubes. The inset shows a line scan along the black line. SWNTs andother small diameter conducting nanowires show a negatiVe phase shift inSCM. (c) 30 ím 30 ím SCM image of an insulating PEO nanofiber (diameter10-100 nm) with a line scan along the black line. Insulating nanofibers showa positiVe phase shift in SCM. (d) 20 ím 20ím SCM image of a conductingPAn.HCSA/PEO nanofiber (diameter 100 nm). The inset is a line scan alongthe black line showing a negatiVe-positiVe-negatiVe contrast in SCM.

  • The model

    )(tan

    22

    0

    z

    F

    k

    10

    2

    211

    )(

    2

    1tipV

    z

    hCF

    2

    2

    1

    2

    0

    )(

    2tan tipV

    z

    hC

    k

    Q

    2/

    2

    2

    2

    2

    2

    1

    2

    0

    )()(

    2)tan( tipV

    z

    hC

    z

    hC

    k

    Q

  • EFM on graphene

    23/04/2009 M. Ghidini, Grenoble, Institut Néel

    38