Advisor: Jun Zhu Speaker: Xuerui Wang

14
Advisor: Jun Zhu Speaker: Xuerui Wang Theoretical study on the interconversion of silabenzenes and their non-aromatic isomers via the [1,3]-substituent shift: aromaticity vs Bent's rule B ent's R ule A rom aticity A rom aticity B ent'rule Si O R X Si R O X G = -28.5 ~ 122.2 kcal m ol -1

description

Theoretical study on the interconversion of silabenzenes and their non-aromatic isomers via the [1,3]-substituent shift: aromaticity vs Bent's rule . Advisor: Jun Zhu Speaker: Xuerui Wang. Outline. Background. 1. 2. Computational Method. Results and Discussion. 3. - PowerPoint PPT Presentation

Transcript of Advisor: Jun Zhu Speaker: Xuerui Wang

Page 1: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Advisor: Jun Zhu Speaker: Xuerui Wang

Theoretical study on the interconversion of silabenzenes and their non-aromatic isomers via the

[1,3]-substituent shift: aromaticity vs Bent's rule

Bent's Rule Aromaticity

AromaticityBent' rule

SiOR

XSi

R OXG = -28.5 ~ 122.2

kcal mol-1

Page 2: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Outline

Background

Computational Method

Results and Discussion

Conclusion4

1

2

3

Page 3: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Background

Text in here

SiAd

OTMS

TMS

TMSSi

Ad

OTMSTMS

TMS

hv

TMS = SiMe3Ad = 1-adamantyl

Figure 1.Photochemically Induced [1,3]-Trimethylsilyl Shift from Si to O Applied by Brook et al. to the Formation ofthe First Silene Stable at room temperature1. Brook, A. G.; Abdesaken, F.; Gutekunst, B.; Gutekunst, G.; Kallury, R. K. J. Chem. Soc., Chem. Commun. 1981,191. 2. Brook, A. G.; Nyburg, S. C.; Abdesaken, F.; Gutekunst, B.; Gutekunst, G.; Krishna, R.; Kallury, M. R.; Poon,Y. C.; Chang, Y. M.; Wong-Ng, W. J. Am. Chem. Soc. 1982, 104, 5667.

SiSiO

R3SiR3Si

R''R' R' R''

R'''R'''

OSiR3R3Si

R = Me or iPrR' = H, Me, Et, iPr, tBu, OSiMe3

R'' = H, Me, Et, iPr, tBuR''' = H, Me, tBu

Rouf, A. M.; Jahn, B. O.; Ottosson, H. Organometallics.2013, 32, 16.

Figure 2. Synthetic route to silabenzenes through the [1,3]-Si O TMS shift by Density functional theory (DFT) calculations

G= -11.1~ -22.6 kcal mol-1

Page 4: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Background

Rouf, A. M.; Jahn, B. O.; Ottosson, H. Organometallics.2013, 32, 16

driving force Aromaticity

G = 0.6 kcal/molSi SiO OSiMe3Me3Si

Me3SiMe3Si

Figure 3. [1,3]-Trimethylsilyl Shift Leading from 1,1-Bis(trimethylsilyl)-3,6-dimethylenesilacyclohexan-2-one to 1,1-Bis(trimethylsilyl)-3,6-dimethylene-2-(trimethylsiloxy) silacyclohex-1-ene

nonaromatic six membered ring

Kutzelnigg, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 272.

silicon atom is reluctant to participate in bonding

Page 5: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Computational Method

Package :

Method :

basis sets :

Gaussian 09

M06-2X / B3LYP

6-311+G **

1.(a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200. (c) Lee, C.; Yang, W.; Parr, G. Phys. ReV. B 1988, 37, 785. 2. Zhao,Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.3. Frisch, M. J. et al. Gaussian, Inc., Wallingford CT, 2010.

DFT

Page 6: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Results and Discussion

Figure 4. The formation of silabenzenes through the [1,3]-Si→O substituent shift .

Bent’s rule : atomic s character tends to concentrate in orbitals that are directed toward electropositive groups and atomic p character tends to concentrate in orbitals that are directed toward electronegative groups.

(a) Bent, H. A. Chem. Rec.1961, 61, 275. (b) Zhu, J.; Lin, Z.; Marder, T. B. Inorg. Chem. 2005, 44, 9384.

1.928

1.481

1.3461.472

1.343

1.8671.796

1.391

1.3971.396

1.393

1.770

1.934

1.482

1.3461.474

1.344

1.8671.796

1.389

1.3971.397

1.394

1.775

SiSiOH3Si

H OHH3SiG = -0.3 SiSi

OH3SiMe2N ONMe2H3Si

G = +46.8

a b

reluctance sp3

Page 7: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Results and Discussion

SiSiOR1

X OXR1

X: H, NMe2, F, OMe, Cl, SMe, Me, GeH3, SiH3, AlH2Set A: R1 = SiH3, Set B: R1 = Me

Figure 6. [1,3]-substituent shift for the formation of silabenzenes with various substituents.

SiOXH3Si

SiH2Si OX

X = H ISE = -25.3

X = NMe2 ISE = -28.3

Figure 5. The calculated ISE values of A1' and A2'.

NICS(0)zz -11.2 (X = H) -11.6 (X=NMe2)

Evaluate Aromaticity : ISE(isomerization stabilization energy) method and NICS( nucleus independent chemical shift) calculations

Page 8: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Results and DiscussionSilabenzene ΔG(298k)(kcal/mol) ΔSiC(ring) ΔCC(ring) NICS(0)zz Σα(Si)

1a(F) 117.8 0.021 0.008 -12.5 360.01b(OMe) 84.76 0.02 0.006 -11.9 360.01c(Cl) 77.15 0.02 0.017 -10.9 359.21d(NMe2) 46.76 0.02 0.005 -11.6 360.01e(SMe) 38.13 0.026 0.006 -12.0 360.01f(Me) 17.83 0.029 0.01 -11.9 360.01g(H) -0.33 0.026 0.006 -11.2 360.01h(GeH3) -0.8 0.033 0.004 -11.5 360.01i(SiH3) -16.08 0.031 0.005 -11.7 359.91j(AlH2) -29.32 0.026 0.005 -11.3 360.02a(F) 122.2 0.011 0.016 -9.2 360.02b(OMe) 90.2 0.024 0.009 -12.3 360.02c(Cl) 81.45 0.014 0.009 -10.0 359.82d(NMe2) 54.48 0.026 0.009 -12.0 360.02e(SMe) 42.38 0.029 0.012 -11.6 360.02f(Me) 22.29 0.031 0.003 -12.3 360.02g(H) 2.32 0.031 0.012 -11.8 360.02h(GeH3) 0.11 0.033 0.007 -11.8 360.02i(SiH3) -14.8 0.031 0.008 -11.9 360.02j(AlH2) -28.48 0.029 0.01 -11.5 360.0

SiR1 OX

SiO

R1X

G

R1 = SiH3 (set 1) R1 = Me (set 2)

X = F (a) X = OMe (b) X = Cl (c) X = NMe2 (d) X = SMe(e) X = Me(f) X = H(g) X = GeH3 (h) X = SiH3 (i) X = AlH2(j)

Page 9: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Results and Discussion

Figure 7. The plot of s character of Si to the Si-X σ bond vs ΔG

Page 10: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Results and Discussion

Figure 8. The plot of s character of Si to the Si-X σ bond vs reaction barriers (ΔG)

Page 11: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Results and Discussion

Figure 9. Plot of reaction free energies (ΔG) against the percentage of the s character of Si in the Si-X bonds by replacing the acyl group with methylene group in acylsilane..

Page 12: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Results and Discussion

Figure 10. Plot of reaction free energies (ΔG) against the percentage of the s character of Si in the Si-X bonds in nonaromatic system.

Silabenzene (X)

ΔG ΔG' ΔG'-ΔG

A1' (H)A2' (NMe2)

-0.346.8

27.674.8

27.928.0

A3' (Me)A4' (SMe)A5' (Cl)A6' (OMe)A7' (F)A8' (GeH3)A9' (SiH3)A10' (AlH2)B1' (H)B2' (NMe2)B3' (Me)B4' (SMe)B5' (Cl)B6' (OMe)B7' (F)B8' (GeH3)B9' (SiH3)B10' (AlH2)

17.838.177.284.8117.8-0.8-16.1-29.32.354.522.342.481.590.2122.20.1-14.8-28.5

46.167.0105.9114.0147.426.812.5-2.232.983.951.173.3114.1121.8153.830.015.6-0.2

28.328.928.729.229.627.628.631.530.629.428.830.932.631.631.629.930.428.7

Page 13: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Conclusion

1. Aromaticity is not the only driving force for the

reaction.

2. Bent‘s rule plays an important role in formation

of the silabenzene.

3. Our findings could be a useful guide to the

synthesis of silabenzenes.

Page 14: Advisor: Jun Zhu       Speaker:  Xuerui  Wang

Thank You!