Advisor: Dr. Stephen D. Liberles Erika Kristen Williams

57
Neural Mechanisms of Mechanosensation Within the Body The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Williams, Erika. 2018. Neural Mechanisms of Mechanosensation Within the Body. Doctoral dissertation, Harvard Medical School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:36923341 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA

Transcript of Advisor: Dr. Stephen D. Liberles Erika Kristen Williams

Neural Mechanisms ofMechanosensation Within the Body

The Harvard community has made thisarticle openly available. Please share howthis access benefits you. Your story matters

Citation Williams, Erika. 2018. Neural Mechanisms of MechanosensationWithin the Body. Doctoral dissertation, Harvard Medical School.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:36923341

Terms of Use This article was downloaded from Harvard University’s DASHrepository, and is made available under the terms and conditionsapplicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

iii

Advisor:Dr.StephenD.Liberles ErikaKristenWilliams

Neuralmechanismsofmechanosensationwithinthebody

Abstract

Theabilitytodetectmechanicalforcesplaysacriticalroleinorganismbehaviorand

physiology.Oneofthefundamentalmeansbywhichweinteractwithourenvironmentis

throughtouch,whichincludestheabilitytosensemechanicaleventssuchaspressure,

impact,vibration,andchangesinjointposition.Similarly,oneofthefundamentalcues

usedbyinternalorgansystemstoregulatebehaviorandphysiologicalresponsesis

mechanicalforcewithinthebody.Sensorysystemsintheintestinaltractdetectstretchas

theseorgansfillwithandmovefood,playingapowerfulroleinthemodulationofeating

behavior.Inaddition,sensorysystemsalsomonitortheexpansionandrelaxationofthe

lungsduringbreathingtoregulaterespiration.Similarly,accuratemonitoringofpressure

withinthevascularsystemplaysakeyroleinregulationofcardiovascularfunction.Eating,

breathing,andbloodcirculationconstitutebasicneeds,yetourunderstandingofthe

sensoryneurobiologyincontrolofthesefunctionsislimited.Todate,themolecular

mechanosensorsrequiredremainunknown.However,thediscoveryofthemammalian

mechanosensorPiezo2raisestheinterestingpossibilitythatthismoleculeisnotonly

involvedindetectionofexternalmechanicalcuesinourskin,butmayalsosub-serve

detectionofmechanicalcueswithintheinternalorgansofthebody.

iv

TableofContentsIntroduction...........................................................................................................................................7Mechanosensationininternalorgans.....................................................................................................7ThemammalianmechanosensorPiezo2..............................................................................................25Recordingmechanosensitiveafferentsinthevagus........................................................................30

Experiment1:InVivoimagingofPiezo-2lineageneurons................................................35Introduction...................................................................................................................................................35Methods............................................................................................................................................................35Results..............................................................................................................................................................35Conclusions.....................................................................................................................................................39

Experiment2:InvivoimagingofneuronsthatexpressPiezo2intheadult.................40Introduction...................................................................................................................................................40Methods............................................................................................................................................................40Results..............................................................................................................................................................41Conclusions.....................................................................................................................................................43

Experiment3:DetectionofstretchstimuliinPiezo2knock-outganglia.......................44Introduction...................................................................................................................................................44Methods............................................................................................................................................................44Results..............................................................................................................................................................45Conclusions.....................................................................................................................................................48

Summary..............................................................................................................................................50Bibliography........................................................................................................................................50

v

Glossary

AAV–adeno-associatedvirus

DRG–dorsalrootganglion

GLP1R–GLP1receptor

GPR65–G-proteincoupledreceptor65

IGLE–intraganglioniclaminarending

IMA–intramusculararray

RAR–rapidly-adaptingstretchreceptor

SAR–slowly-adaptingstretchreceptor

siRNA–smallinterferingribonucleicacid

vi

Acknowledgements

Thankyoutomyfamily,theLiberlesLabpastmembersandpresent,theProgramin

Neuroscience,MDPhDProgram,andHSTProgramfortheconstantsupportand

inspiration.Thankyoutosomanyfortechnicalhelpandexpertise,andmostnotablythe

HarvardAnimalFacilities;withoutyounoneofthisworkwouldbepossible.Financial

supportforthisworkwasthroughF30CA177170andNIHMSTP-T32GM007754.

7

Introduction

Mechanosensationininternalorgans Internalorgansareinconstantmotion,andsimilarlyconstantlysubjecttoavariety

ofmechanicalforcesofcriticalphysiologicalsignificance.Eatingresultsinaccumulationof

foodinthestomachandmechanicaldistensionofthestomachwall.Neuraldetectionof

stomachstretchplaysacriticalroleinfeedingbehavior.Inaddition,digestioninvolvesthe

mechanicalpropulsionoffoodthroughsphinctersandoverapproximately25feetofadult

humanintestine,aprocesssimilarlymonitoredandregulatedbythenervoussystem.

Breathingischaracterizedbythemechanicalexpansionandrelaxationofthechestcavity

togeneratechangesinpressure,andsubsequentflowofairintoandoutofthelungs.

Sensoryneuronsmonitorrespiratorymovementtoregulatebreathfrequencyanddepth,

importantvariablesforadequateoxygenation,carbondioxideexcretion,andprotectionof

lungtissue.Lastly,thebeatingheartpumpsbloodandgeneratespulsatileflowand

pressurewithinthevasculature.Neuralmonitoringofbloodpressureinitiatesreflex

regulationofheartrateandsubsequentcardiovascularvariablestopreserveadequate

tissueperfusion.

Inthissection,wewillreviewmechanosensationindigestion,respiration,and

circulation,withafocusontransmissionofinformationfromperipheralorganstothe

brainstem.Withineachorgansystem,wewilldiscussphysiologicallyrelevantautonomic

reflexes,neuralresponseproperties,andsensoryneuronanatomy.Oneoftheprimary

neurallinksfrominternalorganstothebrainisthevagusnerve.Therefore,thevagus

nervewillfigureprominentlyinexperimentsanddiscussions,soabriefoverviewofits

generalanatomyandorganizationisprovided.

8

TheVagusNerve Thevagusnerveisoneofthemajorbody-to-brainneuralconnections,andmediates

afferentsensoryinformationtransmissionintothebrainstem,aswellasefferentmotor

commandtransmissionouttotargetorgans.Eightypercentofvagalfibersaresensory1,

andeachsensoryneuronextendsoneprojectionintotheperipherytocollectinformation

fromatargetorgan,andasecondprojectionintothebrainstemtotransmittheinformation

tocentralneuralcircuits.Thesensoryneuroncellbodiesresideinganglia,thenodoseand

jugular,locatedadjacenttothebaseoftheskull.Allsensoryneuronsusethe

neurotransmitterglutamatetocommunicatetocentralcircuits.Theremaining20%of

vagalfibersaremotorfibers1.Thecellbodiesofvagalmotorneuronsarelocatedwithin

nucleiinthebrainstem,andsendprojectionsoutfromthebraintoperipheraltarget

organs.Theneurotransmitterusedbythemotorneuronsisacetylcholine.Therefore,the

vagusnervecanbeconsideredananatomicalhighwaysharedbyasensorysystemcarrying

informationcentrally,andamotorsystemcarryingcommandsperipherally.Thesetwo

systemscommunicateclosely;thesensoryterminalsinthebrainstemareimmediately

adjacenttothenucleicontainingthemotorneuroncellbodies,andtheseneuronsare

knowntomakebothdirectandmulti-neuronnetworkconnectionstoeachothertoprovide

reflex-likecontrolofinternalorganstates2-4.Forthepurposesofareviewonperipheral

mechanosensation,wewillfocusontheresponseproperties,anatomy,andphysiological

rolesofvagalsensoryneurons.

Gastrointestinalstretch

Physiology

Mechanicaldistensionofthestomachplaysacriticalroleinregulationoffood

intake.Notonlydoesthisintuitivelycoincidewithnearlyuniversalhumanexperience

followingmeals,butalsocarefulexperimentationover60yearsagohaselaboratedonthe

physiologicalpowerandspecificsensorycuesrelevantforregulationofmealconsumption.

Theearliestexperimentstodemonstratetheimportanceofgastrointestinal

mechanosensationonfeedingbehaviorwereperformedindogswithsurgicallyaltered

9

uppergastrointestinaltracts5,6.Gastricfistulasallowedforartificialfillingofthestomach,

whileesophagostomyallowedforartificialdiversionoforallyingestedfoodoutofthe

esophagusandawayfromthestomach,dissociatingoralingestionandchangesinstomach

content.Fillingthestomachviaafistulatoavolumeequivalenttoapproximately40%ofa

normalmealsizejustpriortomealtimedecreasedoralconsumptionbyanequivalent(30-

50%)amount.Thedegreeofintakeinhibitionwasindependentofthecaloricvalueofthe

stomachfiller;intakeinhibitionwasthesameifthestomachwasfilledwithfood,or

caloricallyinertKarayagum,suggestingtherelevantsensorycuewasthemechanical

distensionandnotthechemicalfoodcontent5.Intriguingly,iffoodwasinfusedintothe

stomachatatimeotherthanduringeating,ithadnoimpactonshamfeeding,suggesting

thetemporalrelationshipbetweeningestionandstomachdistensioniscriticalforan

effect6.

Conversely,whenthefoodwasdivertedoutoftheesophagusandpreventedfrom

reachingthestomach,animalsfedforlonger.Furthermore,indiversioncasesinwhichthe

stomachwasdistendedeitherbyreplacementoffoodorbyinflationofarubberlatex

balloon,thiseffectwasreversedandanimalsingestedless5.Fromtheseexperiments,one

canconclude:1)Stomachdistensionisnotnecessarytoterminatefeedingbecauseanimals

willstopfeedingeveniffooddoesnotreachthestomach.2)Stomachdistensiondoes,

however,playanimportantroleinregulatingtheamountoffoodingestedbecausewithout

stomachdistension,animalseatmore,andwithitanimalseatless.3)Themechanical

distensionofthestomach,notthecaloriccontent,istherelevantgastriccueforacute

regulationofmealsize,andthiscuemustoccuratthesametimeasoralingestiontoimpact

acutefeedingbehavior.

Subsequentstudiesinrodentshaveconfirmedthesefindings,andalsodelineated

theeffectsofstomach-derivedversusintestine-derivedpost-ingestioncuesoneating

behavior.Inoneelegantseriesofexperiments7,8,ratsweresurgicallyimplantedwitha

pyloricsphinctercuffandagastriccatheter.Inflationofthepyloriccuffpreventedtransitof

stomachcontentstothesmallintestine,whileinfusionthroughthegastriccatheterallowed

forexperimenter-controlleddeliveryofgastriccontents.Theseexperimentsdemonstrated:

1)asindogs,infusionsinthestomachinhibitedfoodintakeindependentofthecaloric

contentoftheinfusedsolution,and2)incontrast,caloriccontentdidimpactthedegreeof

10

feedingsuppressionwhenthepyloriccuffwasleftopenandthecontentscouldpassinto

thesmallintestine7.Boththesefindingsareconsistentwithmechanicallymediated

inhibitionoffoodintakebythestomach,andchemicallymediatedinhibitionoffoodintake

bytheintestine.

Theinhibitionoffoodintakebygastricmechanosensationandintestinal

chemosensationisthoughttobedependentonintactvagalfibers.Animalsconsumelarger

mealsizesaftersurgeriesinwhichvagalinnervationofthestomachisdisrupted,and

infusionofvolumeintothestomachnolongersuppressesfoodintakeinvagotomized

animals9,10.Similarly,thesuppressionofmealsizebychemicalcuesintheintestineis

dependentonanintactvagusnerve11,12,thoughitshouldbenotednotallstudieshave

foundthiseffect13,14.Despitetheshortcomingsofnon-selectivevagotomyexperiments,

theseresultssuggestakeyroleforvagalafferentsinregulationoffeeding,and

demonstrateacleardistinctionbetweenvagalgastricmechanosensorsandintestinal

chemoreceptors.

Theexperimentsinanimalsaredirectlyrelevanttohumans.Surgicalmethodsto

induceweightlossinpeoplebearresemblancetoexperimentalmanipulationsofstomach

distension.Acentralgoalofbariatricsurgeryistoreducestomachcapacitysuchthatthe

sameamountoffoodwillcausegreaterdistension.Reductionofgastriccapacitycanbe

achievedviaseveraldifferentsurgicalalternatives,includingimplantationofavolume-

occupyingballoon(gastricballoon),applicationofaconstrictiveband(banding),stapling

ofthestomachtoreduceitseffectivevolume(verticalbandedgastroplasty),andstapling

andresectionmostofthestomachpouchtoleavearesidualtube-likegastricsleeve(sleeve

gastrectomy)15.Implantationofaballoontypicallyfilledtoavolumeof750-900milliliters

inthestomachofhumanpatientshasbeenshowntoimproveweightlosswhencompared

tonon-operativeinterventions16,17.Similarly,bandingandgastroplastyresultin~15%

weightlossmaintainedover>10years,whereascontrolsubjectsonlylost~2%;these

resultswereaccompaniedbyadecreaseinlong-termmortalitylikelysecondarytothe

reductionincardiovascularriskfactorsanddiabetesassociatedwithobesity18-20.Themost

effective,‘gold-standard’weightlosssurgeryisthegastricbypass,inwhichonlyavery

smallresidualstomachisconnectedtothedistalsmallintestinetobothreducethestomach

volumeandtheabsorptivecapabilitiesoftheintestine20,thoughsleevegastrectomyalone

11

isnearlyaseffectiveinachievingweightloss15.Inshort,surgicalreductionofthestomach

volumeisaneffectiveweightlosstoolinthefaceofthegrowingobesityepidemic,aneffect

likelymediatedinlargepartthroughmanipulationofvagalgastrointestinal

mechanosensation.

Responseproperties

Theimpactofmechanicalstomachdistensiononfeedingpromptedinvestigationof

theoperativesensorymechanisms.Onlyafewyearsfollowingtheinitialcaninephysiology

experimentsdescribedabove,Paintal,Iggo,andcolleaguesdescribedthefirst

electrophysiologicalrecordingsofvagalafferentsinresponsetodistensionofthestomach21,22.Ininitialexperiments,thecervicalvagustrunkwasseriallysub-dividedintofiber

strands,andresponsesineachstrandwererecordedwhilealatexballoonwasinflatedin

thestomach.Usingthismethod,gastricstretch-responsiveunitscouldbeisolatedfrom

unitsresponsivetoheartbeatsortherespiratorycycle,confirmingtheexistenceofa

uniquestomachstretchsensoryneuronclass.Furthermore,theendingsofthesefibers

werethoughttobelikelylocatedinthemuscularstomachwallbecausetheiractivitycould

beevokedbydigitalcompressionofthestomach,butnotbystrokingthemucosalor

peritonealgastricsurfaces21,22.

Gastricmechanoreceptorshaveconsistentresponseproperties.Allfibersresponded

todistensionquickly,exhibitedfiringratesof25-60impulses/secondduringthe

distension,andreturnedtobaselinelevelsofactivityimmediatelyfollowingreliefofthe

distension.Allbutoneofthefiberstestedwereeithernon-adaptingorslowlyadapting,

withlittlechangeinthefiringrateevenduringminuteormulti-minutelongdistensions.

Step-wiseincreasesinthevolumeofdistensiongeneratedalinearincreaseinthefiring

rate,thoughthethresholdofdistensionrequiredforfiberactivationvariedwidely21.

Furthermore,inductionofmuscularcontractionsofportionsofthestomachwallinwhich

thereceptiveendsofthesefiberswerefoundwouldelicitactivityinthegastricreceptors

thatwasevenmorerobustthanthatcausedbypassivedistension22.Therefore,the

relevantcueforfiberactivationisnotintra-gastricpressureperse,butthetensionwithin

themuscularwallofthestomach.Gastricstretchreceptorsarethereforeconsidered‘in-

12

series’tensionreceptors,andmonitornotonlypassivetensionofthestomachwallbutalso

activetensiongeneratedbymuscularcontractioninphysiologicallyrelevantranges.A

corollarytotheobservationthatgastricmechanoreceptorsarein-seriesisthattheslow

adaptationobservedintensionreceptorfiringratesmayatleastinpartreflectmuscular

relaxationofthestomachwall,andmaynotbeanintrinsicpropertyofthe

mechanoreceptor.Thesamepropertieswerefoundfordistension-sensitivevagalafferents

thatterminatedintheesophagusorthesmallintestine23.Similarpropertieshavebeen

subsequentlydescribedingastricmechanoreceptorsinmultiplestudies24-27.

Subsequentstudiessoughttoidentifythemolecularmechanismbywhich

mechanicalforcesaretransducedintoaneuralsignalwithinvagalgastrointestinal

mechanoreceptors.However,despitedecadesofrecordings,itisunclearwhethervagal

afferentsthemselvesaredirectlymechanosensitive,orwhethertheyaretransmitting

informationfrommechanosensitiveentericneuronsornon-neuronalgastrointestinalcells.

Threeargumentshavebeencitedtosupporttheideathatvagalafferentsaredirectly

mechanosensitive28.First,thelatencyofresponsefollowingspecificandrapidmechanical

deformationofthemuscularwalloftheesophagusis<6milliseconds,adelayhasbeen

citedastoorapidforamechanismotherthandirectmechanosensation.However,thedelay

betweenfiringofanupstreamneuronanditschemically-coupleddownstreamtargethas

beencalculatedat2millisecondsinthemammalianbrain,suggesting6millisecondsis

morethansufficientforsynaptictransmission,andcastingdoubtonthisclaim29.Second,

extracellularcalciumisconsideredanecessarycomponentforvesiculartransmitter

release,andvagalafferentmechanosensitivityispreservedbothwhenextracellular

calciumisremoved,andinthepresenceofthecalcium-channelblockerCd2+.However,

calcium-dependenttransmissionisnottheonlymeansofcell-cellcommunication;gap

junctionsforexamplewouldallowforrapidandextracellularcalciumindependentsignal

transduction30.Finally,pharmacologicinhibitionofcandidateneurotransmitterreceptors

(e.g.glutamatereceptors,purinergicreceptors)hasnoimpactonvagalmechanosensation,

evidencetakentoexcludearolefortheseputativesecond-messengers,thoughofcourse

thisrepresentsadrasticallyincompletesurveyofpotentialcell-cellsignalingmechanisms.

Insummary,thesedataarenotconclusive,leavingmuchambiguityaboutthetruesiteor

13

sitesofmechanosensationinthegastricdistensionsensorypathway.Themolecular

mechanosensor,unsurprisinglyinthiscontext,remainsunknown.

Anatomy

Despiteambiguityaboutthemechanismofmechanotransduction,themorphology

ofdistension-responsivevagalafferentsinthegastrointestinaltractisknown.Isolated

esophagealandstomachpreparationshaveallowedforlocalizationofmechanically

sensitive‘hotspots’,andconcurrentlabelingofvagalfibersinnervatingthosesites31,32.

Hot-spotsintheesophagusandthestomachareenrichedandlocalizedaround

intraganglioniclaminarendings(IGLEs),avagalterminaltypecloselyassociatedwith

myentericneuronganglialocatedbetweenthecircularandlongitudinalmusclelayers.

Consistentwithhot-spotstudies,geneticallylabeleddistension-sensitiveafferents,marked

byexpressionoftheG-protein-coupledreceptorGLP1R,formdenseIGLEterminals

throughoutthegastrointestinaltractandterminatecentrallywithinthemedialnucleusof

thesolitarytract33.

AsmallnumberofstudieshaveexaminedthestructureandlocationsofIGLEsin

hopesofprovidingcluesastothesitesofmechano-transduction.IGLEswereinitially

describedusingsilverstainingmethodsintheesophagus34aslamellatedendings

surroundingandenteringthecapsuleofcollectionsofentericneuroncellbodies.Electron

microscopyofvagalendingsinthesemyentericgangliashowedcloseapproximationof

mitochondria-richIGLEterminalswiththeganglionneuropilandcellbodies,butdidnot

revealaclassicsynapticultrastructureassociatedwiththesecontacts35.Theclose

associationbetweenIGLEsandentericgangliacouldsupportboththeideathatvagal

neuronsreceivesignalsfromprimarilymechanosensitiveentericcells,orthatenteric

gangliacouldprovidecriticalsupporttoprimarilymechanosensitivevagalneurons.

IGLEscanbefoundintheesophagus,stomachandproximalsmallintestine,

consistentwiththevagalresponsepropertiesidentifiedinallthesesites.Thegreatest

densityofIGLEsislocatedinthestomach,withdecreasingdensityalongtheproximal

intestinallength36-39.Someestimatessuggesttherearewellover1000individualIGLE

terminalsinthestomachwall,andthatthoughthedensityofinnervationinthesmall

14

intestineislower,thegreatersizeofthatorganwouldmeanalargerabsolutenumberof

intestinalIGLEsthaninthestomach38.ThehighIGLEdensityinthestomachisconsistent

withthephysiologicalimportanceofstomachstretchonfeedingbehavior.Inaddition,the

highnumberofIGLEsinothersitessuggeststhisterminaltypealsotransducesimportant

mechanicalinformationfromgastrointestinalsitesoutsidethestomach.

IGLEs,notably,arenottheonlyvagalterminaltypeinthemuscularwallofthe

gastrointestinaltract.Thesecondterminaltype,namedintra-musculararrays(IMAs),are

notnearlyaswidelydistributedasIGLEsbutratherseemtoterminatearoundthegastro-

esophagealjunction,gastro-duodenalsphincter,andthejunctionbetweentheproximal

andmiddlesegmentsofthecolon36.IMAscoursebetweenthelongitudinalsmoothmuscle

layers,forminglongbranchingparalleltractsthatformsynapse-likecontactswith

intrinsicallyoscillatory,gastriccontractionpace-makingcellstermedinterstitialcellsof

Cajal40.GiventheanatomicalassociationwithICCsandsphincters,IMA-formingneurons

arealsopositedtobemechanosensors,butdefinitiveevidencefortheirresponse

propertiesandphysiologicalroleremainselusive.

Summary

Mechanicaldistensionofthestomachregulatesmealsizeduringfeeding.Anintact

vagusnerveisrequiredforthedetectionofstomachdistensionandreductionofmealsize.

Aselectsubsetofvagalafferentsrespondstostomachstretchwithslowlyadapting

increasesinfiringrateinresponsetobothpassivedistensionandmuscularcontraction.

DistensionsensitivevagalafferentsformIGLE-typeterminalendingsintheesophagus,

stomachandintestinemusclewalls.However,keyquestionsremainabouttheidentityof

therelevantmechanosensorymolecularapparatus,theprimarysiteofmechanosensation,

andthecontributionsofnon-IGLEstomachmuscle-innervatingvagalsensoryafferents.

15

Lungstretch

Physiology

Thephysiologicalcontrolofrespirationhasbeenlinkedtothevagusnervesincethe

inceptionoftherespiratoryphysiologyfield.Earlyrespiratoryphysiologistsnotedthat

electricalstimulationofthetransectedvagusnervetrunkcouldinduceeitherexpiratoryor

inspiratoryeffort41.However,resultsweremixedandthephysiologicalrelevanceofthese

observationswasnotclarifieduntiltheworkofHeringandBreuerin1868,whenthe

artificialmanipulationofnerveswasabandonedinfavorofdescriptionofthephysiological

responsestoinflationanddeflationofthelungs42.

Breuernotedthatwhenthelungwasinflated,furtherinspiratorymovementswere

inhibited,andexpirationwaspromoted.Inspiratoryinhibitionoccurreddespite

developmentofprofoundhypoxiaandindependentlyofthechemicalcompositionofthe

gasusedtoinflatethelungs,suggestingtherelevantcuewaslesslikelychemical,andmore

likelymechanical.Thedegreeofinspiratoryinhibitionwasdirectlycorrelatedtothedegree

oflungexpansion.Thereflexalsoseemedtobephysiologicallyrelevantbecauseitcouldbe

observedbothifthelungwereartificiallyinflatedbeyondnormalphysiologicalvolumes,

andalsoifthetracheaweresimplyoccludedatthepeakofnaturalinspiration.Therelevant

stimuluswasthoughttobetheexpansionofthelungitselffortworeasons:1)Expansionof

collapsedlungsalsoblockedinspiratoryeffort,meaningthereflexwasintactevenwhen

intra-thoracicpressureswereabnormallylowandchestwallmovementscouldnot

contribute.2)Introductionofelevatedthoracicpressurethroughatubeinthesideofthe

chestdidnotimpactinspiratoryeffortaslongasthestateofexpansionofthelungswas

heldconstant,meaningthecriticalcuewasthemechanicalmovementofthelungandnot

theexternalpressuretowhichthelungwassubject.Thisreflexisclassicallyreferredtoas

theHering-Breuerinspiratoryreflex,andcanbeabolishedbycuttingbothvagusnerve

trunksintheneck42.

SubsequentphysiologicalstudieshaverevealedintriguingfeaturesoftheHering-

Breuerreflexthatcomplicatecurrentunderstandingofitsphysiologicalrole.First,a

similarreflexwasalsoinitiallydescribedinwhichholdingthelungsinexhalationwould

preventfurtherexhalation42;afindingthatsparkedmanydecadesofdebateaboutwhether

16

thesameneuralpathwayscouldunderlieboththeinspiratoryandexpiratoryreflexes43,44.

Second,aseriesofexperimentswereundertakentoinvestigatetherelevanceofthereflex

inman,whichrevealedfourintriguingfindings:1)inspiratoryinhibitiontolunginflation

wasobservedininfantsupuntil3-4daysoflife,duringwhichtimethereflexstrength

decreasedandultimatelywaslost45.2)Thereflexcouldonlybeobservedinadultsunder

anesthesiaor,inonesubject,unconsciousfromaheadinjury46,butnotinsleepingadults47.

3)Surgicalinstillationofanerve-blockingagenttothevagustrunkcouldblocktheHering-

Breuerreflexinanesthetizedpatients46.4)Incontrast,inawakesubjects,nerveblock

injectionsaroundtheninthandtenthcranialnervesatthebaseoftheskullresultedinno

changeinbreathing,thoughtheinjectionsintheseexperimentscausedprofound

hypertension(presumablysecondarytobaroreceptorblockade),andinsensitivityto

hypoxia(presumablysecondarytochemoreceptorblockade)48,49.Thesedatatogether

suggestthatthestrengthoftheHering-Breuerreflexchangeswithdevelopment,andis

influencedbysubjects’stateofconsciousness.Thequestionsraisedabouttheroleofthe

reflexinawake,normalhumansremainunanswered.

LunginflationinducesotherreflexeffectsbeyondtheHering-Breuerinhibitionof

inspiration.Twootherprominentreflexeffectsoccurwithlunginflation.First,

physiologicalinspirationcausesanincreaseinheartrate50.However,carefulexperiments

inwhichlungdistensionwasisolatedfromchangesinbloodflowinthecardiopulmonary

systemandfromchemicalchangesinthebloodsecondarytorespirationsuggestedthe

relevantcueinthisreflexisaugmentedcardiacvenousreturn,tobediscussedin

subsequentsections51.Secondly,inspirationalsotriggersareflexdecreaseofsystemic

vascularresistance52.Intheseexperiments,expansionofthelungsbyinjecting

physiologicallyrelevantvolumesofairresultedinadose-dependentsystemicvasodilation,

whilecollapseofthelungsresultedinsystemicvasoconstriction.LikeintheHering-Breuer

reflex,thereductioninsystemicvascularresistancewasindependentofthecomposition

andtemperatureofthegasusedtoinflatethelungs.Theeffectwasalsomaintainedwhen

thepressuresinthecarotidarteriesandtheaortawereheldconstant.Cuttingpulmonary

nervesandchemicallyinhibitingthesympatheticnervoussystematthestellateganglionin

theneckcouldbothabolishthereflex,suggestingitismediatedbycommunicationbetween

thevagusandsympatheticfibers.However,thesamecareinisolatingpulmonaryversus

17

cardiovascularcontributionstothisreflexwasnottakenasinotherexperiments,so

specificconclusionscannotbedrawn53.

Responseproperties

Asinthegastrointestinalstretchfield,thedescriptionoftheHering-Breuerreflex

drovethesearchfortheoperativeneuronalelements,andtheirdiscoveryonlyawaitedthe

developmentofelectrophysiologyequipmentandmethodssensitiveenoughtorecordfrom

singlenervefibers.Adrianwasthefirsttoidentifyindividualpulmonarystretch-sensitive

vagalafferentsin193354.ThepulmonarymechanoreceptorsAdrianidentifiedgenerate

largecurrentsinfast-conductingA-fibers,explainingtheiridentificationover10years

priortotheirmoreelusiveC-fibermediatedgastricmechanoreceptorcounterparts.Work

followingthisinitialdiscoveryidentifiedtwoclassesofmechanosensitivepulmonary

afferents,distinguishedbytheiradaptationrateandthresholdofactivation55.

Slowly-adaptingstretchreceptors(SARs),definedashavingadeclineoffiringrate

oflessthan55%withinthefirsttwosecondsofastretchstimulus,accountfor

approximately50%ofallpulmonaryinflation-sensitivevagalafferents55.SARsarenot

onlyactivatedbyexperimentalinflation,butalsofirecyclicallywiththerespiratorycycle,

canbeactivatedbyforcedlungdeflation,andarealsoactivatedbycontractionofsmooth

musclesurroundingtheairways56.MeasurementoftrachealpressurethresholdsofSAR

activationsuggeststhatatleasthalfofallSARsareactiveduringtherestingrespiratory

cycle57.Intriguingly,inhaledcarbondioxideinhibitsSARstretchsensitivity58,aneffect

mediatedwithinthelungbecauseCO2inhibitsSARsensitivitywithoutchangesinarterial

carbondioxidelevels59,60.However,otherthantheinhibitoryeffectofCO2,SARsare

notablyinsensitivetootherchemicalstimuli61,andtheoxygencontentoftheinhaledor

infusedgasdoesnotimpacttheresponsepropertiesofSARs54.SARsthereforehavea

mechano-specificreceptivefieldtorivaltheirsimilarlyslowlyadaptinggastricstretch

sensitivecousins.ThesepropertiesmakeSARsidealcandidatestomediatetheHering-

Breuerinspiratoryinhibitionreflex.

Incontrast,rapidly-adaptingstretchreceptors(RARs)arealsoactivatedbylung

18

inflation,butaredefinedashavingfiringratesthatdecrementbyover80%withinthefirst

twosecondsofastretchstimulus55.RARsaccountfor40%ofstretch-sensitivepulmonary

afferents,thoughthisvarieswithanimalmodelinvestigated62.RARsexhibitamarkedly

higherthresholdforactivationcomparedtoSARs;nearlynoRARsareactiveduring

breathingatrest,thoughthemajoritywouldbeactivatedatpressuresexhibitedduring

respiratoryeventssuchascoughing57.Inadditiontothesefeatures,RARsarealsosensitive

toanumberofirritatingchemicalmediatorsincludingpollutantssuchasozoneandwood

smoke,adiversityofchemicals,pulmonarycongestion,andintroductionofhypo-osmotic

solutionswithintheairways,earningthemthename‘irritantreceptors’63-67.Thismixed

high-thresholdmechanicalandchemicalreceptivefieldsuggestsfunctionaloverlapwith

lungafferentsthatarepurelychemo-sensitivewithoutanymechanicallysensitiveresponse

propertycomponent61.Forthesereasons,RARsaresuspectedtounderliereflexresponses

ofhyperpneaandbronchoconstrictiontooffensiveinhaledchemicalagents.Inaddition,

RARscanbesensitized,suggestingaroleinreactiveairwaydisease63.

WhileSARsandRARsareconsideredbroadcategoriesofmechanosensitivelung

afferents,detailedrecordingsrevealmanyfiberswithpropertiesintermediatebetween

SARsandRARsthataccountfortheremaining10%ofstretch-sensitiveafferentsperthe

SARandRARdefinitionsprovidedabove55,57,68.Therefore,itmaybemoreaccurateto

characterizefibersasbelongingtoaspectrumofadaptationandchemicalsensitivityrather

thantotwofullydiscreteneurongroups.However,withoutameanstoselectivelyand

specificallymanipulateRARsvs.SARs,theinnervationpatternsandphysiologicalrolesof

eachstretch-sensitivefibertyperemainsunclear.

Recentexperimentshavesuggestedthemolecularidentityofalung

mechanosensor69,andthesedatawillbepresentedindetailwithinthediscussionofthe

discoveryandelaborationofthemammalianmechanosensorPiezo2.

Anatomy

Vagalafferentstravelalongthemajorairwaysandprovideterminalsatalllevelsof

therespiratorytree,fromthetracheatothealveoli.TheanatomicallocationsofSARand

19

RARterminalshavebeeninferredfromfunctionalstudiesofterminalresponseproperties,

andtheirdetailedterminalanatomyinferredbasedonthestructuresofvagalafferents

foundatthesevariousanatomicalsites.

SARterminalsarethoughttobelocatedinthesmoothmusclesurroundingairways63.Threelinesofevidencesupportthisconclusion.First,SARsrespondtodirectmechanical

probingoftheairwaysmoothmuscle,aswellastoairwaysmoothmusclecontraction56,70.

Second,SARscontinuetofunctionafterthemucosaisstrippedfromisolatedexperimental

preparations,butceasetofunctionafterdisruptionofthesmoothmuscle56.Finally,SARs

arenotinhibitedintra-airwayanesthetics,supportingtheconclusionthattheirterminals

areisolatedfromtheairwaylumen56.Myelinatedvagalafferentterminalsinpulmonary

smoothmuscle,inferredfromthepropertieslistedabovetobeSARs,havebeen

characterizedwithbothlightanelectronmicroscopy.Asinothermusclemechanoreceptor

endings,theseterminalslosetheirmyelinsheathclosetotheirterminalsite,andformclose

contactswiththebasallaminaandconnectivetissuewithinthemuscularlayer71,72.The

distributionofSARsfromthetracheatothealveoliseemstoexhibitsomespecies

specificity,withanywherefrom40-90%beinglocatedintheintra-pulmonaryairways

versusinlargeextra-pulmonarysites73.

RARs,incontrast,arethoughttoterminateinthesubmucosaandairwayepithelium,

aconclusiondrawnfromthreepiecesofevidence.First,lightmucosalstrokinginsidethe

airway,aswellasinhalationofchemicalirritants,isabletoelicitresponsesinRARs,while

applicationofintra-airwaylocalanestheticssuchaslignocainecansuppresstheiractivity57,63,74,75.Second,thegreatestareaofRARresponsivenessisaroundthecarinaandlarge

airwaybranchpoints,whichisalsothesiteofgreatestintra-epithelialendingdensity57.

Finally,anintriguingandindirectobservationisthatanimalsthatlackthecoughreflex(e.g.

mice,ferrets),alsohaveveryfewintra-epithelialvagalterminalsandRARs62.The

sensitivityofRARstointrapulmonarycongestion,however,hasalsoraisedthepossibility

theyarefoundclosetolungvascularaswell76.RARsarelocatedinbothlargeandsmall

airways,andtendtohaveanatomicallyrestrictedreceptivefields.Forexample,inflationof

allairwaysandlungtissuedistaltoanRARreceptivesiteidentifiedbygentleintra-airway

20

mucosalstrokingfailstoelicitactivityoftheRAR57.

Intriguingly,geneticallytargetedlabelingofvagalafferentsthatexpressthe

purinergicreceptorP2RY1selectivelylabelsA-fibersthatinnervateneuroepithelialbodies

intheepithelialliningofthelung,aterminaltypethathadbeendescribedpreviouslybut

whosefunctionhasremainedunknown77,78.ActivationofP2RY1neuronsresultsinapnea

mirroringinhibitionofinflationviatheHering-Breuerreflex,andinsituhybridization

showedpartialoverlapbetweenP2ry1andthemechanosensorPiezo2,raisingthe

possibilitythisneuronpopulationisinvolvedintheHering-BreuerreflexandthatPiezo2

couldbetherelevantmechanosensorymolecule.

Summary

Mechanicaldistensionofthelungregulatesbreathingdepthandpatterns.Anintact

vagusnerveisrequiredforthedetectionoflungdistensionandchangesinrespiratory

physiology.Aselectsubsetofvagalafferentsrespondstolungstretch.Onesubsetisformed

ofslowlyadapting,low-threshold,puremechanosensorsthoughttoterminateinthe

smoothmusclesurroundingairwaysandmediatetheHeringBreuerreflex.Othersare

rapidlyadapting,high-threshold,mixedmechano-andchemo-receptorsthoughtto

terminateclosetotheairwayepitheliumandmediatecoughandbronchoconstrictionin

responsetoirritants.Howevermanyconclusionswithinthefielddependupon

assumptionsaboutstructure-functionrelationshipsthatstillrequirerigorousexamination,

andambiguityaboundsconcerningthemolecularmechanisms,anatomy,andphysiological

relevanceoflungmechanoreceptors.

Cardiovascularsystem

Physiology

Thevagalreflexregulationofthecardiovascularsystemholdsafundamentalplace

inthehistoryofneuroscience.OttoLoewiandHenryDalesharedtheNobelPrizein

21

PhysiologyandMedicinein1936forthediscoveryofthefirstneurotransmitter,

acetylcholine,releasedbythemotorfibersofthevagusnervetocauseadecreaseinheart

rate79.Justtwoyearslater,CorneilleHeymanwasawardedthesameprizeforthediscovery

thatsensorynervesinthelargevesselsleavingtheheartmonitorpressureandblood

chemistrytoregulatethecardiopulmonarysystem,inareflexarcthroughthevagalmotor

fibersinvestigatedinDaleandLoewi’swork.Thesecriticalexperimentsdelineatedthe

neuralpathwayofthebaroreceptorreflex,inwhichincreasesinbloodpressurecausea

reflexdecreaseinheartrateonabeat-to-beatbasis,allowingformaintenanceofaconstant

bloodpressure80,81.Thebaroreceptorreflexisimportantbothforpreventionof

hypertension,andofhypotension.Surgicalremovalofvagalafferentsintheaorticarchand

carotidbulbresultsinchronichypertension82.Inaddition,withoutreflexaccommodation

ofbloodpressure,movingfromalyingtoastandingpositionwouldresultinsucha

dramaticafallincerebralperfusionthatitwouldleadtolossofconsciousness.Vaso-vagal

syncopeandorthostasisare,infact,verycommonclinicalcomplaints.Furthermore,

decrementsinthebaroreceptorreflexwithageandtheconcomitantinabilitytoregulate

bloodpressurewithchangesinpositionisassociatedwithincreasedfalls,fractures,and

mortalityinpeople83.

Thebaroreceptorreflexisnottheonlycardiopulmonaryreflexmediatedbyvagal

sensoryfibers.Twootherprominentreflexesarecontrolledbyvagalafferents.Thefirst,

theBainbridgereflex,servestoregulateintravascularvolumestatus.Increasedatrial

volumeresultsintworeflexeffects:1)anincreaseinheartratetomovetheextravenous

bloodthroughtheheart,and2)anincreaseinurineoutputtoreduceintravascular

volume51,84.Initially,inspirationwasthoughtodrivethereflexincreaseinheartrate,as

notedpreviouslyinthediscussionofpulmonaryreflexphysiology.However,becausethe

heart,lungs,andgreatvesselsareallhousedinthethorax,changesinintrathoracic

pressureimpactsthedistributionofbloodinalltheseorgans.Reductionsinintrathoracic

pressureduringinspirationaugmentsthevenousreturnofthebloodtotheheart,and

carefulisolationofthisvariablefrominspirationitselfrevealedthecardiacchamber

dilationtobetherelevantcue51,84.

Thesecondreflex,termedtheBezold-Jarischreflex,isthoughttobeacardio-

protectivereflexinwhichbothmechanicalstretchandapplicationofirritantchemicalcues

22

tothemuscularheartwallcausesareflexbradycardia,hypotension,coronaryartery

dilatation,andapnea85,86.Reductionofheartratereducesmetabolicdemandofcardiac

tissue,systemichypotensionreducestheresistanceagainstwhichcardiacmyocytesneed

topumpblood,andcoronarydilationaugmentsperfusionofcardiactissue.Therefore,

thoughitisuncleartheextenttowhichmechanicalversuschemicalcuesdrivethisreflex,

theresultisreducedworkandimprovedoxygentationofcardiacmyocytes.Howthe

Bezold-Jarischreflexinteractswiththeothercardiopulmonaryreflexestomaintainnormal

bloodpressureandperfusionremainsanareaofuncertainty87.

Responseproperties

Assearchesfortheoperativeneuronalelementsinlungstretchwereunderway,

Adrian’scontemporariesweresimilarlyidentifyingtheneuronalelementswithchangesin

activitysynchronizedwiththebeatingheart.BronkandStellain1932werethefirstto

isolatesingleunitsinthecarotidsinusnervethatfiredcyclicallywithsystoleduringheart

beats,andchangedtheirfiringrateslinearlywithincreasesinbloodpressurefrom

40mmHgto120mmHg,therangeofnormalphysiologicalbloodpressuresintherabbit.

Theydeterminedthatincreasesinwhole-nervefiringratesinresponsetoincreasingblood

pressurewasbothafunctionofrecruitmentofmorefibers,andincreasesinfiringratein

individualfibers.Furthermore,thearterialbaroreceptorstheyidentified,aswithseveral

othervagalstretch-sensitiveelements,areslowly-adapting88.Subsequentstudieshave

confirmedvagalsensoryfibersareexquisitelytunedtopressurechangeswithinthegreat

vesselsexitingthehearttodeliverbloodtothebodyandbrain89-93.Intriguingly,despite

theirslowadaptationrate,vagalbaroreceptorsdoshifttheirbaselineandthresholds

followingprolongedexposuretohyperorhypo-tension,suggestingwhythissensory

apparatuswouldnotbesufficienttocounteractchronichypertensivedisease93.Thestress

historyofthevesselwallimpactsbaroreceptorresponsiveness92.

Mechanosensitiveafferentsinthecardiovascularsystemarenoonlylocatedinthe

majorvessels,butalsodetectmechanicalforcesintheheartwalls.Cardiacreceptorscanbe

furtherclassifiedbasedontheperiodofthecardiaccycleduringwhichtheiractivitypeaks.

Someafferentsaremaximallyactiveduringatrialcontraction,andexhibitincreasesin

23

firingratewithincreasesinheartrate,suggestingsensitivitytoactivechangesinatrialwall

stretch.Otherreceptorsrespondduringatrialfilling,andexhibitreducedactivitywith

increasesinheartrate.Thesereceptorsadaptslowlytochangesinpressure,suggesting

theyactprimarilyasmeasuresofoverallwallstrain.Bothoftheseatria-sensitivefibersare

exclusivelyfast-conductingA-fibers94,95.

Ventricularfibers,incontrast,aremuchlesscommonthanatrialfibers(ofcardiac

mechanosensors,75%arefoundintheatriaand25%intheventricles)andcanbe

classifiedfurtherintotwofunctionallydistinctgroups:onesetrespondsprimarilyto

ventricularcontraction,andtheothertogentleendocardialstroking96,97.Mostventricular

fibersareC-fibers,andalsorespondtointracardiacadministrationofabroadarrayof

chemicalcompounds.Thefunctionalsignificanceofthischemicalsensitivitymayrelateto

reflexesinvolvedinresponsetocardiacstressorischemia98-102.

However,thespecificmolecularmechanismsusedbycardiacmechanosensorsremain

undefined.Dissociatedaorticbaroreceptorneuronsexhibitmechanicallyinducedcurrents

thatcanbeblockedbygadolinium,suggestingthemolecularmechanosensormaybea

stretch-activatedionchannel103.Inaddition,bothamilorideanditsanalogue,benzamil,

inhibitedpressure-evokednerveactivityinbaroreceptorvagalafferents(Drummond,

2001),suggestingthatthechannelmaybearrelationtoENaCfamilymechanoreceptors.

However,alternativepossibilitiesabound,includingevidenceforexamplethatknockoutof

Trpc5attenuatesthebaroreceptorreflex104.Nocandidatetodatehasyetbeenshownto

fullyabolishthereflex.

Anatomy

Vagalafferentsinnervateallfourchambersoftheheart,theaorticarch,andmajor

brancharteriesintheneck.

Endingswithinthecardiacchambersconsistofthreeprimarytypes,1)complexun-

encapsulatedend-netsfoundmostdenselynearjunctionsofthegreatveinsenteringthe

atria,and2)anastomosingnetsoffineneuritesdistributedthroughoutatrialand

ventricularendocardium,someofwhichcloselycontactcardiacmyocytesand3)

terminalssurrounding“smallintenselyfluorescent”cellsofunknownfunctionin

24

cardiacganglia94,105-108.However,notably,withinthecardiacchambersitseemsthatthe

sameneuroncangiverisetomultipleoftheseendingtypes,complicatinginterpretationsof

structure-functionrelationships107.

Theneuronalendingsinthegreatvesselshavesimilarlybeencharacterizedinto

anatomicalsub-types.Approximately85%ofvessel-terminatingfibersdirectlyinnervate

thevesselwall,forming“flower-spray”and“end-net”typeterminals,whiletheremaining

15%terminateadjacenttoother“smallintensely-fluorescent”cellsproximaland

superficialtothewallitself105.Themostdetailedarchitecturalstudyofvagalafferentshas

beenperformedintheaorticarch,thesiteofmostelectrophysiologicallyactive

baroreceptors108.Aorticnervefibersinthisregionconsistbothofmyelinatedand

unmyelinatedfibersthatpassthroughthevesselwalladventitia,coilandterminatewithin

thevesselsmoothmusclemedialayer.Withinthislayer,myelinatedfiberslosetheirmyelin

sheath,andtheaxolemmaisdirectlyincontactwithextracellularconnectivetissue.The

tightapproximationofneuralelementswithelasticelementsofthewallspeakstoa

structure-functionrelationshipwellsuitedfortransductionofmechanicalforcesand

movementofthevesselwall.

Summary Sensorymonitoringofthemechanicalmovementoftheheartandgreatvessels

playsanimportantroleintheregulationofheartrateandbloodpressure.Aselectsubset

ofvagalafferentsrespondstochangesinpressureandstrainduringthecardiaccycle.Vagal

baroreceptors,arethoughttoinnervatethewallsoflargevessels,anddrivereflex

decreasesinheartrateinthesettingofhypertension,andreflexincreasesinthesettingof

hypotension.However,muchambiguityremainsconcerningtherelativerolesofheart

versusvessel-terminatingfibers,fibersofdifferentconductionvelocities,theinterplay

betweenchemicalandmechanicalstimuli,andofcoursethemolecularmechanisms

underlyingdetectionofpressureandstraininthissystem.

25

Conclusions Thevagusnervecontainsseveralafferentclassesthatmonitormechanicalforces

withinthegastrointestinal,respiratory,andcardiovascularsystems.Careful

electrophysiologicalcharacterizationandanatomicaltracinghasbeguntoelucidatesome

oftheterminaltypesandputativephysiologicalrolesoftheseimportantsensorycircuits.

Geneticidentificationofthespecificneuronsinvolvedhasjustbeguntounfold.Vagal

sensoryneuronsexpressingGLP1Rincludethegastrointestinalmechanosensors33.Vagal

sensoryneuronsexpressingP2RY1areA-fibersandinhibitrespiration,raisingthe

possibilitythesearetheslowly-adaptinglungmechanoreceptorsthatunderlietheHering-

Breuerreflex77.However,todate,theidentityofthereceptorresponsiblefor

mechanotransductionitselfininternalsensorysystemsremainsunknown.Discoveryofthe

molecularmechanismsatplaycouldresolvedebatesaboutthesiteofprimary

mechanosensation,moreclearlydefinetheneuronpopulationsinvolved,andalsoprovide

apharmacologicaltargetforpowerfulmanipulationoffundamentalautonomicreflexes.

ThemammalianmechanosensorPiezo2

Discovery Extensiveinvestigationintothemolecularidentityofmechanosensorshasyielded

discoveryofseveralnon-vertebratemechanosensitivechannelfamilies,includingthe

DEG/ENaC,TRP,TMCsandselectK+channels109.ThediscoveryofthePiezofamilyhas

offeredintriguingmolecularlyspecifiedmechanoreceptorsforqueryinknown

mechanosensitiveneuralsystems.

ThemembersofthePiezofamily,Piezo1andPiezo2,wereidentifiedinalarge-scale

screeningeffort110.Culturesofintrinsicallymechanosensitivemammaliancelllineswere

treatedwithsiRNAdesignedtoknockdownexpressionofproteinsofunknownfunction

predictedtocrossthecellmembraneatleasttwice,aconditionconsideredlikelyinarapid

mechanosensitivechannel.The71stcandidatesiRNAtestedtargetedFam38a,nownamed

Piezo1,andresultedinaseveral-foldreductionoftheintrinsicmechano-sensitivecurrent.

StructuralsimilarityledtoidentificationofthecloselyrelatedPiezo2.Overexpressionof

26

theseproteinsinheterologoussystemsconferredmechanosensitivitytootherwise

mechanicallyinsensitivecells.Furthermore,immunohistochemistryrevealedPiezo1tobe

localizedtothecellmembrane,thephysicalsiteofmechanotransduction.Piezo2wasfound

byinsituhybridizationtobeexpressedinasubsetofdorsalrootganglionneurons,and

knockdownofPiezo2inDRGculturesresultedinareductionofcellswithrapidly

inactivatingmechanosensitivecurrents,providingstrongevidencethatPiezo2playsarole

inmechanotransductioninknownmammalianmechanosensitiveneurons.Notably,slowly

inactivatingmechanosensitiveDRGneuronsremainedunperturbedbyknockdownof

Piezo2,suggestingadditionalmammalianmechanoreceptorsremaintobediscovered.

SubsequentworkprovidedfurtherevidencethatPiezo1andPiezo2wereinfactthe

molecularmechanosensitiveelement111.ExpressionofPiezoproteinsaloneinlipid

bilayerswassufficienttoconfermechanosensitivity.Furthermore,recordingsfrom

membranescontainingPIEZOproteinsshowsingle-channelcurrentsactivatedby

mechanicalforcethatcouldbeinhibitedwithrutheniumred,anon-selectivecationchannel

blocker.Photo-bleachingexperimentssuggestedthatPIEZOformstetramerswithinthecell

membrane.ThesedatatogethersuggestthatPiezo1andPiezo2assembleintopore-

forming,cationchannelscapableofmechanotransductionindependentofanyother

molecularelements.

Invivoproperties

Invertebratemechanosensation

Followingtheirdiscoveryandmolecularcharacterization,subsequentworksought

toelucidatetheinvivoexpressionpatternsandphysiologicalrelevanceofPiezo1and

Piezo2.ThefirststudytodemonstratetheinvivorelevanceofPiezomechanosensorswas

notinmammals,butratherinthefruitflyDrosophilamelanogaster112.ThePiezofamilyhas

onememberthatisexpressedinDrosophila,Dmpiezo.Expressionofafluorescentreporter

underthecontrolofDmpiezoresultedinfluorescenceinavarietyofsensoryneurons,

suggestingthepossibilityofaroleinmechanosensation.Dmpiezoknockoutflies,however,

didnotexhibitdeficitsincoordination,norinthebristlemechanoreceptorpotential,

27

suggestingDmpiezoisnotakeymechanoreceptorinadultflies.Incontrasthowever,

Dmpiezoknockoutlarvaeexhibitedreducedsensitivitytonoxiousmechanicalstimuli.

Isolationandrecodingofppkneurons,knowntobespecificallyimplicatedinlarvalnoxious

mechanicalsensitivity,demonstratedthatDmpiezoknockoutcausescompletelossof

mechanosensitivecurrentsinthisneuronclass.ThereforeDmpiezoplaysaroleinnoxious

mechanosensationinlarvae,makingitoneofthefirstionchannelstohavedemonstrated

bothinvitromechanosensitivityandaroleinbehaviorinvivo.

Vertebratedorsalrootgangliaandskinsensation

Withthedevelopmentofmousegenetictools,severalstudieshaveshownthat

Piezo2playsakeyroleinmultiplemechanosensorymodalitiesinmammals113,114.The

Piezo2proteincanbefoundonsensoryneuronterminalswithintheskin.Piezo2canalso

befoundwithinGolgitendonorgansandmusclespindlefibers,suggestinganadditional

roleinsensationofjointandlimbposition.Concordantwiththeseanatomicalresults,mice

lackingPiezo2showdeficitsindetectionofvibration,lighttouch,hairdeformation,low-

forcemechanicalstimuli,andproprioception,withoutdeficitsinresponsetopainor

temperature.Inaddition,Piezo2expressionisnotlimitedtoneurons;intriguingly,Piezo2

isalsoexpressedinMerkelcells,aspecializedcelltypeassociatedwithmechanosensitive

neuronterminals.Merkelcell-specificknockoutofPiezo2abolishedthe

mechanosensitivityofMerkelcells,andresultedinareductioninmechanosensitive

currentsandbehavioralresponsestolow-forcemechanicalstimuli115.Therefore,itislikely

thatPiezo2actsbothinneuronsandinMerkelcellstomediatelow-force

mechanosensation.

VertebratelunginflationandtheHeringBreuerreflex

Inadditiontoaroleinexternalsensationoftheskinandextremities,Piezo2has

alsobeenimplicatedinmechanosensationintherespiratorysystem69.Constitutive,global

deletionofPiezo2islethal;knockoutpupsarecyanotic,withlowarterialoxygen

saturation,abnormalrespiratoryrhythms,andsmallairspacesonhistologicalexamination

28

ofthelung,resultingindeathwithin24hoursofbirth.Totrytounderstandtherelevant

siteofPiezo2expressionforthislethalphenotype,differentmousedriverlineswereused

toselectivelyknock-outPiezo2intheendotheliumofbloodvessels,neuralcrestderivative

tissuessuchastheneuroepithelialbodiesinthelungandsensoryneuronswithinjugular

ganglia,thetrigeminalgangliaandofcoursethedorsalrootganglia,andincranialplacode-

derivedtissuessuchasthenodoseganglion.Piezo2knockoutspecificallyinthe

endotheliumorinthenodosegangliondidnotimpactpupsurvival.However,Piezo2

knockoutinthejugularganglion,dorsalrootganglion,andtrigeminalganglion

recapitulatedthephenotypeobservedwithglobalPiezo2deletion.Thesedatatogether

suggestthatPiezo2expressioninneuralcrest-derivedtissuesisnecessaryforsurvival,

andthatPiezo2lossfromtheneuralcrestresultsinabnormalpuprespiratorydynamics.

TheseobservationsbegthequestionoftherolePiezo2playsintherespiratory

systemintheadultanimal.Optogeneticactivationofneuronswithinthenodose-jugular

complexthateithercurrentlyexpressorhaveexpressedPiezo2duringdevelopment

resultsinapneaintheadult,implicatingthisneuronpopulationinadultrespiratory

control.ConditionaldeletionofPiezo2intheadultmousenodose,jugular,anddorsalroot

gangliaresultsinareductionofvagusnerveactivityinresponsetoinflationofthelung,a

findingconsistentwiththeroleofPiezo2inmechanosensationeitherwithintheneural

crestorplacode-derivedtissuesofthisstructure.

WhiledeletionofPiezo2fromtheplacode-derivednodosesensoryneuronsisnot

lethal,theseanimalsdoexhibitabnormalrespiratorycyclesasadults.Furthermore,vagal

responsestolungstretcharecompletelyablatedinPiezo2deletioninthenodoseganglion.

Thisresultraisesinterestingquestionsbecauseitsuggeststhatintheadultmouse,allvagal

lungmechanoreceptorsareinthenodoseganglion,andnoneintheneuralcrest-derived

jugularganglion.However,inpupslossofPiezo2intheneuralcrestbutnotthenodoseis

lethal.DoesthismeanthattheroleofPiezo2intheneuralcrestrequiredforsurvivalisnot

relatedtoadultdetectionoflunginflation?Howdothesensoryrolesofjugularversus

nodoseversusextra-vagalneuronsevolveoverthecourseofdevelopment?Ifdetectionof

lunginflationdependsonnodosePiezo2expression,andlossofdetectionoflunginflation

isnon-lethal,whatisthephysiologicalsignificanceofadultlunginflationmonitoring?

WhereelseisPiezo2deletedinbythedriverusedinnodosegangliondeletionexperiments,

29

anddoesthisresultinabnormalitiesthatcouldexplainthelossoflungstretchsensitivityin

theadult?ThedissociationoftheroleofPiezo2inneuralcrest–derivedversuscranial

placode-derivedtissuessuggestsitsub-servesmorethanonefunctionintherespiratory

system.

RoleofPiezo2inhumanmechanosensation

Piezo2playsanimportantroleinhumanmechanosensationanddevelopment.Gain-

of-functionmutationsinPiezo2havebeenshowntounderliearareautosomaldominant

formofdistalarthrogryposischaracterizedbymultipledistalcontractures,

ophthalmoplegia,ptosis,andrestrictivelungdisease116.Twofamilieswereidentifiedwith

similarfeatures;inoneaPiezo2pointmutationresultedinfasterrecoveryfrom

inactivation,andintheotheraPiezo2missensemutationcausedbothfasterrecoveryfrom

inactivationandslowerinactivationkinetics,bothmutationsthatwouldtranslateto

increasedsensitivitytomechanicalforces.Patientssurvivetilladulthoodandarefertile,

buthavecharacteristicfacieswithdeep-seteyes,anddifficultywithmusclemovement

includingoftheeye,back,neck,andbothlargeandsmalljointsoftheextremities.

Incontrast,twopatientsofdifferentancestryhavebeenidentifiedwithcomplete

Piezo2loss-of-functionmutations117.ThePiezo2variantsfoundinthesepatientseitherhad

Piezo2alleleswithprematurestopcodons,oroneallelewithaprematurestopcodonand

anotherwithamissensemutation.Thesevariantswereunabletogenerate

mechanosensitivecurrentswhenexpressedinheterologouscellsystems.

Thetwopatientswiththesemutationsbothpresentedwithasimilarconstellation

ofcharacteristics.Developmentalfeaturesincludedcongenitalhipdysplasia,finger

contractures,footdeformities,severeprogressivescoliosis,hypotonia,delayedwalkingand

headcontrol,andahistoryofshallowbreathingduringinfancy.Asadults,both

demonstratedaprofoundsensoryataxia,resultingindifficultyperformingreachingtasks

andaninabilitytowalkorstandwitheyesclosed,consistentwithdeficitsin

proprioception.Theywerealsounabletofeelavibratingtuningfork,hadseverelyreduced

lighttouchsensitivity,andexhibitedchanceperformanceoftwo-pointdiscriminationon

30

glabrousskin.Temperatureandpainsensitivitywasnormal.Theyalsohadintactlight

touchsensationonareasofhairyskin,suggestingaPiezo2-independentlighttouchsensory

modalityassociatedwithhair.Insummary,thesepatientsexhibitsimilarsensorydeficits

asmicethatlackPiezo2asadults.However,importantly,humanloss-of-functionofPiezo2

isnotnecessarilylethal.Furthercharacterizationofthemedicalhistoryduringinfancyand

characterizationoftherespiratorysystemofthesepatientswouldbeofgreatinterest.

Conclusions Piezo2isamammalianmechanosensorwithdemonstratedimportanceindetection

ofexternalmechanicalcues.Themolecularidentitiesofthemechanosensorsinvolvedin

detectionofinternalcuesremainunknown,thoughthephenotypesofPiezo2mutantmice

andhumansbothsuggestthatPiezo2couldbeinvolvedincriticalinternalphysiological

reflexes.Therefore,wesoughttodetermineiftheneuronsthathaveexpressedorcurrently

expressPiezo2inthenodoseganglionmediatedetectionofinternalstretch,andwhether

Piezo2knockoutcouldalterneuronresponseproperties.

Recordingmechanosensitiveafferentsinthevagus

Introduction SeveralexperimentalgoalsmustbemettoevaluatetheroleofPiezo2inmammalian

internalmechanosensation.Amethodtorecordtheactivityofvagalafferentsofknown

molecularidentityisrequired.Ideally,suchanexperimentaldesignwouldallowfor

simultaneousrecordingsfrommultipleneuronswithinthesameanimal.Similarly,stimulus

deliveryparadigmsmustenablerobustandconsistentactivationofmechanosensitive

vagalafferents.Thesegoalswereachievedusinginvivocalciumimagingwiththewell-

knowngeneticallyencodedcalciumindicatorGCaMP3inthenodoseganglion.These

methodsandresultsareelaboratedelsewhere33.However,forthepurposesof

understandingtheexperimentsherein,abriefsummaryisprovidedbelow.

31

Methods

Transgenicmiceusedforimagingexperimentsweregeneratedtoprovideganglion-

wideexpressionofthegeneticallyencodedcalciumindicatorGCaMP3,eitherthroughuse

ofaVglut2-ires-CrealleletodriveCre-dependentGcamp3expressioninallvagalsensory

neurons,orusingamouselineinwhichGcamp3isconstitutivelyexpressedinallcellsin

themousefrombirth.Thenodose/jugular/petrosalganglioncomplexwassurgically

exposed.Theconnectionstothebrainstemweretransected,andconnectionstothe

peripherypreserved.ImagingwasperformedwithaLeicaconfocalmicroscope,andthe

confocalpinholewasreducedtoavoidoverlappingcellsinthez-plane.Laserpowerdid

notexceed90uWtopreventbleachingandtissuedamage.Imageanalysiswasperformed

firstusingFiji;videoswerealignedsuchthatthesameneuronswereinthesamelocation

throughoutallimagingexperiments,neuronROIsweremanuallyselected,theaverage

intensitywithineachROIcalculatedforeachframe,andthesevalueswereexported.

MatlabwasusedtoconvertrawintensitiesintoaΔF/F,whereΔF/F=(intensity–average

baselineintensity)/averagebaselineintensity.

Recordingofneuronactivityofknownmolecularidentitywasachievedbycrossing

mouselinesthatexpressCrerecombinaseinasubsetofnodoseganglioncells,aCre-

dependenttdTomatoreporter,andtheconstitutiveGCaMP3allele.Becauseallcellsexpress

GCaMP3,andtargetedneuronswerevisualizedbytdTomatoexpression,thisenablesa

directcomparisonofresponsesinCre-positiveandCre-negativeneurons.Intriplecross

animals,thewavelengthrangecollectedforGCaMP3imagingwasrestrictedtoprevent

bleed-throughfromthetdTomatochannel.ThisresultedinbaselineGCaMP3fluorescence

intensitymeasurementsthatweresimilarbetweentdTomato-positiveandtdTomato-

negativeneurons(seedissertationthesis).InmyPhDdissertationwork,thisallowedfor

evaluationoftheresponsepropertiesofnodoseneuronsubsetsdefinedbyexpressionof

themarkersGpr65,Glp1r,P2ry1,Npy2r,andMc4r.

Gastricdistensionwasachievedbyeitheroftwomethods:1)inflationofasurgically

implantedlatexballoonaffixedtoasmallrodentfeedingneedleandsyringe,or2)inflation

ofthestomachwithnitrogengas(flowrate3-6mL/min,7-15secofinflation).Micewere

fastedovernightforgastrointestinalexperiments.Respiratorystimuliweredeliveredvia

32

trachealcannulaconnectedtogastanksthatwoulddeliverafixedgasflowrate.

Grossbloodpressuremanipulationswereattemptedbyrapidlyinjecting1-3mLof

lactatedringersintothemousevascularsupplyviafemoralveincatheter(4mice).

However,thisstimulusfailedtoelicitanyresponsesinthemicetested,andwas

abandoned.

Neuronswerecodedasresponsivetogastrointestinalmechanicalstimuliifeitherof

twocriteriaweremet:1)maximalGCaMP3fluorescencewas>sevenstandarddeviations

abovethebaselinemeanduringthestimulus,or2)ifmeanGCaMP3fluorescencewas>

threestandarddeviationsabovebaselinemeanduringtheentirestimulus.Neuronswere

categorizedasresponsivetointroductionofgasesinthelungiftheyexhibitedincreasesin

fluorescenceintensityduringthestimulusatleastthreestandarddeviationsorgreater

abovea30-secondbaselinemeanintensity.

Results Thedetailsoftheresultsprovidedarediscussedindetailinthedissertation

defense,andinpublication33.Briefly,however,invivocalciumimagingallowsforthe

identificationandcharacterizationofsensoryneuronpopulationsinthevagusnerveinthe

livingmouse.Stomachstretchcausesavolume-dependentrecruitmentofapproximately

17%ofallelectricallyresponsivevagalsensoryneurons(Figure1A).Lunginflation

similarlyrecruitedinaflow-dependentmannerapproximately4%ofvagalsensory

neurons,manyofwhichalsoshowedincreasesinactivitywiththerestingmouse

respiratorycycle(Figure1B,C).Thesemechanicallyresponsiveneuronsubsetswere

activatedindependentofthechemicalcompositionofthestimulusused(Figure1D).Inthe

caseofstomachstretch,thesameneuronswereactivatedbydistensionwithliquiddietor

nitrogengasinflation.Inthecaseoflungstretch,thesameneuronswereactivatedby

inflationwithnitrogen,oxygen,orroomair.Thesemechanicallyresponsivesubsetswere

uniquefromeachother,andfromtheneuronpopulationresponsivetochemicalstimuli

appliedinthesmallintestine(Figure1E).

33

Figure1.Invivocalciumimagingofvagalsensoryneurons.(A)Increasingvolumesofstomachdistension(300,600and900μL)causevolume-dependentrecruitmentofavagalsensoryneuronsubsetasmeasuredbyinvivoGCaMP3fluorescenceintensity.(B)Increasingflowrateofgasesintothelung(low0.5L/min,high1L/min)causedependentrecruitmentofavagalsensoryneuronsubset,asmeasuredbyinvivoGCaMP3fluorescence.(C)Manyofthelungstretchsensitivevagalafferentsshowcyclicalchangesinfluorescenceintensityentrainedtotherestingrespiratorycycle.(D)Therecruitmentofstomachandlung-stretchsensitiveneuronsisindependentofthechemicalidentityofthestimulususedinorganstretch.(E)RepresentativeimagesofGCaMP3fluorescencesignalinavagalganglionfollowingtandemapplicationofstomachstretch(red),intestinalglucose(blue),andlunginflation(green).Allscalebars,50µm.ModifiedfromWilliams,etal2016.

34

Finally,usingthetripletransgenicstrategytolabelspecificneuronsubsetswiththe

fluorescentproteintdTomatoallowedfortheidentificationoftheresponsepropertiesof

theseneuronpopulations.NeuronsmarkedbyexpressionofCreunderthecontrolofGlp1r,

orGLP1Rneurons,accountedformost(85%)ofthestomachstretchresponsivecells

(Figure2A).Incontrast,neuronsmarkedbyexpressionofCreunderthecontrolofGpr65

accountedformost(66%)oftheintestinallychemosensitiveneuronsubset(Figure2B).

Conclusions Thedevelopmentofinvivocalciumimaginginthenodoseganglionallowsfor

identificationofgastricandlungmechanosensitiveneuronpopulations,andconcurrent

identificationofmolecularlydefinedneuronsubtypes.Therefore,invivoimagingprovides

anexcellentexperimentalplatformtoinvestigatetheresponsepropertiesofPiezo2-

markedvagalsensoryafferents.

Figure2.Invivocalciumimagingofmolecularlydefinedvagalsensoryneuronsubsets.(A)RepresentativeimagesofGLP1RneuronsandincreasesinfluorescenceofthecalciumindicatorGCaMP3inresponsetofoodintheintestine,andtostomachstretch.Thestomachstretch,butnottheintestinalfoodresponsiveneuronsarecompletelycontainedwithintheGLP1Rneuronsubset.(B)Conversely,alloftheintestinefoodresponsiveneuronsarecontainedwithintheGPR65neuronsubset.Scalebar,50µm.ModifiedfromWilliamsetal,2016.

35

Experiment1:InVivoimagingofPiezo2

lineageneurons

Introduction IfPiezo2isthemechanosensorforinternalmechanicalstimuli,mechanosensitive

vagalafferentsshouldexpressPiezo2.Totestthishypothesis,weusedinvivocalcium

imagingtoexaminetheresponsepropertiesofneuronsthatexpressedaCre-dependent

tdTomatoreporterinPiezo2-Cremice.

Furthermore,theobservationthatselectiveactivationofP2RY1neuronscauses

apnearaisesthepossibilitythatP2RY1neuronsmayalsoplayaroleindetectionoflung

stretch.Insituhybridizationhasshownpartialoverlapbetweenneuronsthatexpress

P2ry1andPiezo277,furthersuggestingthatperhapstherelevantlung-stretchsensitive

populationconsistsoftheneuronsthatexpressbothP2ry1andPiezo2.Therefore,wealso

soughttoexaminethemechanicalsensitivityoftheP2RY1neuronsubsets.

Methods Wegeneratedthetripleknock-inmouselinePiezo2-ires-Cre;lox-tdTomato;Rosa26-

GCaMP3(Piezo2-GCaMP3*),andP2ry1-ires-Cre;lox-tdTomato;Rosa26-GCaMP3(P2ry1-

GCaMP3*),whichallowforaninvivonodoseganglionimagingapproachinvolving

constitutiveexpressionofthegeneticallyencodedcalciumindicatorGCaMP3,andthe

Piezo2-Cre-dependentexpressionoftdTomato.Imaging,stimulusadministration,and

analysiswereperformedasdescribedpreviously.

Results Piezo2-GCaMP3*micedemonstratedexpressionoftdTomatobroadlyinsatellite

glialcellssurroundingnodoseganglionneurons,andalsowithinasubsetofsensory

neurons.Of283electricallyresponsiveneurons(n=3mice),98(34.6%)expressed

36

tdTomato.P2ry1-GCaMP3*micealsodemonstratedexpressionoftdTomatobroadlyin

satelliteglialcellssurroundingnodoseganglionneurons,aninasubsetofneuronsaswell.

Of211electricallyresponsiveneurons(n=3mice),31(14.7%)expressedtdTomato.

InPIEZO2experiments,seventeenneuronswereidentifiedasresponsivetolung

stretchstimuli,aproportionofthetotalganglion(7.2%)consistentwithpriorestimatesof

thesizeofthelung-stretchresponsivepopulation.Ofthese17lungstretchresponsive

neurons,16werepositivefortdTomato(94%).Conversely,16of84(19%)tdTomato-

positiveneuronswereresponsivetolungstretch.Fromthesedataweconcludethatnearly

alllung-stretchresponsiveneuronshaveexpressedPiezo2,andthatlung-stretch

responsiveneuronsaccountforapproximatelyone-fifthofneuronsthathaveexpressed

Piezo2(Figure3A).

P2RY1

1

31

52

(211)

P2RY1 Merge Lung stretch

PIEZO2 1

100 98

(283)

PIEZO2 Merge Lung stretch

A B

Figure3.PIEZO2neurons,butnotP2RY1neuronscontainlungmechanoreceptors.(A)Representativeimagesandtime-resolvedresponsesof100sensoryneurons,(ΔF/F,colorscale)inresponsetolungstretch(greenbar,15seconds).Nearlyalllung-stretchresponsiveneuronsarecontainedwiththePIEZO2neuronpopulation.(B)Representativeimagesandtime-resolvedresponsesof52sensoryneurons,(ΔF/F,colorscale)inresponsetolungstretch(greenbar,15seconds).Noneofthelung-stretchresponsiveneuronsarecontainedwiththeP2RY1neuronpopulation.Scalebars,50µm.

37

Incontrast,inP2RY1experiments,twenty-threeneuronswereidentifiedas

responsivetolungstretch(11%),aproportionofthetotalganglionsomewhathigherthan

priorestimatesofthesizeofthelungstretchpopulation.Ofthese23lungstretch

responsiveneurons,2werepositivefortdTomato(8.6%),thoughtheresponseamplitudes

ofthesetwoneuronsweremarkedlyreducedcomparedtotdTomatonegativeresponsive

neurons.Fromthesedata,weconcludethattheP2RY1neuronpopulationlargelydoesnot

includelung-stretchsensitivecells(Figure3B).

InPIEZO2experiments,thirty-oneneuronswereidentifiedasresponsiveto

stomachstretch,aproportionoftheganglion(13.1%)consistentwithpriorestimatesof

thesizeofthestomach-stretchresponsivepopulation.Ofthese31stomachstretch

responsiveneurons,usingstandardcut-offstodefinerespondersversusnon-responders,

18(52.9%)werepositivefortdTomato(Figure4A).Anindependent-samplest-testwas

conductedtocomparethemeanresponseamplitude,expressedaspercentchangefrom

baseline,duringstomachstretchintdTomatopositiveversustdTomatonegativestomach-

stretchresponsiveneurons.Therewasasignificantdifferenceintheresponseamplitudes

fortdTomatopositive(M=66,SEM=16)andtdTomatonegative(M=11,SEM=5)

neurons;t(29)=2.83,p=0.008.Therefore,thoughbystandarddefinitionsforresponsive

versusnon-responsiveneurons,onlyhalfofstomach-stretchresponsivecellsaretdTomato

positive,thetdTomatopositiveneuronsweremuchmorestronglyresponsivethanthe

tdTomatonegativeneurons.Conversely,18of84(21%)tdTomatopositiveneuronswere

stomachstretchresponsive.Fromthesedataweconcludethatmoststronglyresponsive

stomachstretchsensitiveneuronshaveexpressedPiezo2,andthatstomach-stretch

responsiveneuronsaccountforanotherone-fifthofneuronsthathaveexpressedPiezo2.

38

Finally,thoughoneofthestomachstretchpreparationsfailedinP2RY1

experiments,datawasanalyzedfromtwoofthethreeanimalstested,yieldingatotalof

181electricallyresponsiveneurons.Ofthese181neurons,32(17.7%)wereresponsiveto

stomachstretch,aproportionsimilartopriorestimatesofthesizeofthestomachstretch

sensitivepopulation.Ofthe32stomachstretchresponsiveneurons,4(13%)werepositive

fortdTomato(Figure4B).Fromthesedataweconcludethatthemajorityofstomach

stretchsensitiveneuronshaveneverexpressedP2ry1.

B

PIEZO2

236

84

1

A PIEZO2 Merge Stomach stretch P2RY1 Merge Stomach stretch

P2RY1

181

1

31

Figure4.PIEZO2neurons,butnotP2RY1neuronscontainstomachmechanoreceptors.(A)Representativeimagesandtime-resolvedresponsesof236sensoryneurons,(ΔF/F,colorscale)inresponsetostomachstretch.Nearlyalllung-stretchresponsiveneuronsarecontainedwiththePIEZO2neuronpopulation.(B)Representativeimagesandtime-resolvedresponsesof181sensoryneurons,(ΔF/F,colorscale)inresponsetostomachstretch.Noneofthestomach-stretchresponsiveneuronsarecontainedwiththeP2RY1neuronpopulation.Allscalebars,50µm.Greenbarsundertherasterplotsindicatetimeofapplicationofstretchstimuli(Piezo220and30seconds,P2ry130seconds).

39

Conclusions NeuronsthathaveexpressedPiezo2atsomepointintheirlifetimeencompass

stomachandlungmechano-sensitivepopulations.Incontrast,neuronsthathaveexpressed

P2ry1intheirlifetimearenotresponsivetostomachorlungmechanicalstimuli.These

findingshavetwokeyimplications.

First,thesedatasupportthehypothesisthatPiezo2couldbethemolecular

mechanosensor.Asacorollary,suchaconclusionwouldalsosuggestthattheneurons

themselvescouldbetheprimarymechanosensorbecausetheyaremarkedbyexpressionof

aknownmolecularmechanosensor.Furtherexperimentsarerequired,however,to

demonstratetherelevanceofthePiezo2moleculeitself.Whilesomedataalreadysupport

theroleofPiezo2inlungmechanosensation,nothingisknownaboutPiezo2ingastric

mechanosensation.

Second,thesedatasupporttheconclusionthePiezo2-positive,P2ry1-negative

neuronscontaintherelevantlung-stretchresponsivepopulation.Thisobservationis

importantfortworeasons.First,itisacleardemonstrationthatP2RY1neuronsarenot

responsiblefortheHeringBreuerreflex,beggingthequestionwhatA-fibersthat

selectivelyinnervateneuroepithelialbodiesandwhocaninducecompletemouseapneaare

doing.P2ry1isauniquemolecularhandleonanunanticipatedvagalneuronsubset.

Second,becauselung-stretchresponsiveneuronsonlycoverasubsetofPIEZO2neurons,

additionalgeneticmarkersarerequiredtomorepreciselydefinethelungstretchsubset.

P2ry1canthereforeserveinfutureexperiments,suchasinanalysisofsingle-celldata,to

restrictinvestigationintoPiezo2-positive,P2ry1-negativeneurontypes.Suchexperiments

mightrevealcriticalmarkersormanipulablefeaturesoflung-stretchsensitiveneuron

subsetstobeexploitedinthefuture.

40

Experiment2:Invivoimagingofneurons

thatexpressPiezo2intheadult

IntroductionNeuronsthathaveexpressedPiezo2atsomepointintheirdevelopmentcontain

nearlyallthelungandstomachstretchresponders.However,acriticalshortcomingof

lineage-tracingexperimentsisthattheydonotdistinguishbetweenhistoric,

developmentalexpressionandactivefunctionalexpressionintheadult.ifPiezo2werethe

mechanosensoritself,onewouldalsoadditionallypredictthatmechanosensitiveneurons

expressPiezo2notonlyatsometimeduringdevelopment,butalsothattheyexpress

Piezo2inadulthood.Totestthishypothesisrequiresanexperimentalparadigminwhich

neuronsthatexpressPiezo2inadulthoodareselectivelylabeled,andinwhichtheir

responsepropertiescanberecordedtostretchstimuli.

MethodsWegeneratedthedoubleknock-inmouselinePiezo2-ires-Cre;Rosa26-GCaMP3,and

usedadeno-associatedvirusestodeliverflex-tdTomatovectorstoallnodosesensory

neurons.ThisresultedinexpressionoftdTomatoonlyinneuronsexpressingPiezo2-Creat

thetimeofinjectioninadulthood.Responsepropertiesoflabeledneuronscouldthenbe

recordedusinginvivocalciumimagingasinpriorexperiments.

Givenconcernsabouttheimpactofviralinjectionsonneuronhealthand

responsiveness,thesameexperimentswereperformedusingGlp1r-ires-Cre;Rosa26-

GCaMP3animalsaspotentialpositivecontrols.GLP1Rneuronshadpreviouslybeenshown

toincludethestomach-stretchresponsiveneuronpopulation33.

Adeno-associatedvirusinjectionswereperformedasdescribedpreviously33,77.

Briefly,miceareanesthetized,theleftnodoseganglionsurgicallyexposed,andAAVmixed

withFastGreendyeisinjectedintothebodyoftheganglion.Injectionsareconsidered

grosslysuccessfulwhentheganglionbodyfillswithbluedye.Theincisionintheneckis

41

closedandtheanimalsallowedtorecover.Imagingexperimentswereperformed6-7days

followinginjectionsinhopesofpreservingneuronviabilitywhileachievingreasonable

amountsofinfectionandconstructexpression.

Results InPiezo2animals,631electricallyresponsiveneuronswereanalyzed(n=7

animals).Ofthese631neurons,45weretdTomatopositive,suggestingacombined

infectionandexpressionefficiencyof7.1%.Whenthesameanalysiswasperformedbased

onlyuponmorphologicalidentificationofcellbodiesratherthanonresponsivenessto

electricalstimulation,811neuronswereidentifiedofwhich72weretdTomatopositive

(8.8%efficiency).ThesimilarityoftdTomatoexpressionfrequencyinallneuronsversusall

electricallyresponsiveneuronssuggeststhattdTomatoexpressionwasnotimpairinggross

neuronresponsiveness.

InGlp1ranimals,441electricallyresponsiveneuronswereanalyzed(n=4animals).

Ofthese441neurons,40weretdTomatopositive,suggestingacombinedinfectionand

expressionefficiencyof9.0%.Thisefficiencyisconcordantwiththeobservationthatinsitu

hybridizationforPiezo2andGlp1rinadultmousenodosegangliaresultsinlabeling

neuronalsubsetsofsimilarsize.

WefirstexaminedthedegreeofoverlapbetweentdTomato-expressingneurons

andstomachstretchresponsiveness.InGlp1rexperiments,71neuronsintotalresponded

tostomachstretch.Ofthe40tdTomato-positiveneuronsinGlp1ranimals,18(45%)were

responsivetostomachstretch(Figure5A).AChi-squaredtestforindependenceshowed

thattherewasasignificantrelationshipbetweentdTomatoexpressionandstretch

responsiveness,X2(2,N=441)=27.203,p<0.01(Figure5B).Thisresultisinaccordwith

theearlierobservationthatGLP1Rneuronscontainnearlyallthestomachstretch

responsiveneurons,andthatadultlabelingofGLP1RneuronslabelsnearlyallIGLE-type

endingsinthestomach33.Theseresultsserveasanimportantproofofconceptandpositive

control.

InPiezo2animalexperiments,54ofthe631neuronsanalyzedwereresponsiveto

stomachstretch(8.6%).Ofthesestomachstretchresponders,5(9.2%)weretdTomato

42

positive(Figure5A).Thesedatasuggesttwoobservations.First,asubsetofadultPiezo2-

expressingneuronscanrespondtostomachstretch.However,wewouldfurtherpredict

thatifPiezo2istherelevantstomachmechanosensor,thereshouldbegreater-than-chance

co-occurrenceoftdTomatoexpressionandstomachstretchresponsiveness.Weperformed

aChi-squaredanalysis,andfoundthattherewasnorelationshipbetweenstomachstretch

andadultPiezo2expression,X2(2,N=631)=0.40,p=0.53(Figure5B).Thesedatadonot

supportthehypothesisthatPiezo2istherelevantadultgastrointestinalmechanosensor.

WenextexaminedthedegreeofoverlapbetweentdTomato-expressingneurons

andlungstretchresponsiveness.OnlytwoGlp1ranimalshadlung-stretchstimuli

administered,resultinginanalysisof169electricallyresponsiveneurons.Seventeen

neuronswereresponsivetolungstretch(10%),aresponseratesimilartoprior

experimentalparadigms.NoneoftheseresponsiveneuronsweretdTomatopositive,

consistentwithpriorworkshowingnooverlapbetweenGLP1Rneuronsubsetslabeled

withgeneticlineage-tracingmethods,andlung-stretchresponsivesubsets.

InPiezo2experiments,ofthe631electricallyresponsiveneurons,29were

responsivetolungstretch(4.6%),similartopreviouslyreportedratesoflung-stretch

Figure5.ExpressionofPiezo2inadulthooddoesnotpreferentiallylabelstomachstretchsensitiveneurons.(A)Representativeimagesofneuronresponsestostomachstretch(green)inGlp1r-iresCreAAV-lox-tdTomatoandPiezo2-iresCreAAV-lox-tdTomatoneurons(pink).Scalebar,50µm.(B)PlotoftheobservednumberoftdTomatoandstomachstretchdouble-positiveneurons(PIEZO2,black;GLP1R,red)versustheexpectednumberofneuronscalculatedbasedoninfectionandresponserates(gray).**p<0.01forX2testforindependence.

43

responsiveness.Ofthese29lungstretchresponsiveneurons,3(10.3%)weretdTomato

positive.AChi-squaredanalysisshowedtherewasnorelationshipbetweenlungstretch

responsivenessandtdTomatoexpression,X2(2,N=631)=0.47,p=0.49.Thisresultis

surprisinginlightofthefindingsthatknockoutofPiezo2impactstheHering-Breuerreflex

andwhole-nerverecordingsofthevagusinresponsetolungstretch.

Conclusions TherelationshipbetweenGlp1r-drivenAAV-tdTomatoexpressionandstomach

stretchresponsivenessconfirmsthatstomach-stretchresponsiveneuronsexpressGlp1rin

adulthood.Moreimportantly,thisobservationsuggeststhatviralinfectionandinvivo

imagingcanbecompatibletechniquesinthisparadigm.However,thefindingthatthere

wasnorelationshipbetweenadultPiezo2-driventdTomatoexpressionandstomach

stretchresponsivenesscastsdoubtonthehypothesisthatPiezo2istherelevantmolecular

mechanosensorinstomachstretch.Rather,thisresultmightsuggestthatPiezo2playsan

importantdevelopmentalroleintheformationofIGLEs,butthatitsexpressionisnot

preservedintoadulthoodinthisneuronpopulation.

However,theobservationthatadultPeizo2-driventdTomatoexpressionandlung

stretchresponsivenessarenotrelatedissurprising.KnockoutofPiezo2frombirthinthe

neuronsubsetimagedintheseexperimentsabolisheswhole-nerveresponsestolung

stretch.Itispossiblethataninsufficientnumberofneuronswasqueriedinthisparadigm

torevealarelationship;lung-stretchresponsivecellsaremuchmorerarethatstomach-

stretchresponders.Despitemultipleimagingpreparations,thisresultdependsheavilyon

datafromlessthan30neurons.Furthermore,therobust-nessofneuronpopulationsto

viralinfectionmaydifferdependingonneurontype,makingthisexperimentsuitableto

examinestomach–stretch,butnotlung-stretchsensitivesubsets.

Alternatively,iflung-stretchresponsiveneuronstrulydonotexpressPiezo2in

adulthood,itwouldsuggestthatPiezo2intheneuronsthemselvesisnotcriticalforlung

mechanosensation.PerhapstheexpressionofPiezo2innon-neuronalelements,suchits

expressioninthenodosesatellitecellsorintargetorgans,issufficienttoconfer

mechanosensitivity.DriversusedtoknockoutPiezo2inpriorexperimentsarenotfully

44

nodose-neuronspecific.Similarly,anadditionalalternativeexplanationisthatPiezo2plays

animportantdevelopmentalroleinlungstretchsensitiveafferentsand/ortheir

surroundingstructuressuchthatitslosswouldconfermechano-insensitivitywithout

Piezo2beingtheactualmechanoreceptor.

Experiment3:Detectionofstretchstimuliin

Piezo2knock-outganglia

Introduction ThehypothesisthatPiezo2actsasthemechanosensorinvagalsensoryafferents

furthermoresuggeststwoadditionalpredictions.First,lossofexpressionofPiezo2should

resultinthelossofmechanicallyevokedresponses.Second,iftheneuronsarethedirect

mechanosensors,theselectivelossofPiezo2intheneuronsthemselvesbutnotinother

tissuesshouldbesufficienttoabolishresponses.Totestthesepredictionsrequiresan

experimentalparadigminwhichPiezo2expressionisdisruptedselectivelyinthenodose

ganglionneurons,andinwhichresponsepropertiescanstillberecorded.

Methods Usingaseriesofmousecrosses,wegeneratedPiezo2fl/fl-GCaMP3*,Piezo2fl/wt-

GCaMP3*,andPiezo2wt/wt-GCaMP3*animals.Anadeno-associatedviruscontainingaCAG-

Cre-mCherryconstructwaspurchasedfromSignaGenlaboratories(AAV1-CAG-Cre-

mCherry,SL101117).InfectionwiththisvectorisintendedtoinducetheexpressionofaCre

recombinaseandmCherryfusionalleletogeneraterednuclearfluorescenceinevery

neuronalsoexpressingCre.ExpressionofCrerecombinaseincellscontainingafloxed

Piezo2allelewouldresultingeneticknockoutofPiezo2.Imagingexperimentswere

45

performed14-21daysafterAAVinjectionsinhopesofprovidingsufficienttimefor

knockdownofPiezo2expression.SuccessfulexpressionofCre,andexcisionofthePiezo2

allelewereconfirmedusingPCRofgangliacollectedaftercompletionofimaging

experiments.

Results TwotothreeweeksfollowinginjectionofAAV1-CAG-Cre-mCherry,nodoseganglia

demonstratedwidespreadandrobustexpressionoftdTomatointheinfectedganglion,but

notintheuninfectedcontralateralganglion.Theredfluorescencewaslocalizedtothecell

nucleus,concordantwiththefluorescentproteinbeingtaggedtonucleus-localizedCre

recombinase.Inthefiveinjectedanimals,278electricallyresponsiveneuronswere

analyzed,ofwhich186(67%)containedamCherry-positivenucleus,suggestinghigh

infectionefficiencyintheseexperiments(Figure6A).PCRofganglionDNAextractedafter

imagingexperimentsshowedpositivereactionsforCrerecombinasefrominfected,butnot

fromuninfectedganglia.Furthermore,PCRreactionsspecificforthesequenceofthe

knockoutPiezo2allelewerepositiveonlyininfectedgangliafrommicecarryingatleast

onefloxedPiezo2allele(Figure6B).TheseresultssuggestnotonlythatCrewas

successfullyexpressed,butalsothatitwasfunctionalandexcisedthefloxedregionof

Piezo2.

46

Figure6.Validationofneuron-specific,adultdeletionofPiezo2.(A)Fluorescentmicroscopyimageofthenodoseganglion14-21daysfollowinginfectionwithAAV1-CAG-Cre-mCherry.showswidespreadexpressionofnuclearmCherry.Scalebar,200µm.ConfocalimagesofneuronswithintheganglionshownuclearmCherrylocalizationScalebarinsets50µm.(B)PolymerasechainreactiondemonstratestheexpressionofCrerecombinaseininfectedbutnotuninfectedganglia,andexcisionofexons43-45ofPiezo2onlyininjectedgangliaofanimalswithafloxedallele.Scalebar,50µm.

47

Offiveanimalssuccessfullytested,twowerePiezo2fl/wt,meaningthatPiezo2

expressionfromonealleleshouldalwaysbepreserveddespiteexpressionofCre.Inthese

animals,107electricallyresponsiveneuronswereanalyzed.Ofthese107neurons,7

(6.5%)wereresponsivetolungstretch,5ofwhichweremCherrypositiveand2ofwhich

weremCherrynegative.Furthermore,19(17.8%)werestomachstretchresponsive,of

which14weremCherrypositiveand5weremCherrynegative.Therefore,Creexpression

didnotabolishmechanosensitiveresponsesinnodosesensoryneurons(Figure7A).Chi-

squaredanalysisshowedtherewasnorelationshipbetweenlungstretchresponsiveness

andtdTomatoexpression,X2(2,N=107)=0.90,p=0.34,norbetweenstomachstretch

responsivenessandmCherryexpressioninanimals,X2(2,N=107)=1.88,p=0.17.These

datasuggestthatinjectionandconstructexpressionitselfdoesnotimpactmechanical

sensitivityofvagalsensoryneurons.

TheremainingthreeanimalstestedwerePiezo2fl/flanimals,meaningthatneurons

expressingmCherryintheseanimalsalsohaveexcisionofbothcopiesofthefloxedPiezo2

geneticsequence.Intheseanimals,171electricallyresponsiveneuronswereanalyzed.Of

these171neurons,25(14%)werestomach-stretchresponsive,ofwhich14weremCherry

positiveand11weremCherrynegative.Furthermore,4(2.3%)werelungstretch

responsive,ofwhich2weremCherrypositiveand2weremCherrynegative.Therefore,

evenwhenbothPiezo2alleleswerefloxed,neuronsexpressingCrerecombinase

maintainedtheirabilitytorespondtomechanicalstimuli(Figure7A).AChi-squared

analysisshowedtherewasnorelationshipbetweenstomachstretchresponsivenessand

mCherryexpressioninPiezo2-floxedanimals,X2(2,N=171)=0.0002,p=0.98,nor

betweenlungstretchresponsivenessandmCherryexpression,X2(2,N=171)=0.07,p=

0.80.Similarly,therewasnoattenuationinstomachstretchresponseamplitudein

mCherry-positiveneuronsinPiezo2fl/flanimals(Figure7B).Rather,mCherry-positive

neuronshadaslightlygreaterresponseamplitude(M=2.1,SD=1.3)thanmCherry-

negativeneurons(M=1.0,SD=1.02),t(22)=0.481,p=0.03.Toofewlungstretch

responsiveneuronswerepresentinthesepreparationsforrigorousstatisticalanalysisof

responseamplitudes,particularlygiventhesmallnumberofanimalstested.

48

Conclusions ThelackofrelationshipbetweenPiezo2excisionandeitherstomachorlungstretch

castsfurtherdoubtontheroleofPiezo2onlungandstomachmechanosensationinvagal

sensoryafferents.However,onetechnicalpointlimitsenthusiasmforthestrengthof

conclusionstobedrawninthisexperiment.WhilegenomicexcisionofthePiezo2exons

couldbeconfirmedgrosslybywhole-ganglionPCR,thisvalidationprovidesonlyaproxy

indicationthatproteinlevelsofPiezo2arealteredusingthisexperimentalmanipulation.

Forexample,thePiezo2knockout-specificPCRreactioncouldbepositiveincasesof

excisionofthefloxedPiezo2regioninonlyanincompletesubsetofneurons.Alternatively,

Figure7.Neuron-specific,adultdeletionofPiezo2doesnotabolishmechanicalresponses.(A)RepresentativeimagesofpreservedstomachandlungstretchresponsesinmCherry-positiveandnegativeneuronsinPiezo2fl/flandPiezo2fl/wtanimals.Scalebar,50µm.(B)Responseamplitudesforallstomachstretch(left)andlungstretch(right)responsiveneuronsinPiezo2fl/flanimals.TracesfromneuronsthatexpressmCherryareinred,whiletracesfromneuronsthatdonotexpressmCherryareinblack.

49

evenifknockoutwerecompleteatthegenomiclevel,thedurabilityofexpressedPiezo2

proteinisunknown,andmayextendbeyondthe2-3weeksbetweeninfectionandimaging

utilizedinthisexperimentalparadigm.However,intriguingly,theonlyotherexperimentto

knockdownPiezo2inadultanimalsgeneratedreductionsinskinsensitivitywithinone

weekofinductionofgenomicexcisionofthefloxedregionofPiezo269,suggestingthe2-3

weekwindowusedintheseexperimentsshouldbesufficient.Unfortunately,toolsto

evaluateproteinexpression,andspecificallyproteinexpressionatdistalsensoryterminals

withintargetorgans,arelacking.Interpretationofresultsmustthereforenecessarilybe

constrainedwiththisshortcominginmind.Theabsenceofarelationshipisanegative

resultthatcouldreflecttruebiology,oratechnicalhurdle.

WithincompletevalidationofPiezo2proteinexpressionknockdowninmindasa

prominenttechnicalshort-comingfordatainterpretation,thesedataarenotconcordant

withthehypothesisthatvagalsensoryneuronPiezo2isthesoleandnecessary

mechanosensorineitherstomachorlungstretch.Thisconclusionagreeswiththelackof

relationshipbetweentheadultexpressionofPiezo2andstomachstretchinprior

experiments,supportingthenotionthatPiezo2doesnotplayaroleintheadultgastric

mechanosensitiveneuronpopulation.

ThelackofrelationshipbetweenneuronalPiezo2knockoutandlungstretch

responsiveness,however,issurprising.ThesinglepriorexperimenttosuggestPiezo2

knockoutinadultsaltersrespiratorydynamicsandattenuatestheHeringBreuerreflex

usedatamoxifen-dependentAdvillin-CredrivertodeletePiezo2fromvagalanddorsalroot

ganglionneurons69.Theknockoutmicehad30%largertidalvolumes,andreachedpeak

expiratoryflowfasterthanwild-typecontrols.Theseanimalsalsohadlowerwholevagal

nerveactivityduringlunginflation.Onedifferencebetweenthisexperimentandvirally

mediatedknockdownisthatAdvillin-CrealsodrivesPiezo2knockoutoutsidethevagus

(e.g.inthedorsalrootganglia),whichcouldimpactrespiratorydynamics.However,this

wouldnotdirectlyexplainlowervagalwhole-nerverecordinglungstretchresponse

amplitudes.Inadditiontotamoxifen-inducedAdvillin-Cre-drivenPiezo2knockout,the

driverPhox2bwasusedtodeletePiezo2frombirthinnodoseneuronsandglia.Knockout

frombirthresultedinabolitionoftheHeringBreuerreflexandvagusnerveresponsesto

lunginflation.However,experimentsthatknockoutagenefrombirthcannotdistinguish

50

betweendevelopmentalandadultimpactofgeneloss.Therefore,thepossibilityremains

that,asinMerkelcellsintheskin,non-vagalPiezo2expressionplaysanimportantrolein

Piezomechanotransduction,andthatknockoutspecificallyinadultvagalsensoryneurons

isinsufficienttoabolishlungstretchmechanosensitivity.

SummaryDetectionofmechanicalforceswithinthebodyplaysacriticalroleinregulationof

organismphysiology.WeinvestigatedwhetherPiezo2,arecentlyidentifiedmammalian

mechanosensor,couldplayaroleindetectionofinternalmechanosensorycues.Wefound

thatlineagetracingofneuronsthathaveexpressedPiezo2labeledthelargemajorityof

lungandstomachmechanosensitiveneuronpopulationsinthenodoseganglionofthe

vagusnerve.However,neuronsthatexpressedPiezo2inadulthooddidnotpreferentially

labelmechanosensitivepopulations.Inaddition,adultandnodoseneuronspecificPiezo2

knockoutfailedtoabolishmechanosensitiveresponsesinnodosesensoryneurons,though

conclusionsfromthisexperimentarelimitedbytechnicalconcerns.Thesedatain

aggregatesuggestPiezo2maynotbethesolemechanosensorwithininternalsensory

systems,andfurthermoreraisethepossibilitythatextra-neuralPiezo2couldplayan

importantroleinthesesystemsasitdoesintheskin,orthatPiezo2playsanimportant

developmentalrole.Furtherexperimentationsuchas1)usingalternativemethodsto

knockoutPiezo2fromvagalsensoryneuronsandassociatedtissues,2)evaluationofadult

PIEZO2neuronanatomyintheperiphery,and3)investigationintotheroleofPiezo2inthe

cardiovascularsystem,wouldshedintriguinglightontotheroleofPIEZO2neurons,and

theroleofPiezo2expressionininternalmechanosensation.

Bibliography1. Foley,J.O.&DuBois,F.S.Quantitativestudiesofthevagusnerveinthecat.I.The

ratioofsensorytomotorfibers.JournalofComparativeNeurology67,49–67(1937).

51

2. Sawchenko,P.E.Centralconnectionsofthesensoryandmotornucleiofthevagusnerve.J.Auton.Nerv.Syst.9,13–26(1983).

3. Saper,C.B.Thecentralautonomicnervoussystem:consciousvisceralperceptionandautonomicpatterngeneration.Annu.Rev.Neurosci.25,433–469(2002).

4. Rinaman,L.,Card,J.P.,Schwaber,J.S.&Miselis,R.R.Ultrastructuraldemonstrationofagastricmonosynapticvagalcircuitinthenucleusofthesolitarytractinrat.JournalofNeuroscience9,1985–1996(1989).

5. Janowitz,H.&Grossman,M.I.Somefactorsaffectingthefoodintakeofnormaldogsanddogswithesophagostomyandgastricfistula.Am.J.Physiol.Regul.Integr.Comp.Physiol.159,143–148(1949).

6. Share,I.,Martyniuk,E.&Grossman,M.I.Effectofprolongedintragastricfeedingonoralfoodintakeindogs.JournalofPhyiology169,229–235(1952).

7. Phillips,R.J.&Powley,T.L.Gastricvolumeratherthannutrientcontentinhibitsfoodintake.Am.J.Physiol.271,R766–9(1996).

8. Powley,T.L.&Phillips,R.J.Gastricsatiationisvolumetric,intestinalsatiationisnutritive.Physiology&Behavior82,69–74(2004).

9. Phillips,R.J.&Powley,T.L.Gastricvolumedetectionafterselectivevagotomiesinrats.Am.J.Physiol.274,R1626–38(1998).

10. Gonzalez,M.F.&Deutsch,J.A.Vagotomyabolishescuesofsatietyproducedbygastricdistension.Science212,1283–1284(1981).

11. Walls,E.K.,Phillips,R.J.,Wang,F.B.,Holst,M.C.&Powley,T.L.Suppressionofmealsizebyintestinalnutrientsiseliminatedbyceliacvagaldeafferentation.Am.J.Physiol.269,R1410–9(1995).

12. Yox,D.P.,Stokesberry,H.&Ritter,R.C.Vagotomyattenuatessuppressionofshamfeedinginducedbyintestinalnutrients.Am.J.Physiol.260,R503–8(1991).

13. Ogawa,N.etal.Thevagalafferentpathwaydoesnotplayamajorroleintheinductionofsatietybyintestinalfattyacidinrats.NeuroscienceLetters433,38–42(2008).

14. Sclafani,A.&Lucas,F.Abdominalvagotomydoesnotblockcarbohydrate-conditionedflavorpreferencesinrats.Physiology&Behavior60,447–453(1996).

15. ColquittJL,P.K.L.E.F.G.Surgeryforweightlossinadults(Review).1–243(2013).16. Ponce,J.etal.TheREDUCEpivotaltrial_aprospective,randomizedcontrolled

pivotaltrialofadualintragastricballoonforthetreatmentofobesity.1–8(2015).doi:10.1016/j.soard.2014.12.006

17. Moura,D.etal.Effectivenessofintragastricballoonforobesity_Asystematicreviewandmeta-analysisbasedonrandomizedcontroltrials.SurgeryforObesityandRelatedDiseases12,420–429(2016).

18. Dixon,J.B.etal.Adjustablegastricbandingandconventionaltherapyfortype2diabetes:arandomizedcontrolledtrial.JAMA299,316–323(2008).

19. Favretti,F.etal.Laparoscopicadjustablegastricbandingin1,791consecutiveobesepatients:12-yearresults.ObesSurg17,168–175(2007).

20. Sjöström,L.etal.EffectsofbariatricsurgeryonmortalityinSwedishobesesubjects.N.Engl.J.Med.357,741–752(2007).

21. Paintal,A.S.Astudyofgastricstretchreceptors;theirroleintheperipheralmechanismofsatiationofhungerandthirst.JournalofPhyiology126,255–270(1954).

52

22. Iggo,A.Tensionreceptorsinthestomachandtheurinarybladder.J.Physiol.(Lond.)128,593–607(1955).

23. Iggo,A.GASTROINTESTINALTENSIONRECEPTORSWITHUNMYELINATEDAFFERENTFIBRESINTHEVAGUSOFTHECAT.QuarterlyJournalofExperimentalPhysiologyandCognateMedicalSciences42,130–143(1957).

24. Slattery,J.A.,Page,A.J.,Dorian,C.L.,Brierley,S.M.&Blackshaw,L.A.Potentiationofmousevagalafferentmechanosensitivitybyionotropicandmetabotropicglutamatereceptors.J.Physiol.(Lond.)577,295–306(2006).

25. AshleyBlackshaw,L.,Grundy,D.&Scratcherd,T.Involvementofgastrointestinalmechano-andintestinalchemoreceptorsinvagalreflexes"anelectrophysiologicalstudy.J.Auton.Nerv.Syst.18,1–10(2002).

26. Blackshaw,L.A.,Page,A.J.&Partosoedarso,E.R.Acuteeffectsofcapsaicinongastrointestinalvagalafferents.Neuroscience96,407–416(2000).

27. Jin,Y.-H.,Takemura,M.,Furuyama,A.&Yonehar,N.ReceptorsInhibitMechanosensitivityofPrimaryAfferentEndings.Pharmacology1–6(1999).doi:10.5772/34100

28. Zagorodnyuk,V.P.,Chen,B.N.,Costa,M.&Brookes,S.J.H.Mechanotransductionbyintraganglioniclaminarendingsofvagaltensionreceptorsintheguinea-pigoesophagus.J.Physiol.(Lond.)553,575–587(2004).

29. Regehr,B.L.S.A.W.G.TIMINGOFSYNAPTICTRANSMISSION.Annu.Rev.Physiol.61,521–542(1999).

30. Bennett,M.&Zukin,S.ElectricalCouplingandNeuronalSynchronizationintheMammalianBrain.Neuron41,495–511(2004).

31. Zagorodnyuk,V.P.&Brookes,S.J.Transductionsitesofvagalmechanoreceptorsintheguineapigesophagus.JournalofNeuroscience20,6249–6255(2000).

32. Zagorodnyuk,V.P.,Chen,B.N.&Brookes,S.J.Intraganglioniclaminarendingsaremechano-transductionsitesofvagaltensionreceptorsintheguinea-pigstomach.J.Physiol.(Lond.)534,255–268(2001).

33. Williams,E.K.etal.SensoryNeuronsthatDetectStretchandNutrientsintheDigestiveSystem.Cell166,209–221(2016).

34. NONIDEZ,J.F.Afferentnerveendingsinthegangliaoftheintermuscularplexusofthedog'soesophagus.J.Comp.Neurol.85,177–189(1946).

35. Neuhuber,W.L.Sensoryvagalinnervationoftheratesophagusandcardia:alightandelectronmicroscopicanterogradetracingstudy.J.Auton.Nerv.Syst.20,243–255(1987).

36. Wang,F.B.&Powley,T.L.Topographicinventoriesofvagalafferentsingastrointestinalmuscle.J.Comp.Neurol.421,302–324(2000).

37. Berthoud,H.R.&Powley,T.L.Vagalafferentinnervationoftheratfundicstomach:morphologicalcharacterizationofthegastrictensionreceptor.J.Comp.Neurol.319,261–276(1992).

38. Berthoud,H.R.,Patterson,L.M.,Neumann,F.&Neuhuber,W.L.Distributionandstructureofvagalafferentintraganglioniclaminarendings(IGLEs)intheratgastrointestinaltract.AnatomyandEmbryology195,183–191(1997).

39. fox,E.A.,Phillips,R.J.,Martinson,F.A.,Baronowsky,E.A.&Powley,T.L.Vagalafferentinnervationofsmoothmuscleinthestomachandduodenumofthemouse:morphologyandtopography.J.Comp.Neurol.428,558–576(2000).

53

40. Powley,T.L.etal.UltrastructuralevidenceforcommunicationbetweenintramuscularvagalmechanoreceptorsandinterstitialcellsofCajalintheratfundus.Neurogastroenterology&Motility20,69–79(2008).

41. Widdicombe,J.Reflexesfromthelungsandairways:historicalperspective.J.Appl.Physiol.101,628–634(2006).

42. Breuer,J.Theself-steeringofrespirationthroughtheNervusVagus,translatedbyE.Ullman.BreathingHering-BreuerCentenarySymposiumCibaFoundationSymposium,357–394(1970).

43. Head,H.OntheReglationofRespiration:PARTI.Experimental.J.Physiol.(Lond.)10,1–152.53(1889).

44. Head,H.OntheRegulationofRespiration:PartII.Theoretical.J.Physiol.(Lond.)10,279–290(1889).

45. Cross,K.W.,KLAUS,M.,TOOLEY,W.H.&WEISSER,K.Theresponseofthenew-bornbabytoinflationofthelungs.J.Physiol.(Lond.)151,551–565(1960).

46. Guz,A.,Noble,M.I.M.,Trenchard,D.,Cochrane,H.L.&Makey,A.R.Studiesonthevagusnerveinman:theirroleinrespiraoryandcirculatorycontrol.ClinicalScience293–304(1964).

47. Dejours,P.,RAYNAUD,J.,MONZEIN,P.&BECHTEL,Y.[StudyoftheHering-Breuerinspirationinhibitorreflexinmanduringnaturalsleep].J.Physiol.(Paris)54,320–321(1962).

48. Guz,A.,Noble,M.I.M.,Widdicombe,J.G.,Trenchard,D.&Mushin,W.W.TheeffectofbilateralblockofvagusandglossopharyngealnervesontheventilatoryresponsetoCO2ofconsciousman.RespirationPhysiology1,206–210(1966).

49. Guz,A.etal.Theroleofvagalandglossopharyngealafferentnervesinrespiratorysensation,controlofbreathingandarterialpressureregulationinconsciousman.ClinicalScience30,161–170(1966).

50. Anrep,G.V.,Pascual,W.&Rossler,R.Respiratoryvariationsoftheheartrate-I—Thereflexmechanismoftherespiratoryarrhythmia.ProceedingsoftheRoyalSocietyB119,191–213(1936).

51. Bainbridge,F.A.Therelationbetweenrespirationandthepulse-rate.J.Physiol.(Lond.)54,192–202(1920).

52. DeBurghDaly,M.,Hazzledine,J.L.&Ungar,A.Thereflexeffectsofalterationsinlungvolumeonsystemicvascularresistanceinthedog.J.Physiol.(Lond.)188,331–351(1967).

53. Looga,R.Reflexcardiovascularresponsestolunginflation:areview.RespirationPhysiology109,95–106(1997).

54. Adrian,E.D.Afferentimpulsesinthevagusandtheireffectonrespiration.J.Physiol.(Lond.)79,332–358(1933).

55. KNOWLTON,G.C.&LARRABEE,M.G.Aunitaryanalysisofpulmonaryvolumereceptors.Am.J.Physiol.147,100–114(1946).

56. Bartlett,D.,Jeffery,P.,Sant'Ambrogio,G.&Wise,J.C.Locationofstretchreceptorsinthetracheaandbronchiofthedog.J.Physiol.(Lond.)258,409–420(1976).

57. Widdicombe,J.G.Receptorsinthetracheaandbronchiofthecat.J.Physiol.(Lond.)123,71–104(1954).

58. Bartlett,D.&Sant'Ambrogio,G.Effectsoflocalandsystemichypercapniaonthedischargeofstretchreceptorsintheairwaysofthedog.RespirationPhysiology26,

54

91–99(1976).59. Sheldon,M.I.&Green,J.F.EvidenceforpulmonaryCO2chemosensitivity:effects

onventilation.JApplPhysiolRespirEnvironExercPhysiol52,1192–1197(1982).60. Matsumoto,S.,Takahashi,T.,Tanimoto,T.,Saiki,C.&Takeda,M.Effectsof

potassiumchannelblockersonCO2-inducedslowlyadaptingpulmonarystretchreceptorinhibition.TheJournalofPharmacologyandExperimentalTherapeutics290,974–979(1999).

61. Ho,C.Y.,Gu,Q.,Lin,Y.S.&Lee,L.Y.Sensitivityofvagalafferentendingstochemicalirritantsintheratlung.RespirationPhysiology127,113–124(2001).

62. Karlsson,J.A.,Sant'Ambrogio,G.&Widdicombe,J.Afferentneuralpathwaysincoughandreflexbronchoconstriction.J.Appl.Physiol.65,1007–1023(1988).

63. Widdicombe,J.Airwayreceptors.RespirationPhysiology125,3–15(2001).64. Pisarri,T.E.,Jonzon,A.,COLERIDGE,H.M.&COLERIDGE,J.C.Vagalafferentand

reflexresponsestochangesinsurfaceosmolarityinlowerairwaysofdogs.J.Appl.Physiol.73,2305–2313(1992).

65. Lai,C.J.&Kou,Y.R.Stimulationofpulmonaryrapidlyadaptingreceptorsbyinhaledwoodsmokeinrats.J.Physiol.(Lond.)508(Pt2),597–607(1998).

66. Mills,J.E.,Sellick,H.&Widdicombe,J.G.Activityoflungirritantreceptorsinpulmonarymicroembolism,anaphylaxisanddrug-inducedbronchoconstrictions.J.Physiol.(Lond.)203,337–357(1969).

67. Sellick,H.&Widdicombe,J.G.Stimulationoflungirritantreceptorsbycigarettesmoke,carbondust,andhistamineaerosol.J.Appl.Physiol.31,15–19(1971).

68. Yu,J.Spectrumofmyelinatedpulmonaryafferents.AJP:Regulatory,IntegrativeandComparativePhysiology279,R2142–8(2000).

69. Nonomura,K.etal.Piezo2sensesairwaystretchandmediateslunginflation-inducedapnoea.Nature541,176–181(2017).

70. Matsumoto,S.Effectsofvagalstimulationonslowlyadaptingpulmonarystretchreceptorsandlungmechanicsinanesthetizedrabbits.Lung174,333–344(1996).

71. Krauhs,J.M.Morphologyofpresumptiveslowlyadaptingreceptorsindogtrachea.Anat.Rec.210,73–85(1984).

72. Yamamoto,Y.,Atoji,Y.&Suzuki,Y.Calretininimmunoreactivenerveendingsinthetracheaandbronchioftherat.J.Vet.Med.Sci.61,267–269(1999).

73. Schelegle,E.S.&Green,J.F.Anoverviewoftheanatomyandphysiologyofslowlyadaptingpulmonarystretchreceptors.RespirationPhysiology125,17–31(2001).

74. Sampson,S.R.&Vidruk,E.H.Propertiesof‘irritant’receptorsincaninelung.RespirationPhysiology25,9–22(1975).

75. Armstrong,D.J.&LUCK,J.C.AcomparativestudyofirritantandtypeJreceptorsinthecat.RespirationPhysiology21,47–60(1974).

76. Kappagoda,C.T.,Skepper,J.N.,McNaughton,L.,Siew,E.E.&Navaratnam,V.Morphologyofpresumptiverapidlyadaptingreceptorsintheratbronchus.J.Anat.168,265–276(1990).

77. Chang,R.B.,Strochlic,D.E.,Williams,E.K.,Umans,B.D.&Liberles,S.D.VagalSensoryNeuronSubtypesthatDifferentiallyControlBreathing.Cell161,622–633(2015).

78. Adriaensen,D.etal.Pulmonaryintraepithelialvagalnodoseafferentnerveterminalsareconfinedtoneuroepithelialbodies:ananterogradetracingand

55

confocalmicroscopystudyinadultrats.CellTissueRes293,395–405(1998).79. Tansey,E.M.HenryDaleandthediscoveryofacetylcholine.ComptesRendus

Biologies329,419–425(2006).80. Heyman,J.F.&Heyman,C.Recherchesphysiologiquesetpharmacodynamiquessur

lateteisoleeduchien.TravailDeLInstitutdePharmacodynamieetdeTherapiedeLUniversitedeGand32,1–33(1926).

81. Heymans,C.ReflexogenicAreasoftheCardiovascularSystem.PerspectivesinBiologyandMedicine3,409–417(1960).

82. Nowak,S.J.CHRONICHYPERTENSIONPRODUCEDBYCAROTIDSINUSANDAORTIC-DEPRESSORNERVESECTION.Ann.Surg.111,102–111(1940).

83. Juraschek,S.P.etal.AssociationofHistoryofDizzinessandLong-termAdverseOutcomesWithEarlyvsLaterOrthostaticHypotensionAssessmentTimesinMiddle-agedAdults.JAMAInternMed177,1316–9(2017).

84. Bainbridge,F.A.Theinfluenceofvenousfillingupontherateoftheheart.J.Physiol.(Lond.)50,65–84(1915).

85. Paintal,A.S.ASTUDYOFVENTRICULARPRESSURERECEPTORSANDTHEIRROLEINTHEBEZOLDREFLEX.QuarterlyJournalofExperimentalPhysiologyandCognateMedicalSciences40,348–363(1955).

86. DAWES,G.S.&Widdicombe,J.G.TheafferentpathwayoftheBezoldreflex:theleftvagalbranchesindogs.BrJPharmacolChemother8,395–398(1953).

87. Campagna,J.A.&Carter,C.ClinicalrelevanceoftheBezold-Jarischreflex.Anesthesiology98,1250–1260(2003).

88. Bronk,D.W.&Stella,G.AfferentImpulsesintheCarotidSinusNerve:Therelationofthedischargefromsingleendorganstoarterialbloodpressure.TheJournalofCellularandComparativePhysiology1,113–130(1932).

89. COLERIDGE,H.M.&COLERIDGE,J.C.Cardiovascularafferentsinvolvedinregulationofperipheralvessels.Annu.Rev.Physiol.42,413–427(1980).

90. COLERIDGE,H.M.,COLERIDGE,J.C.&Schultz,H.D.CharacteristicsofCfibrebaroreceptorsinthecarotidsinusofdogs.J.Physiol.(Lond.)394,291–313(1987).

91. COLERIDGE,H.M.etal.ImpulsesinSlowlyConductingVagalFibersfromAfferentEndingsintheVeins,Atria,andArteriesofDogsandCats.CirculationResearch33,87–97(1973).

92. COLERIDGE,H.M.,COLERIDGE,J.C.,Poore,E.R.,Roberts,A.M.&Schultz,H.D.Aorticwallpropertiesandbaroreceptorbehaviouratnormalarterialpressureandinacutehypertensiveresettingindogs.J.Physiol.(Lond.)350,309–326(1984).

93. COLERIDGE,H.M.,COLERIDGE,J.C.,Kaufman,M.P.&DANGEL,A.Operationalsensitivityandacuteresettingofaorticbaroreceptorsindogs.CirculationResearch48,676–684(1981).

94. COLERIDGE,J.C.,HEMINGWAY,A.,HOLMES,R.L.&LINDEN,R.J.Thelocationofatrialreceptorsinthedog:aphysiologicalandhistologicalstudy.J.Physiol.(Lond.)136,174–197(1957).

95. Paintal,A.S.Astudyofrightandleftatrialreceptors.J.Physiol.(Lond.)120,596–610(1953).

96. COLERIDGE,H.M.,COLERIDGE,J.C.&KIDD,C.CARDIACRECEPTORSINTHEDOG,WITHPARTICULARREFERENCETOTWOTYPESOFAFFERENTENDINGINTHEVENTRICULARWALL.J.Physiol.(Lond.)174,323–339(1964).

56

97. Thorén,P.N.Characteristicsofleftventricularreceptorswithnonmedullatedvagalafferentsincats.CirculationResearch40,415–421(1977).

98. Armour,J.A.Myocardialischaemiaandthecardiacnervoussystem.Cardiovasc.Res.41,41–54(1999).

99. Kaufman,M.P.,Baker,D.G.,COLERIDGE,H.M.&COLERIDGE,J.C.StimulationbybradykininofafferentvagalC-fiberswithchemosensitiveendingsintheheartandaortaofthedog.CirculationResearch46,476–484(1980).

100. Benson,C.J.,Eckert,S.P.&McCleskey,E.W.Acid-evokedcurrentsincardiacsensoryneurons:Apossiblemediatorofmyocardialischemicsensation.CirculationResearch84,921–928(1999).

101. Thames,M.D.&Minisi,A.J.Reflexresponsestomyocardialischemiaandreperfusion.Roleofprostaglandins.Circulation80,1878–1885(1989).

102. Ustinova,E.E.&Schultz,H.D.Activationofcardiacvagalafferentsinischemiaandreperfusion.Prostaglandinsversusoxygen-derivedfreeradicals.CirculationResearch74,904–911(1994).

103. Sullivan,M.J.etal.NonVoltage-GatedCa2+InfluxThroughMechanosensitiveIonChannelsinAorticBaroreceptorNeurons.CirculationResearch80,861–867(1997).

104. Lau,O.-C.etal.TRPC5channelsparticipateinpressure-sensinginaorticbaroreceptors.NatureCommunications7,1–12(2016).

105. Cheng,Z.,Powley,T.L.,Schwaber,J.S.&Doyle,F.J.Alaserconfocalmicroscopicstudyofvagalafferentinnervationofrataorticarch:chemoreceptorsaswellasbaroreceptors.J.Auton.Nerv.Syst.67,1–14(1997).

106. MILLER,M.R.&KASAHARA,M.STUDIESONTHENERVEENDINGSINTHEHEART.Am.J.Anat.115,217–233(1964).

107. Cheng,Z.,Powley,T.L.,Schwaber,J.S.&Doyle,F.J.Vagalafferentinnervationoftheatriaoftheratheartreconstructedwithconfocalmicroscopy.J.Comp.Neurol.381,1–17(1997).

108. Krauhs,J.M.Structureofrataorticbaroreceptorsandtheirrelationshiptoconnectivetissue.J.Neurocytol.8,401–414(1979).

109. Chalfie,M.Neurosensorymechanotransduction.NatRevMolCellBiol10,44–52(2009).

110. Coste,B.etal.Piezo1andPiezo2AreEssentialComponentsofDistinctMechanicallyActivatedCationChannels.Science330,55–60(2010).

111. Coste,B.etal.Piezoproteinsarepore-formingsubunitsofmechanicallyactivatedchannels.Nature483,176–181(2013).

112. Kim,S.E.,Coste,B.,Chadha,A.,Cook,B.&Patapoutian,A.TheroleofDrosophilaPiezoinmechanicalnociception.Nature483,209–2012(2013).

113. Ranade,S.S.etal.Piezo2isthemajortransducerofmechanicalforcesfortouchsensationinmice.Nature516,121–125(2015).

114. Woo,S.-H.etal.Piezo2istheprincipalmechanotransductionchannelforproprioception.NatNeurosci18,1756–1762(2015).

115. Woo,S.-H.etal.Piezo2isrequiredforMerkel-cellmechanotransduction.Nature509,622–626(2015).

116. Coste,B.etal.Gain-of-functionmutationsinthemechanicallyactivatedionchannelPIEZO2causeasubtypeofDistalArthrogryposis.ProceedingsoftheNational

57

AcademyofSciences110,4667–4672(2013).117. Chesler,A.T.etal.TheRoleofPIEZO2inHumanMechanosensation.N.Engl.J.Med.

375,1355–1364(2016).