Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1....

302
Advanced Electrochemical Impedance Advanced Electrochemical Impedance Spectroscopy Spectroscopy Mark E. Orazem Department of Chemical Engineering University of Florida Gainesville, Florida 32611 [email protected] 352-392-6207 Mark E. Orazem, 2000-2010. All rights reserved.

Transcript of Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1....

Page 1: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Advanced Electrochemical Impedance Advanced Electrochemical Impedance SpectroscopySpectroscopy

Mark E. OrazemDepartment of Chemical Engineering

University of FloridaGainesville, Florida 32611

[email protected]

352-392-6207

Mark E. Orazem, 2000-2010. All rights reserved.

Page 2: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

ContentsContents• Chapter 1. Introduction • Chapter 2. Motivation • Chapter 3. Impedance Measurement • Chapter 4. Representations of Impedance Data• Chapter 5. Development of Process Models• Chapter 6. Constant Phase Elements• Chapter 7. Regression Analysis• Chapter 8. Error Structure• Chapter 9. Kramers-Kronig Relations• Chapter 10. Use of Measurement Models• Chapter 11. Conclusions• Chapter 12. Suggested Reading• Chapter 13. Notation

Page 3: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 1

Advanced Electrochemical Impedance Advanced Electrochemical Impedance SpectroscopySpectroscopy

Mark E. OrazemDepartment of Chemical Engineering

University of FloridaGainesville, Florida 32611

[email protected]

352-392-6207

Mark E. Orazem, 2000-2010. All rights reserved.

Page 4: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 2

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopyChapter 1. IntroductionChapter 1. Introduction

• How to think about impedance spectroscopy• EIS as a generalized transfer function• Overview of applications of EIS• Objective and outline of course

Mark E. Orazem, 2000-2009. All rights reserved.

Page 5: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 3

1992 – no logo

Page 6: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 4

June 6 - 11, 2010 Hotel Tivoli CarvoeiroCarvoeiro, Algarve, Portugal

Page 7: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 5

The Blind Men and the ElephantThe Blind Men and the ElephantJohn Godfrey SaxeJohn Godfrey Saxe

It was six men of IndostanTo learning much inclined,Who went to see the Elephant(Though all of them were blind),That each by observationMight satisfy his mind.

The First approached the Elephant,And happening to fallAgainst his broad and sturdy side,At once began to bawl:“God bless me! but the ElephantIs very like a wall!” ...

Page 8: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 6

Electrochemical Impedance Electrochemical Impedance SpectroscopySpectroscopy

• Electrochemical technique– steady-state– transient– impedance spectroscopy

• Measurement in terms of macroscopic quantities– total current– averaged potential

• Not a chemical spectroscopy• Type of generalized transfer-function measurement

Page 9: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 7

-10

-5

5

10

-0.2 -0.1 0.1 0.2 0.3 0.4

Potential, V

CurrentDensity, A/cm2

~I

V~

Impedance SpectroscopyImpedance Spectroscopy

r jVZ Z jZI

Page 10: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 8

Impedance SpectroscopyImpedance Spectroscopy

• Electrochemical systems– Corrosion– Electrodeposition– Human Skin– Batteries– Fuel Cells

• Materials

• Dielectric spectroscopy• Acoustophoretic

spectroscopy• Viscometry• Electrohydrodynamic

impedance spectroscopy

Applications Fundamentals

Page 11: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 9

Physical DescriptionPhysical Description

• Electrode-Electrolyte Interface– Electrical Double Layer– Diffusion Layer

• Electrochemical Reactions• Electrical Circuit Analogues

Page 12: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 10

Electrochemical ReactionsElectrochemical Reactions

eU V iR

F ddVi i Cdt

2 22

2

2 2

OO O O OO expF

Fi i n Fk V

RTc V

- -2 2O +2H O+ 4e 4OH

Total current density = Faradaic + charging

Faradaic current density

Cell potential = electrode potential + Ohmic potential drop

Page 13: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 11

Electrical AnaloguesElectrical Analogues

Page 14: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 12

Electrical AnalogueElectrical Analogue

Simple electrochemical reaction

Simple electrochemical reaction with mass transfer

Page 15: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 13

Course ObjectivesCourse Objectives

• Benefits and advantages of impedance spectroscopy• Methods to improve experimental design• Interpretation of data

– graphical representations– regression– error analysis– equivalent circuits– process models

Page 16: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 14

ContentsContents• Chapter 1. Introduction • Chapter 2. Motivation • Chapter 3. Impedance Measurement • Chapter 4. Representations of Impedance Data• Chapter 5. Development of Process Models• Chapter 6. Constant Phase Elements• Chapter 7. Regression Analysis• Chapter 8. Error Structure• Chapter 9. Kramers-Kronig Relations• Chapter 10. Use of Measurement Models• Chapter 11. Conclusions• Chapter 12. Suggested Reading• Chapter 13. Notation

Page 17: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 15

NotationNotation

• IUPAC Convention: Z’ and Z’’; i

• Present Work: Zr and Zj; j

Page 18: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 1. Introduction page 1: 16

Page 19: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 1

Advanced Electrochemical Impedance Advanced Electrochemical Impedance SpectroscopySpectroscopy

Chapter 2. MotivationChapter 2. Motivation

• Comparison of measurements– steady state– step transients– single-sine impedance

• In principle, step and single-sine perturbations yield same results

• Impedance measurements have better error structure

Mark E. Orazem, 2000-2010. All rights reserved.

Page 20: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 2

SteadySteady--State State Polarization Polarization

CurveCurve

0

0.1

0.2

0.3

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Potential, V

Cur

rent

, mA

Page 21: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 3

SteadySteady--State TechniquesState Techniques

• Yield information on state after transient is completed• Do not provide information on

– system time constants– capacitance

• Influenced by– Ohmic potential drop– non-stationarity– film growth– coupled reactions

Page 22: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 4

Transient Response to a Step in PotentialTransient Response to a Step in Potential

0 2 4 6 8 10

0.5

1.0

1.5

R0

R1(V)

C1

R2

C2

Cur

rent

/ m

A

(t-t0) / ms

current response

potential inputV=10 mV}

10-5 10-4 10-3 10-2 10-1 100

10-2

10-1

100

Cur

rent

/ m

A

(t-t0) / s

210 )( RVRRVI

Page 23: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 5

Transient Response to a Step in PotentialTransient Response to a Step in Potential

long times/low frequency

Short times/high frequency

0 2 4 6 8 10

0.5

1.0

1.5

R0

R1(V)

C1

R2

C2

Cur

rent

/ m

A

(t-t0) / ms

current response

potential inputV=10 mV}

Page 24: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 6

Transient Techniques: Transient Techniques: potential or current stepspotential or current steps

• Decouples phenomena– characteristic time constants

• mass transfer • kinetics

– capacitance• Limited by accuracy of measurements

– current– potential– time

• Limited by sample rate– <~1 kHz

Page 25: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 7

Sinusoidal PerturbationSinusoidal Perturbation

0CdVi Cdt

fi f V

( )V t

0

0

( ) cos

( ) exp( ) exp( )a c

V t V V t

i t i b V b V

Page 26: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 8

Sinusoidal PerturbationSinusoidal Perturbation

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

1 mHz100 Hz

(i-i 0) /

max

(i-i 0)

(V-V0) / V0

10 kHz

Page 27: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 9

LissajousLissajous RepresentationRepresentation

| |

sin( )

VZI

OAOB

ODOA

( ) cos( )

( ) cos( )

V t V tVI t tZ

-1.0 -0.5 0 0.5 1.0

-1.0

-0.5

0

0.5

1.0

Y(t)/

Y 0

X(t)/X0

O D A

B

Page 28: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 10

Impedance ResponseImpedance Response

0 10 20 30 40 50

0

-5

-10

-15

-20

-25

Z j /

cm

-2

Zr / cm-2

100 Hz

Page 29: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 11

Impedance SpectroscopyImpedance Spectroscopy• Decouples phenomena

– characteristic time constants• mass transfer • kinetics

– capacitance• Gives same type of information as DC transient.• Improves information content and frequency range by

repeated sampling.• Takes advantage of relationship between real and

imaginary impedance to check consistency.

Page 30: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 12

System with Large Ohmic ResistanceSystem with Large Ohmic Resistance

• R0 =10,000 • R1 =1,000 • C1 = 10.5 F

– s (15 Hz)

M. E. Orazem, T. El Moustafid, C. Deslouis, and B. Tribollet, J. Electrochem. Soc.,143 (1996), 3880-3890.

Page 31: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 13

Impedance SpectrumImpedance Spectrum-600

-400

-200

09800 10000 10200 10400 10600 10800 11000 11200

Zr,

Z j,

0.1

1

10

100

1000

10000

100000

0.1 1 10 100 1000 10000 100000

Frequency, Hz

Impe

danc

e,

Zr,

-Zj,

Page 32: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 14

Experimental DataExperimental Data

1

10

100

1000

10000

100000

0.1 1 10 100 1000 10000 100000

Frequency, Hz

Impe

danc

e,

3% of |Z|

1% of |Z|

6 Repeated Measurements

Real

Imaginary

Page 33: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 15

Impedance Spectroscopy Impedance Spectroscopy vs. Stepvs. Step--Change TransientsChange Transients

• Information sought is the same• Increased sensitivity

– stochastic errors– frequency range– consistency check

• Better decoupling of physical phenomena

Page 34: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 2. Motivation page 2: 16

Page 35: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 1

Advanced Electrochemical Impedance Advanced Electrochemical Impedance SpectroscopySpectroscopy

Chapter 3. Impedance MeasurementChapter 3. Impedance Measurement

• Overview of techniques– A.C. bridge– Lissajous analysis– phase-sensitive detection (lock-in amplifier)– Fourier analysis

• Experimental design

Mark E. Orazem, 2000-2010. All rights reserved.

Page 36: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 2

Measurement TechniquesMeasurement Techniques

• A.C. Bridge• Lissajous analysis• Phase-sensitive detection (lock-in amplifier)• Fourier analysis

– digital transfer function analyzer– fast Fourier transform

D. Macdonald, Transient Techniques in Electrochemistry, Plenum Press, NY, 1977.J. Ross Macdonald, editor, Impedance Spectroscopy Emphasizing Solid Materials and Analysis, John Wiley and Sons, New York, 1987.C. Gabrielli, Use and Applications of Electrochemical Impedance Techniques, Technical Report, Schlumberger, Farnborough, England, 1990.

Page 37: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 3

AC BridgeAC Bridge

Generator

Z2Z1

Z3 Z4

D

• Bridge is balanced when current at D is equal to zero

• Time consuming• Accurate

1 4 2 3Z Z Z Z

10 Hzf

Page 38: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 4

| |

sin( )

VZI

OA A'AOB B'B

OD D'DOA A'A

( ) sin( )

( ) sin( )

V t V tVI t tZ

Potential

Current

ADO

B

B'

D'A'

LissajousLissajous AnalysisAnalysis

Page 39: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 5

Phase Sensitive DetectionPhase Sensitive Detection0 sin( )AA A t

0

4 1 sin 2 12 1 S

n

S n tn

0

0

4 1 si sin 2 12 1

n Sn

A n tn

A A tS

General Signal

Reference Signal

SAAdtAS

cos22

02

0

Has maximum value when

A S

Page 40: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 6

Fourier Analysis:Fourier Analysis:singlesingle--frequency inputfrequency input

0( ) cos( )II t I t

0( ) cos( )V t V t

0

0

0

0

1 ( ) cos( )

1 ( )sin( )

1 ( )cos( )

1 ( )sin( )

T

r

T

j

T

r

T

j

I I t t dtT

I I t t dtT

V V t t dtT

V V t t dtT

( ) Re

( ) Im

r jr

r j

r jj

r j

V jVZ

I jI

V jVZ

I jI

Page 41: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 7

-10

0

10

0

TimeSign

al S

treng

th

Fourier Analysis:Fourier Analysis:multimulti--frequency inputfrequency input

Z

Z()

Fast Fourier

Transform

-10

0

10

0

TimeSig

nal S

treng

th

Page 42: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 8

ComparisonComparisonsinglesingle--sine input multisine input multi--sine inputsine input

• Good accuracy for stationary systems

• Frequency intervals of f/f– economical use of

frequencies• Used for entire frequency

domain• Kramers-Kronig inconsistent

frequencies can be deleted

• Good accuracy for stationary systems

• Frequency intervals of f– dense sampling at high

frequency required to get good resolution at low frequency

• Often paired with Phase-Sensitive-Detection (f>10 Hz)

• Correlation coefficient used to determine whether spectrum is inconsistent with Kramers-Kronig relations

Page 43: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 9

Measurement TechniquesMeasurement Techniques

• A.C. bridge– obsolete

• Lissajous analysis– obsolete– useful to visualize impedance

• Phase-sensitive detection (lock-in amplifier)– inexpensive– accurate– useful at high frequencies

• Fourier analysis techniques– accurate

Page 44: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 10

Experimental ConsiderationsExperimental Considerations

• Frequency range– instrument artifacts– non-stationary behavior– capture system response

• Linearity– low amplitude perturbation– depends on polarization curve for system under study– determine experimentally

• Signal-to-noise ratio

Page 45: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 11

Sinusoidal PerturbationSinusoidal Perturbation

0CdVi Cdt

fi f V

( )V t

0

0

( ) cos( ) exp( )a

V t V V ti t i b V

Page 46: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 12

LinearityLinearity

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0 f = 1 mHz 1 mV 20 mV 40 mV

(I-I 0)/m

ax(I-

I 0)

(V-V0)/V-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0 f = 10 Hz 1 mV 20 mV 40 mV

(I-I 0)/m

ax(I-

I 0)

(V-V0)/V

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0 f = 100 Hz 1 mV 20 mV 40 mV

(I-I 0)/m

ax(I-

I 0)

(V-V0)/V-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

f = 10 kHz 1 mV 20 mV 40 mV

(I-I 0)

/max

(I-I 0)

(V-V0)/V

Page 47: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 13

0 10 20 30 40 50

0

-10

-20

model 1 mV 20 mV 40 mV

Z j /

cm

2

Zr / cm2

Influence of Nonlinearity on ImpedanceInfluence of Nonlinearity on Impedance

Page 48: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 14

Influence of Nonlinearity on ImpedanceInfluence of Nonlinearity on Impedance

10-3 10-2 10-1 100 101 102 103 104 105 106

0.0

0.2

0.4

0.6

0.8

1.0

model 1 mV 20 mV 40 mVZ r /

Rt

f / Hz10-3 10-2 10-1 100 101 102 103 104 105 106

10-4

10-3

10-2

10-1

100

101 model 1 mV 20 mV 40 mV

|Zj| /

c

m2

f / Hz

Page 49: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 15

0.01 0.1 0.2 1

0.01

0.1

0.51

10

10

0(R

t-Z(0

))/R

t

V b

Guideline for LinearityGuideline for Linearity0.2b V

Page 50: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 16

Influence of Ohmic ResistanceInfluence of Ohmic Resistance

0CdVi Cdt

fi f V

( )V t( )s t

eR

( ) ei t R

0.2 1 /e tb V R R

Page 51: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 17

Influence of Ohmic ResistanceInfluence of Ohmic Resistance

Page 52: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 18

Overpotential as a Function of FrequencyOverpotential as a Function of Frequency

0CdVi Cdt

fi f V

( )V t( )s t

eR

( ) ei t R

Page 53: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 19

Cell DesignCell Design• Use reference electrode to isolate influence of electrodes and

membranes

WorkingElectrode

Counterelectrode

2-electrode

Ref 1

WorkingElectrode

Counterelectrode

3-electrode

Ref 1

Ref 2

WorkingElectrode

Counterelectrode

4-electrode

Page 54: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 20

Current DistributionCurrent Distribution

• Seek uniform current/potential distribution

– simplify interpretation– reduce frequency dispersion

Working Electrode Seat

Counter Electrode Lead Wires

Cell BodyID = 6 in.L = 6 in.

Working Electrode

Electrolyte In Electrolyte In

ElectrolyteOut

ElectrolyteOut

FlangeCover

CoverFlange

Page 55: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 21

Primary Current DistributionPrimary Current Distribution

Page 56: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 22

Modulation TechniqueModulation Technique• Potentiostatic

– standard approach– linearity controlled by

potential

• Galvanostatic– good for nonstationary

systems• corrosion• drug delivery

– requires variable perturbation amplitude to maintain linearity

2

2

MO corr

Fecorr

2Fe

coO rr

exp

12

1n

nF V V

RT

Fi i V

F

V

T

RT

i Vi VR

( ) ( )/I V Z V I Zw wD = D D = D

Page 57: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 23

Experimental StrategiesExperimental Strategies

• Faraday cage• Short leads• Good wires• Shielded wires• Oscilloscope

I

VWE CERef

Page 58: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 24

Reduce Stochastic NoiseReduce Stochastic Noise

• Current measuring range• Integration time/cycles

– long/short integration on some FRAs• Delay time• Avoid line frequency and harmonics (±5 Hz)

– 60 Hz & 120 Hz– 50 Hz & 100 Hz

• Ignore first frequency measured (to avoid start-up transient)

Page 59: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 25

Reduce NonReduce Non--Stationary EffectsStationary Effects

• Reduce time for measurement– shorter integration (fewer cycles)

• accept more stochastic noise to get less bias error– fewer frequencies

• more measured frequencies yields better parameter estimates• fewer frequencies takes less time

– avoid line frequency and harmonic (±5 Hz)• takes a long time to measure on auto-integration• cannot use data anyway

– select appropriate modulation technique• decide what you want to hold constant (e.g., current or potential)• system drift can increase measurement time on auto-integration

Page 60: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 26

Reduce Instrument Bias ErrorsReduce Instrument Bias Errors

• Faster potentiostat• Short shielded leads• Faraday cage• Check results

– against electrical circuit– against independently obtained parameters

Page 61: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 27

Measurement ReviewMeasurement Review

Page 62: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 28

Improve Experimental DesignImprove Experimental Design

• Question– How can we isolate the role of positive electrode, negative

electrode, and separator in a battery?• Answer

Ref 1

Ref 2

WorkingElectrode

Counterelectrode

- Develop a very sophisticated process model.

- Use a four-electrode configuration.

Page 63: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 29

Improve Experimental DesignImprove Experimental Design

• Question– How can we reduce stochastic noise in the measurement?

- Use more cycles during integration. - Add at least a 2-cycle delay.- Ensure use of optimal current measuring resistor.- Check wires and contacts.- Avoid line frequency and harmonics.- Use a Faraday cage.

• Answer

Page 64: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 30

Improve Experimental DesignImprove Experimental Design

• Question– How can we determine the cause of variability between

experiments?

- Use the Kramers-Kronig relations to see if data are self-consistent.- Change mode of modulation to variable-amplitude galvanostatic to ensure that the base-line is not changed by the experiment.

• Answer

Page 65: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 31

Facilitate InterpretationFacilitate Interpretation

• Question– How can we be certain that the instrument is not corrupting

the data?

- Use the Kramers-Kronig relations to see if data are self-consistent.- Build a test circuit with the same impedance response and see if you get the correct result.- Compare results to independently obtained data (such as electrolyte resistance).

• Answer

Page 66: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 32

Experimental ConsiderationsExperimental Considerations

• Frequency range– instrument artifacts– non-stationary behavior

• Linearity– low amplitude perturbation– depends on polarization curve for system under study– determine experimentally

• Signal-to-noise ratio

Page 67: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 33

Can We Perform Impedance on Transient Can We Perform Impedance on Transient Systems?Systems?

• Timeframes for measurement– Individual frequency– Individual scan– Multiple scans

Page 68: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 34

EHD ExperimentEHD Experiment

-0.2

-0.15

-0.1

-0.05

0

0.05-0.05 0 0.05 0.1 0.15 0.2

Real Impedance, A/rpm

Imag

inar

y Im

peda

nce,

A/rp

mData Set #2Data Set #4Data Set #1

Page 69: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 35

Time per Frequency for 200 rpmTime per Frequency for 200 rpm

1

10

100

1000

0.01 0.1 1 10 100

Frequency, Hz

Tim

e pe

r Mea

sure

men

t, s

1

10

100

10000.01 0.1 1 10 100

Filter OnFilter Off

Page 70: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 36

Impedance ScansImpedance Scans

0 5 10 15 20 25 30 35 400

-5

-10

-15

Time Interval 0-1183 s 1183-2366 s 2366-3581 s

Z j /

cm

2

Zr / cm2

Page 71: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 37

Impedance ScansImpedance Scans

10-2 10-1 100 101 102 103 104 105

0

1000

2000

3000

4000

E

laps

ed T

ime

/ s

f / Hz

Page 72: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 38

Time per Frequency MeasuredTime per Frequency Measured

10-2 10-1 100 101 102 103 104 105

101

102

t f /

s

f / Hz

5 cycles

3 cycles

5 seconds

Page 73: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 39

Page 74: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 3. Impedance Measurement page 3: 40

Page 75: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 1

Advanced Electrochemical Impedance Advanced Electrochemical Impedance SpectroscopySpectroscopy

Chapter 4. Representation of Impedance DataChapter 4. Representation of Impedance Data

• Electrical circuit components• Methods to plot data

– standard plots– subtract electrolyte resistance

• Constant phase elements

Mark E. Orazem, 2000-2010. All rights reserved.

Page 76: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 2

Addition of ImpedanceAddition of Impedance

Z1 Z2

21

21

111

YY

Y

ZZZ

Z1

Z2

21

21

111

YYYZZ

Z

Page 77: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 3

Circuit ComponentsCircuit Components

Re

Zr

-Zj

eRZ

1

11

dldl

j

CjR

CjRZ ee

eR

eR Zr

-Zj

CdlRe

Page 78: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 4

Zr

-Zj

Simple RC CircuitSimple RC Circuit

dl

dl

2dl

2 2dl dl

11

1

1 1

e

t

te

t

t te

t t

Z Rj C

RRR

j R C

R R CR jR C R C

eR e tR R

2tR

1t dlR C

Rf

Cdl

Re

-12rad / s or scycles / s or Hz

f

f

Note:

Page 79: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 5

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100 1000 10000

Frequency / Hz

Z ro

r -Z j

realimaginary

ImpedanceImpedance

Slope = 1

Slope = -1

Rf

Cdl

Re

-600

-400

-200

00 200 400 600 800 1000 1200

Zr /

Z j,

10 Hz

1 Hz

100 Hz

0

200

400

600

800

1000

1200

0.001 0.01 0.1 1 10 100 1000 10000

Frequency / Hz

Z ro

r -Z j

realimaginary

Page 80: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 6

Bode RepresentationBode Representation

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100 1000 10000

Frequency / Hz

|Z|

-90

-60

-30

0

/ d

egre

es

magnitudephase angle

| | cos

| | sin

r j

r

j

Z Z jZ

Z Z

Z Z

Page 81: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 7

Modified Phase AngleModified Phase Angle

0.01

0.1

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100 1000 10000

Frequency / Hz

|Z|

-90

-60

-30

0

/

degr

eesmagnitude

modified magnitudephase anglemodified phase angle

1* tan j

r e

ZZ R

Input & output are in phase

Input & output are out of phase

1tan j

r

ZZ

Note:

The modified phase angle yields excellent insight, but we need an accurate estimate for the solution resistance.

Page 82: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 8

Constant Phase ElementConstant Phase Element

1

1e

t t

Z RR j R Q

Rt

Re

CPE

0.0 0.2 0.4 0.6 0.8 1.00.0

-0.2

-0.4

-0.6 =1 =0.9 =0.8 =0.7 =0.6 =0.5

Z j / R t

(ZrRe) / Rt

Page 83: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 9

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 10510-5

10-4

10-3

10-2

10-1

100

=1 =0.9 =0.8 =0.7 =0.6 =0.5

|Zj| /

Rt

/

CPE: Log ImaginaryCPE: Log Imaginary

Note: With a CPE (1), the asymptotic slopes are no longer 1.

Slope =

Slope =

Page 84: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 10

CPE: Modified Phase AngleCPE: Modified Phase Angle

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

0

-30

-60

-90

=1 =0.9 =0.8 =0.7 =0.6 =0.5

* / de

gree

s

/

Note:

The high-frequency asymptote for the modified phase angle depends on the CPE coefficient .

Page 85: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 11

Example for Synthetic DataExample for Synthetic Data

dl

( )1 2

t de

t d

R z fZ f R

j f Q R z f

tanh 22d d

j fz f z f

j f

M. Orazem, B. Tribollet, and N. Pébère, J. Electrochem. Soc., 153 (2006), B129-B136.

Page 86: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 12

Traditional RepresentationTraditional Representation

0 200 400 600 800 1000 1200

0

200

400

1 mHz100 Hz10 Hz

1 Hz 0.1 Hz

Zj

cm

2

Zr cm2

10 mHz

10-3 10-2 10-1 100 101 102 103 104 105 106

102

103

Z

cm

2

f / Hz10-3 10-2 10-1 100 101 102 103 104 105 106

0

-15

-30

-45

-60

-75

-90

/ d

egre

e

f / Hz

Page 87: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 13

RRee--Corrected Bode Phase AngleCorrected Bode Phase Angle1

adj,est

tan j

r e

ZZ R

adj ( ) 90( )

10-3 10-2 10-1 100 101 102 103 104 105 106

0

-15

-30

-45

-60

-75

-90

ad

j / de

gree

f / Hz

Page 88: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 14

RRee--Corrected Bode MagnitudeCorrected Bode Magnitude 2 2

,estadj r e jZ Z R Z

Slope =

10-3 10-2 10-1 100 101 102 103 104 105

10-1

100

101

102

103

Z

adj

cm

2

f / Hz

slope =

Page 89: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 15

Log(|ZLog(|Zjj|)|)

Slope =

Slope =

10-3 10-2 10-1 100 101 102 103 104 105 106

10-2

10-1

100

101

102

103

= 1 = 0.7 = 0.5

slope=

slope=

Z

j

cm

2

f / Hz

Page 90: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 16

Effective Capacitance or CPE CoefficientEffective Capacitance or CPE Coefficient

effj

1 = sin2 2 ( )

Qf Z f

CPE

CPE

12

ZQ j f

10-3 10-2 10-1 100 101 102 103 104 105 106

1

10

100

Q

eff

Qdl

f / Hz

Page 91: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 17

• Re-Corrected Bode Plots (Phase Angle) – Shows expected high-frequency behavior for surface– High-Frequency limit reveals CPE behavior

• Re-Corrected Bode Plots (Magnitude) – High-Frequency slope related to CPE behavior

• Log|Zj|– Slopes related to CPE behavior– Peaks reveal characteristic time constants

• Effective Capacitance– High-Frequency limit yields capacitance or CPE

coefficient

Alternative PlotsAlternative Plots

Page 92: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 18

ApplicationApplication

Page 93: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 19

Mg alloy (AZ91) in 0.1 M Mg alloy (AZ91) in 0.1 M NaClNaCl

0 100 200 300 400 500 600

200

100

0

-100

-200

15.5 kHz

0.011 Hz

0.0076 Hz

time / h 0.5 3.0 6.0

Z j

cm

2

Zr cm2

65.5 Hz

Page 94: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 20

Proposed ModelProposed Model

22 Mg(OH)OH2Mg

4

4

k

k

OHMgOMg(OH) 25-k

5k

2

eMgMg ads1k

2212

2ads HOHMgOHMg 2 k

eMgMg 2ads

3

3

k

k

G. Baril, G. Galicia, C. Deslouis, N. Pébère, B. Tribollet, and V. Vivier, J. Electrochem. Soc.,154 (2007), C108-C113

“negative difference effect”(NDE)

Page 95: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 21

0 100 200 300 400 500 600

200

100

0

-100

-200

15.5 kHz

0.011 Hz

0.0076 Hz

time / h 0.5 3.0 6.0

Z j

cm

2

Zr cm2

65.5 Hz

Physical InterpretationPhysical Interpretationdiffusion of Mg2+

eMgMg ads1k

eMgMg 2ads

3

3

k

k

relaxation of (Mg+)ads.intermediate

Page 96: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 22

Log(|ZLog(|Zjj||

Slope =

10-3 10-2 10-1 100 101 102 103 104 105100

101

102

time / h 0.5 3.0 6.0

Z

j

cm

2

f / Hz

Page 97: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 23

Effective CPE CoefficientEffective CPE Coefficient

effj

1 = sin2 2 ( )

Qf Z f

10-2 10-1 100 101 102 103 104 105

101

102

103

104

105

time / h 0.5 3.0 6.0

Q

eff /

(M

-1 c

m-2) s

f / Hz

Page 98: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 24

RRee--Corrected Phase AngleCorrected Phase Angle

adj ( ) 90 1adj

,est

tan j

r e

ZZ R

10-3 10-2 10-1 100 101 102 103 104 105100

101

102

103

time / h 0.5 3.0 6.0

Z

adj

cm

2

f / Hz

Page 99: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 25

Physical ParametersPhysical Parameters

0 100 200 300 400 500 600

200

100

0

-100

-200

15.5 kHz

0.011 Hz

0.0076 Hz

time / h 0.5 3.0 6.0

Z j

cm

2

Zr cm2

65.5 Hz

Page 100: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 26

Experimental device for LEISExperimental device for LEIS

appliedlocal

local

VZ

i

layer

Page 101: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 27

Mg alloy (AZ91) in Na2SO4 10-3 M at the corrosion potential after 1 h of immersion. Electrode radius 5500 µm.

Global impedance

Global impedance analyzed with a CPE ( = 0.91). Only the HF loop of the diagram is analyzed

J.-B. Jorcin, M. E. Orazem, N. Pébère, and B. Tribollet, Electrochimica Acta, 51 (2006), 1473-1479.

Page 102: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 28

Local impedance

= 1 to 0.92

Page 103: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 29

Mg alloy (AZ91) in Na2SO4 10-3 M at the corrosion potential after 1 h of immersion. Electrode radius 5500 µm

The local impedance has a pure RC behavior.

The CPE is explained by a 2d distribution of the resistance as shown in the figure.Local impedance

Page 104: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 30

Comparison to Comparison to TheoryTheory

Page 105: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 31

Graphical Representation of Impedance Graphical Representation of Impedance DataData

• Expanded Range of Plot Types– Facilitate model development– Identify features without complete system model

• Suggested Plots– Re-Corrected Bode Plots (Phase Angle)

• Shows expected high-frequency behavior for surface• High-Frequency limit reveals CPE behavior

– Re-Corrected Bode Plots (Magnitude) • High-Frequency slope related to CPE behavior

– Log|Zj|• Slopes related to CPE behavior• Peaks reveal characteristic time constants

– Effective Capacitance• High-Frequency limit yields capacitance or CPE coefficient

Page 106: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 32

Plots based on Deterministic ModelsPlots based on Deterministic Models

Page 107: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 33

Convective Diffusion to a RDEConvective Diffusion to a RDElow-frequency asymptote

Reduction of Fe(CN)63- on a Pt Disk, i/ilim = 1/2

0 50 100 150 200 2500

-50

-100

120 rpm 600 rpm 1200 rpm 2400 rpm

Z j /

Zr /

Page 108: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 34

Normalized Impedance PlaneNormalized Impedance Plane

0 0.2 0.4 0.6 0.8 1.0 1.20

0.2

0.4

0.6 120 rpm 600 1200 2400

Zj /

(Zr,m

axR

e )

(ZrRe) / (Zr,maxRe)Note: We again need an accurate estimate for the solution resistance.

Page 109: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 35

Normalized RealNormalized Real

10-3 10-2 10-1 100 101 102 103 104 105

10-4

10-3

10-2

10-1

100

120 rpm 600 1200 2400

(Zr

R e ) /

(Zr,m

axR

e )

p

/p

Page 110: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 36

Normalized ImaginaryNormalized Imaginary

10-3 10-2 10-1 100 101 102 103 104 10510-3

10-2

10-1

100

120 rpm 600 1200 2400

Zj /

(Zr,m

axR

e )

p

Page 111: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 37

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1.0 120 rpm 600 1200 2400

(Zr

R e ) /

(Zr,m

axR

e )

pZj / (Zr,maxRe )

Straight line at low frequencyStraight line at low frequency

Tribollet, Newman, and Smyrl, JES 135 (1988), 134-138.

Page 112: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 38

Slope at low frequency yields DSlope at low frequency yields Dii

0 0.01 0.02 0.03 0.040.4

0.6

0.8

1.0

(Zr

R e ) /

(Zr,m

axR

e )

pZj / (Zr,maxRe)

1/ 30

1/ 3 2 / 3

Relim ScIm

1.2261 0.84Sc 0.63Sc

Sc 1090.6

p

d Zs

dp Z

Page 113: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 39

100 101 102 103 104 105

10-1

100

101

102

103

104

105

106

320 K 340 K 360 K 380 K 400 K

Zj /

f / Hz

nn--GaAsGaAs Diode:Diode:scaling based on scaling based on

Arrhenius relationshipArrhenius relationship

0 2x106 4x106 6x106 8x106 1x1070

-2x106

-4x106

340 K

320 K

Z j /

Zr /

100 101 102 103 104 105100

101

102

103

104

105

106

107

108

320 K 340 K 360 K 380 K 400 K

Z r /

f / Hz

Page 114: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 40

10-4 10-3 10-2 10-1 100 101 102 103

0.0

0.2

0.4

0.6

0.8

1.0 320 K 340 K 360 K 380 K 400 K

Z r / Z

max

f*

Normalized RealNormalized Real

0

* expf Eff kT

Jansen, Orazem, Wojcik, and Agarwal, JES 143 (1996), 4066-4074.

Page 115: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 41

Normalized ImaginaryNormalized Imaginary

10-4 10-3 10-2 10-1 100 101 102 103

0.0

0.1

0.2

0.3

0.4

0.5

320 K 340 K 360 K 380 K 400 K

Zj /

Zm

ax

f*

Page 116: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 42

Normalized Log RealNormalized Log Real

10-4 10-3 10-2 10-1 100 101 102 10310-6

10-5

10-4

10-3

10-2

10-1

100

320 K 340 K 360 K 380 K 400 K

Z r / Z

max

f*

Page 117: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 43

Normalized Log ImaginaryNormalized Log Imaginary

10-4 10-3 10-2 10-1 100 101 102 10310-6

10-5

10-4

10-3

10-2

10-1

100

320 K 340 K 360 K 380 K 400 K

Zj /

Zm

ax

f*

Page 118: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 44

SuperlatticeSuperlatticeStructureStructure

-4.0E+08

-2.0E+08

0.0E+000.0E+00 2.0E+08 4.0E+08 6.0E+08

Zr, Z j

,

298.8290285270260

-4.0E+07

-2.0E+07

0.0E+000.0E+00 2.0E+07 4.0E+07 6.0E+07

Zr,

-Zj,

260292.5297.2297.7297.8297.8298.8

Page 119: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 45

0

0.2

0.4

0.6

0.8

1

1.2

0.0001 0.01 1 100 10000

Z/Z r

,max

Normalized Real PartNormalized Real Part

0

* expf Eff kT

Page 120: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 46

Normalized Imaginary PartNormalized Imaginary Part-0.4

-0.3

-0.2

-0.1

0

0.10.0001 0.01 1 100 10000

Zj /

Zr,m

ax

0

* expf Eff kT

Page 121: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 47

Choice of RepresentationChoice of Representation

• Plotting approaches are useful to show governing phenomena

• Complement to regression of detailed models• Sensitive analysis requires use of properly weighted

complex nonlinear regression

Page 122: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 4. Representation of Impedance Data page 4: 48

Page 123: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 1

Advanced Electrochemical Impedance Advanced Electrochemical Impedance SpectroscopySpectroscopy

Chapter 5. Development of Process ModelsChapter 5. Development of Process Models

• Use of Circuits to guide development• Develop models from physical grounds• Model case study• Identify correspondence between physical models and

electrical circuit analogues• Account for mass transfer

Mark E. Orazem, 2000-2010. All rights reserved.

Page 124: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 2

Use circuits to create frameworkUse circuits to create framework

Page 125: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 3

Addition of PotentialAddition of Potential

Page 126: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 4

Addition of CurrentAddition of Current

Page 127: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 5

Equivalent Circuit at the Corrosion PotentialEquivalent Circuit at the Corrosion Potential

Page 128: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 6

Equivalent Circuit for a Partially Blocked Equivalent Circuit for a Partially Blocked ElectrodeElectrode

Page 129: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 7

Equivalent Circuit for an Electrode Coated Equivalent Circuit for an Electrode Coated by a Porous Layerby a Porous Layer

Page 130: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 8

Equivalent Electrical Circuit for an Electrode Equivalent Electrical Circuit for an Electrode Coated by Two Porous LayersCoated by Two Porous Layers

1402 0

2 2 2

; 8.8452 10 F/cm

R /

C

Page 131: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 9

Use kinetic models to determine Use kinetic models to determine expressions for the interfacial impedanceexpressions for the interfacial impedance

Page 132: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 10

ApproachApproachidentify reaction mechanismwrite expression for steady state current contributionswrite expression for sinusoidal steady statesum current contributionsaccount for charging currentaccount for ohmic potential dropaccount for mass transfercalculate impedance

Page 133: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 11

General Expression for Faradaic CurrentGeneral Expression for Faradaic Current

,0 ,

,

,0, ,0 , ,

,

i k j j i k

j j j k

f iic i V c

kk k V c

f fi V cV c

f

,0, ,f i ii f V c

tjeiii ~Re

Page 134: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 12

Reactions ConsideredReactions Considered

• Dependent on Potential• Dependent on Potential and Mass Transfer• Dependent on Potential, Mass Transfer, and Surface

Coverage• Coupled Reactions

Page 135: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 13

Irreversible Reaction: Irreversible Reaction: Dependent on PotentialDependent on Potential

A A z ne

z+

• Potential-dependent heterogeneous reaction• Two-dimensional surface• No effect of mass transfer

Page 136: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 14

Current DensityCurrent Density

A,At

ViR

,A

1expt

A A A

RK b b V

AA A A exp Fi n Fk V

RT

steady-state

A AexpA Ai K b b V V

oscillating component

A A exp Ai K b V

Page 137: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 15

f dl

f dl

dVi i Cdt

i i j C V

Charging CurrentCharging Current

low frequency

high frequency

,A

,A

1

dlt

dlt

Vi j C VR

V j CR

,A

,A1t

t dl

RVi j R C

Page 138: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 16

Ohmic ContributionsOhmic Contributions

VRiU

ViRU

e

e~~~

A

,A

,A1+

e

te

t dl

U VZ Ri i

RR

j R C

Page 139: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 17

A A Aexp 2.303i K V

A A2.303/ b

A

,AA

1exp 2.303t

A A A

RK b b V i

AA

,A

A ,A A

2.303

2.303t

t

iR

R i

A A exp Ai K b V

Steady Currents in Terms of Steady Currents in Terms of RRt,At,A

Page 140: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 18

Irreversible Reaction: Irreversible Reaction: Dependent on Potential and Mass TransferDependent on Potential and Mass Transfer

O Rne

• Irreversible potential-dependent heterogeneous reaction• Reaction on two-dimensional surface• Influence of transport of O to surface

Page 141: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 19

Current DensityCurrent Density

,OO O,0 O

1exptR

K c b V

O O O,0 Oexpi K c b V

steady-state

O O O O,0 O O O O,0

O O O,0,O

exp exp

expt

i K b c b V V K b V c

V K b V cR

oscillating component

Page 142: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 20

Mass TransferMass Transfer

OO O O

0

O O ORe j t

dci n FDdy

i i i e

OO O O

0

dci n FDdy

O,0O O O

O

0c

i n FD

Page 143: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 21

Combine ExpressionsCombine Expressions

O O O O,0,O

expt

Vi K b V cR

O O

O,0O O 0

icn FD

Page 144: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 22

Current DensityCurrent Density

OO

,OO O O,0 O

,O ,O

1 1(0)t

t d

ViR

n FD c b

VR z

O,O

O O O,0 O

1 1(0)dz

n FD c b

,OO O,0 O

1exptR

K c b V

Page 145: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 23

Calculate ImpedanceCalculate Impedance

O

f dl

dl

dVi i Cdt

i i j C V

,O ,O

,O ,O

1

dlt d

dlt d

Vi j C VR z

V j CR z

VRiU

ViRU

e

e~~~

O

,O ,O

,O ,O1+

e

t de

dl t d

U VZ Ri i

R zR

j C R z

Page 146: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 24

Comparison to Circuit AnalogComparison to Circuit Analog

Cdl

Re

Rt,O

zd,O

,O ,O

O,O ,O1+

t de

dl t d

R zZ R

j C R z

Page 147: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 25

Irreversible Reaction: Irreversible Reaction: Dependent on Potential and Adsorbed IntermediateDependent on Potential and Adsorbed Intermediate

1

2

-

-

B X+eX P+e

k

k

• Potential-dependent heterogeneous reactions• Adsorption of intermediate on two-dimensional surface• Maximum surface coverage

B

X X XX

P

Page 148: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 26

SteadySteady--State Current DensityState Current Density

1 1 1 11 expi K b V V

reaction 1: formation of X

reaction 2: formation of P

2 2 2 2expi K b V V

total current density

1 2i i i

Page 149: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 27

SteadySteady--State Surface CoverageState Surface Coverage

1 2

0

i iddt F F

balance on

1 1 1

1 1 1 2 2 2

exp

exp exp

K b V V

K b V V K b V V

steady-state value for

Page 150: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 28

SteadySteady--State Current DensityState Current Density

1 1 1 2 2 21 exp expi K b V V K b V V

1 1 1

1 1 1 2 2 2

exp

exp exp

K b V V

K b V V K b V V

where

Page 151: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 29

Oscillating Current DensityOscillating Current Density

1 1 1 2 2 21 exp expi K b V V K b V V

2 2 2 1 1 1,1 ,2

1 1 exp expt t

i V K b V V K b V VR R

1

,1 1 1 1 1

1

,2 2 2 2 2

1 exp

exp

t

t

R K b b V V

R K b b V V

Page 152: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 30

Need Additional EquationNeed Additional Equation

1 1 1 2 2 2,1 ,2

1 1 1 exp expt t

j V K b V V K b V VF R R

balance on

1 1

,1 ,2

1 1 1 2 2 2exp expt tR R

VF j K b V V K b V V

Page 153: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 31

ImpedanceImpedance

1 12 2 2 1 1 1 ,1 ,2

1 1 1 2 2 2

exp exp1 1exp exp

1

t t

t

t

K b V V K b V V R R

Z R F j F K b V V K b V V

AR j B

, ,

1 1 1

t t M t XR R R

where

Page 154: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 32

Page 155: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 33

Page 156: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 34

-1.2

-1.0

-0.8

-0.6

-0.4

0.01 0.1 1 10 100Current Density, mA/ft2

Pot

entia

l, V

(Cu/

CuS

O4)

Corrosion of Corrosion of SteelSteel

2H2O + 2e- H2+2OH-

O2+2H2O + 4e- 4OH-

Fe Fe2+ + 2e-

22 OHFe iiii f

Page 157: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 35

Fe,Fe

~~tRVi

,FeFe Fe Fe

1exptR

K b b V

Corrosion: Fe Corrosion: Fe FeFe2+ 2+ + 2e+ 2e--

Fe Fe Feexpi K b V

Fe Fe Fe Feexpi K b b V V

Page 158: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 36

Steady Currents in Terms of Steady Currents in Terms of RRtt

Fe Fe Feexp 2.303i K V

Fe Fe2.303/ b

Fe

,FeFe Fe Fe Fe

1exp 2.303tR

K b b V i

FeFe

,Fe2.303 t

iR

Fe Fe Feexpi K b V

Important: Note the relationship among steady-state current density, Tafel slope, and charge transfer resistance.

Page 159: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 37

2 2 2H H Hexpi K b V

2 2 2 2H H H Hexpi K b b V V

2

2H,

H

~~tRVi

2

2 2 2

t,HH H H

1exp

RK b b V

HH22 Evolution: 2HEvolution: 2H22O + 2eO + 2e-- HH22+2OH+2OH--

Page 160: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 38

2 2 2 2O O O ,0 Oexpi K c b V

2 2 2 2 2

2 2 2

O O O O ,0 O

O O O ,0

exp

exp

i K b c b V V

K b V c

OO22 Reduction: OReduction: O22+2H+2H22O + 4eO + 4e-- 4OH4OH--

Page 161: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 39

OO22 Evolution: OEvolution: O22+2H+2H22O + 4eO + 4e-- 4OH4OH--

mass transfer: in terms of dimensionless gradient at electrode surface

2

2 2 2

2

2 2

2

OO O O

0

O ,0O O

O

0

dci n FD

dyc

n FD

Page 162: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 40

22

2

2 2 2 2

2 2

OO

,OO O O ,0 O

,O ,O

1 1(0)t

t d

ViR

n FD c b

VR z

2

2 2 2 2

t,OO O O ,0 O

1exp

RK b c b V

2

2

2 2 2 2

O,O

O O O ,0 O

1 1(0)dz

n FD c b

OO22 Evolution: OEvolution: O22+2H+2H22O + 4eO + 4e-- 4OH4OH--

coupled expression

Page 163: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 41

Capacitance and Ohmic ContributionsCapacitance and Ohmic Contributions

ff

ff

ii

ii~~

Faradaic

VCjiidtdVCii

df

df

~~~

Faradaic and Charging

VRiU

ViRU

e

e~~~

Ohmic

Page 164: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 42

ddt

ddtt,t,

jr

CjzRR

CjzRRR

jZZiUZ

22

222

O,O,eff

O,O,HFe

111

1111

~~

2eff Fe H

1 1 1

t, t,R R R

Process ModelProcess Model

Rt,O2

Rt,H2Rt,Fe

Cdl

Zd,O2

Page 165: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 43

Development of Impedance ModelsDevelopment of Impedance Models

identify reaction mechanism write expression for steady state current contributions write expression for sinusoidal steady state sum current contributions account for charging current account for ohmic potential drop• account for mass transfer calculate impedance

Page 166: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 44

Mass TransferMass Transfer

Page 167: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 45

Film DiffusionFilm Diffusion2

2i i

ic cDt z

,

,0

as

at 0i i f

i i

c c z

c c z

,0 , ,0i i i if

zc c c c

steady state

Page 168: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 46

Film DiffusionFilm Diffusion2

2i i

ic cDt z

2 2

2 2

2

2

2

2

j t j ti ii i

j t j tii

ii

d c d cj ce D D ed z d zd cj ce D ed zd cj c Dd z

tjiii eccc ~Re

2

(0)

fi

i

ii

i

KDc

c

i

z

2

2 0ii i

d jKd

Page 169: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 47

Warburg ImpedanceWarburg Impedance

2

2 0

exp exp

ii i

i i i

d jKd

A jK B jK

2

2

0 at 1

1 at 0

tanh1(0)

tanh1(0)

i

i

i

i i

i

i

i

jKjK

jD

jD

2

0 at

1 at 01 1(0)

1 1(0)

i

i

i i

i

i

jK

jD

Page 170: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 48

ConcentrationConcentration

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

c()

/c(

)

t=0, 2n/K

t=n/K

t=0.5n/K

t=1.5n/K

K=100

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

c()

/c(

)

t=0, 2n/K

t=n/K

t=0.5n/K

t=1.5n/K

K=1-40

-30

-20

-10

00 10 20 30 40 50 60

Zr, Zr,D,

Z j, Z

j,D,

Diffusion Impedance Only (infinite)Diffusion Impedance Only (finite)Complete Impedance

Page 171: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 49

Coupled Diffusion ImpedanceCoupled Diffusion Impedance

, ,, ,

, ,

2, ,

, ,, , ,

i outer i innerd outer d inner

i inner i outerd

i outer i innerinnerd inner d outer

i inner i inner i outer

Dz z

Dz

Dz z j

D D

Page 172: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 50

Interpretation Models for Impedance Interpretation Models for Impedance SpectroscopySpectroscopy

• Models can account rigorously for proposed kinetic and mass transfer mechanisms.

• There are significant differences between models for mass transfer.

• Stochastic errors in impedance spectroscopy are sufficiently small to justify use of accurate models for mass transfer.

Page 173: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 5. Development of Process Models page 5: 51

Page 174: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 6. Constant Phase Elements page 6: 1

Advanced Electrochemical Impedance Advanced Electrochemical Impedance SpectroscopySpectroscopy

Chapter 6. Constant Phase ElementsChapter 6. Constant Phase Elements

• The origin of CPEs is ambiguous• CPEs can arise from surface or axial

distributions• CPE parameters can be interpreted in

terms of capacitance, depending on type of distribution

Mark E. Orazem, 2000-2009. All rights reserved.

Page 175: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 6. Constant Phase Elements page 6: 2

Page deliberately left blank

Page 176: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 6. Constant Phase Elements page 6: 3

Page deliberately left blank

Page 177: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 6. Constant Phase Elements page 6: 4

Types of DistributionsTypes of Distributions

• Surface

• Axial

Page 178: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 6. Constant Phase Elements page 6: 5

Surface DistributionsSurface Distributions

Page 179: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 6. Constant Phase Elements page 6: 6

Axial DistributionsAxial Distributions

Page 180: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 6. Constant Phase Elements page 6: 7

Relationship between Q and CRelationship between Q and C

• Surface Distribution

• Axial Distribution

G. J. Brug, A. L. G. van den Eeden, M. Sluyters-Rehbach, J. H. Sluyters, J. Electroanal. Chem., 176 (1984), 275-295.

C. H. Hsu, F. Mansfeld, Corrosion, 57 (2001), 747-748.

B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur and M. Musiani, Determination of Effective Capacitance and Film Thickness from CPE Parameters, Electrochim. Acta, in press, 2010.

Page 181: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 6. Constant Phase Elements page 6: 8

Determination of Film ThicknessDetermination of Film Thickness

Page 182: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 6. Constant Phase Elements page 6: 9

Constant Phase ElementsConstant Phase Elements

• Origin is ambiguous• Can arise from surface or axial distributions• CPE parameters can be interpreted in terms of

capacitance, depending on type of distribution

Page 183: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 6. Constant Phase Elements page 6: 10

Page 184: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 1

Advanced Electrochemical Impedance Advanced Electrochemical Impedance SpectroscopySpectroscopy

Chapter 7. Regression AnalysisChapter 7. Regression Analysis

• Regression response surfaces– noise– incomplete frequency range

• Adequacy of fit– quantitative– qualitative

Mark E. Orazem, 2000-2010. All rights reserved.

Page 185: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 2

Test Circuit 1: 1 Time ConstantTest Circuit 1: 1 Time Constant

• R0 = 0• R1 = 1 cm2

• 1 = RC = 1 sR0

R1

C1

(1)

Page 186: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 3

Linear optimization surface roughly Linear optimization surface roughly parabolicparabolic

0.6 0.8 1.01.2

1.4

0.00

0.01

0.02

0.03

0.04

0.05

0.6

0.81.0

1.21.4

Sum

of S

quar

es

/ s

R / cm2

0.5 1.0 1.50.5

1.0

1.5

R / cm2

/ s

0

0.02000

0.04000

0.06000

0.08000

0.1000

dat dat22

,dat ,mod,dat ,mod2 2

1 1( )

N Nj jr r

i kr j

Z ZZ Zf

p

Page 187: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 4

Nonlinear RegressionNonlinear Regression

0 0

2

01 1 1

1( ) ( )2

p p pN N N

j j kj j kj j kp p

f ff f p p pp p p

p p

β α p

dat

21

( | ) ( | )Ni i i

ki i k

y y x y xp

p p

dat

, 21

1 ( | ) ( | )Ni i

j ki i j k

y x y xp p

p p

dat 22

21

( ( | ))Ni i

i i

y y x

p

i i

f y Zx

For our purposes:

Variance of data

Derivative of function with respect to parameter

Page 188: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 5

Methods for RegressionMethods for Regression

• Evaluation of derivatives– method of steepest descent– Gauss-Newton method– Levenberg-Marquardt method

• Evaluation of function– simplex

Page 189: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 6

Effect of Noisy DataEffect of Noisy Data

0.5 1.0 1.50.5

1.0

1.5

R / cm2

/ s

1.000

75.75

150.5

225.2

300.0

• response surface remains parabolic• value at minimum increases

0.6

0.8

1.0

1.2

1.40.6

0.81.0

1.21.4

0

100

200

300

Sum

of S

quar

es

R / cm2

/ s

Add noise: 1% of modulus

Page 190: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 7

Test Circuit 2: 3 Time ConstantsTest Circuit 2: 3 Time Constants

R0

R1

C1

(1)

R2

C2

(2)

R3

C3

(3)

• R0 = 1 cm2

• R1 = 100 cm2

• 1 = 0.001 s• R2 = 200 cm2

• 2 = 0.01 s• R3 = 5 cm2

• 3 = 0.05 s

Note: 3rd Voigt element contributes only 1.66% to DC cell impedance.

Page 191: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 8

Effect of Noisy DataEffect of Noisy Data

All parameters fixed except R3 and 3

-4-3

-2-1

01

2-2-1

01

23

410-2

10-1

100

101

102

103

Sum

of S

quar

es log10(R/ cm2) log10( / s)

noise: 1% of modulus

-4-3

-2-1

01

2-2-1

01

23

410-2

10-1

100

101

102

103

Sum

of S

quar

es

log10(R/ cm2) log10( / s)

no noise

Note: use of log scale for parameters

Page 192: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 9

Resulting SpectrumResulting Spectrum

0 50 100 150 200 250 300 3500

-50

-100

-150

Z j /

c

m2

Zr / cm2

Model with 1% noise added Model with no noise

Page 193: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 10

Test Circuit 3: 3 Time ConstantsTest Circuit 3: 3 Time Constants

R0

R1

C1

(1)

R2

C2

(2)

R3

C3

(3)

• R0 = 1 cm2

• R1 = 100 cm2

• 1 = 0.01 s• R2 = 200 cm2

• 2 = 0.1 s• R3 = 100 cm2

• 3 = 10 s

Note: 3rd Voigt element contributes 25% to DC cell impedance. The time constant corresponds to a characteristic frequency 3=0.1 s-1 or f3=0.016 Hz.

Page 194: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 11

Resulting Test SpectraResulting Test Spectra

0 100 200 300 4000

-100

Z j /

cm

2

Zr / cm2

0.01 Hz to 100 kHz1 Hz to 100 kHz

Page 195: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 12

Effect of Truncated DataEffect of Truncated Data

All parameters fixed except R3 and 3

-2-1

01

23

4-1

01

23

45100

101

102

103

Sum

of S

quar

es

log10(R / cm2)

log10( / s)

0.01 Hz to 100 kHz

-2-1

01

23

4-1

01

23

4510-1

100

101

102

103

Sum

of S

quar

es log10(R / cm2)

log10( / s)

1 Hz to 100 kHz

Page 196: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 13

Conclusions from Test Spectra Conclusions from Test Spectra

• The presence of noise in data can have a direct impact on model identification and on the confidence interval for the regressed parameters.

• The correctness of the model does not determine the number of parameters that can be obtained.

• The frequency range of the data can have a direct impact on model identification.

• The model identification problem is intricately linked to the error identification problem. In other words, analysis of data requires analysis of the error structure of the measurement.

Page 197: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 14

When Is the Fit Adequate?When Is the Fit Adequate?

• Chi-squared statistic– includes variance of data– should be near the degree of freedom

• Visual examination– should look good– some plots show better sensitivity than others

• Parameter confidence intervals– based on linearization about solution– should not include zero

Page 198: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 15

Test Case: Mass Transfer to a RDETest Case: Mass Transfer to a RDE

Single reaction coupled with mass transfer. Consider model for a Nernst stagnant diffusion layer:

( )1

t de

t d

R zZ R

j C R z

tanhd d

jz z

j

Page 199: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 16

Evaluation of Evaluation of 22 StatisticStatistic

/|Z()| 1 0.1 0.05 0.03 0.01

0.0408 4.08 16.32 45.32 408

2/ 0.00029 0.029 0.12 0.32 2.9

Page 200: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 17

Comparison of Model to DataComparison of Model to Data

0 20 40 60 80 100 120 140 160 180 2000

20

40

60

80

Zj /

Zr /

Impedance Plane (Impedance Plane (NyquistNyquist))

Value of 2 has no meaning without accurate assessment of the noise level of the data

Page 201: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 18

ModulusModulus

10-2 10-1 100 101 102 103 104

10

100

|Z| /

f / Hz

Page 202: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 19

Phase AnglePhase Angle

10-2 10-1 100 101 102 103 1040

-15

-30

-45

/ deg

rees

f / Hz

Page 203: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 20

RealReal

10-2 10-1 100 101 102 103 1040

40

80

120

160

200

Z r /

f / Hz

Page 204: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 21

ImaginaryImaginary

10-2 10-1 100 101 102 103 1040

20

40

60

80

Zj /

f / Hz

Page 205: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 22

Log ImaginaryLog Imaginary

10-2 10-1 100 101 102 103 1041

10

100

Slope = -1 for RC

Z

j /

f / Hz

Page 206: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 23

Modified Phase AngleModified Phase Angle

10-2 10-1 100 101 102 103 1040

-15

-30

-45

-60

-75

-90 /

degr

ees

f / Hz

1* tan j

r e

ZZ R

Page 207: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 24

Real ResidualsReal Residuals

10-2 10-1 100 101 102 103 104-0.06

-0.04

-0.02

0

0.02

0.04

0.06

r /

Z r

f / Hz

2noise level

Page 208: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 25

Imaginary ResidualsImaginary Residuals

10-2 10-1 100 101 102 103 104-0.3

-0.2

-0.1

0

0.1

0.2

0.3 j /

Z j

f / Hz

2noise level

Page 209: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 26

Plot Sensitivity to Quality of FitPlot Sensitivity to Quality of Fit• Poor Sensitivity

– Modulus– Real

• Modest Sensitivity– Impedance-plane

• only for large impedance values– Imaginary– Log Imaginary

• emphasizes small values• slope suggests new models

– Phase Angle• high-frequency behavior is counterintuitive due to role of solution resistance

– Modified Phase Angle• high-frequency behavior can suggest new models• needs an accurate value for solution resistance

• Excellent Sensitivity– Residual error plots

• trending provides an indicator of problems with the regression

Page 210: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 27

Test Case: Better Model for Mass Test Case: Better Model for Mass Transfer to a RDETransfer to a RDE

( )1

t de

t d

R zZ R

j Q R z

Consider 3-term expansion with CPE to account for more complicated reaction kinetics:

1/3 1/3

1 21/3 2/31/3

0

Sc Sc1(0)Sc ScScd d

Z p Z pz z

p

2/=4.86

Page 211: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 28

Comparison of Model to DataComparison of Model to DataImpedance Plane (Impedance Plane (NyquistNyquist))

0 20 40 60 80 100 120 140 160 180 2000

20

40

60

80

Zj /

Zr /

Page 212: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 29

Phase AnglePhase Angle

10-2 10-1 100 101 102 103 1040

-15

-30

-45

Z

j /

f / Hz

Page 213: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 30

Modified Phase AngleModified Phase Angle

10-2 10-1 100 101 102 103 1040

-15

-30

-45

-60

-75

-90* /

degr

ees

f / Hz

1* tan j

r e

ZZ R

Page 214: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 31

Log ImaginaryLog Imaginary

10-2 10-1 100 101 102 103 1041

10

100

Z

j /

f / Hz

Page 215: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 32

10-2 10-1 100 101 102 103 104-0.006

-0.003

0

0.003

0.006 r /

Z r

f / Hz

Real ResidualsReal Residuals

2

Page 216: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 33

10-2 10-1 100 101 102 103 104-0.02

-0.01

0

0.01

0.02 j /

Z j

f / Hz

Imaginary ResidualsImaginary Residuals

2

Page 217: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 34

Confidence IntervalsConfidence Intervals

• Based on linearization about trial solution• Assumption valid for good fits

– for normally distributed fitting errors– small estimated standard deviations

• Can use Monte Carlo simulations to test assumptions

Page 218: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 35

Regression of Models to DataRegression of Models to Data

• Regression is strongly influenced by – stochastic errors in data– incomplete frequency range– incorrect or incomplete models

• Some plots more sensitive to fit quality than others.• Quantitative measures of fit quality require

independent assessment of error structure.• The model identification problem is intricately linked

to the error identification problem.

Page 219: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 7. Regression Analysis page 7: 36

Page 220: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 8. Error Structure page 8: 1

Advanced Electrochemical Impedance Advanced Electrochemical Impedance SpectroscopySpectroscopy

Chapter 8. Error StructureChapter 8. Error Structure

• Contributions to error structure• Weighting strategies• General approach for error analysis• Experimental results

Mark E. Orazem, 2000-2010. All rights reserved.

Page 221: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 8. Error Structure page 8: 2

Contributions to Error StructureContributions to Error Structure

• Sampling Errors

• Stochastic Phenomena• Bias Errors

– Lack of Fit– Changing baseline (non-stationary processes)– Instrumental artifacts

Page 222: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 8. Error Structure page 8: 3

TimeTime--domain domain Frequency DomainFrequency Domain

1 mHz 10 Hz

100 Hz 10 kHz

Page 223: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 8. Error Structure page 8: 4

Error StructureError Structure

resid obs model

fit bias stochastic

( ) ( ) ( )( ) ( ) ( )

Z Z

inadequate model noise (frequency domain)

experimental errors: inconsistent with the Kramers-Kronig relations

fitting error

Page 224: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 8. Error Structure page 8: 5

Weighting StrategiesWeighting Strategies

JZ Z Z Zr k r k

r kk

j k j k

j kk

( ) ( ), ,

,

, ,

,

2

2

2

2

Strategy ImplicationsNo Weighting r=j

Modulus Weighting r=j

Proportional Weighting rj

rrrj jjExperimental r=j

jr| + 2/RmRefined Experimental r=j

jr-Rsol| + 2/Rm+

Page 225: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 8. Error Structure page 8: 6

Assumed Error Structure often WrongAssumed Error Structure often Wrong

1

10

100

1000

10000

100000

0.1 1 10 100 1000 10000 100000Frequency, Hz

Impe

danc

e,

3% of |Z|

1% of |Z|

6 Repeated Measurements

Real

Imaginary

Data obtained by T. El Moustafid, CNRS, Paris, France

Page 226: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 8. Error Structure page 8: 7

Reduction of Fe(CN)Reduction of Fe(CN)6633-- on a Pt Disk, 120 rpmon a Pt Disk, 120 rpm

-300

-200

-100

00 100 200 300 400 500

Zr,

Z j,

1/41/23/4

I/ilim

Page 227: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 8. Error Structure page 8: 8

Reduction of Fe(CN)Reduction of Fe(CN)6633-- on a Pt Disk, on a Pt Disk,

Imaginary Replicates @ 120 rpm, 1/4 Imaginary Replicates @ 120 rpm, 1/4 iilimlim

-80

-60

-40

-20

00.01 0.1 1 10 100 1000 10000 100000

Frequency, Hz

Z j,

Page 228: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 8. Error Structure page 8: 9

Reduction of Fe(CN)Reduction of Fe(CN)6633-- on a Pt Disk, on a Pt Disk,

Real Replicates @ 120 rpm, 1/4 Real Replicates @ 120 rpm, 1/4 iilimlim

1

10

100

1000

0.01 0.1 1 10 100 1000 10000 100000

Frequency, Hz

Z r,

Page 229: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 8. Error Structure page 8: 10

Reduction of Fe(CN)Reduction of Fe(CN)6633-- on a Pt Disk, on a Pt Disk,

Error Structure @ 120 rpm, 1/4 Error Structure @ 120 rpm, 1/4 iilimlim

0.001

0.01

0.1

1

10

0.01 0.1 1 10 100 1000 10000 100000

Frequency, Hz

Stan

dard

Dev

iatio

n,

Page 230: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 8. Error Structure page 8: 11

Reduction of Fe(CN)Reduction of Fe(CN)6633-- on a Pt Disk, on a Pt Disk,

Error Structure @ 120 rpm, 1/4 Error Structure @ 120 rpm, 1/4 iilimlim

0.01

0.1

1

10

100

0.01 0.1 1 10 100 1000 10000 100000

Frequency, Hz

/|Z|,

Perc

ent

Page 231: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 8. Error Structure page 8: 12

Interpretation of Impedance SpectraInterpretation of Impedance Spectra• Need physical insight and knowledge of error structure

– stochastic component• weighting• determination of model adequacy• experimental design

– bias component• suitable frequency range• experimental design

• Approach is general– electrochemical impedance spectroscopies– optical spectroscopies– mechanical spectroscopies

Page 232: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 8. Error Structure page 8: 13

Page 233: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 9. Kramers-Kronig Relations page 9: 1

Advanced Electrochemical Impedance Advanced Electrochemical Impedance SpectroscopySpectroscopy

Chapter 9. KramersChapter 9. Kramers--Kronig RelationsKronig Relations

• Mathematical form and interpretation• Application to noisy data• Methods to evaluate consistency

Mark E. Orazem, 2000-2010. All rights reserved.

Page 234: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 9. Kramers-Kronig Relations page 9: 2

ContraintsContraints

• Under the assumption that the system is– Causal– Linear– Stable

• A complex variable Z must satisfy equations of the form:

dxx

ZxZZ rrj

0

22)()(2)(

dxx

ZxxZZZ jj

rr

0

22

)()(2)()(

Page 235: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 9. Kramers-Kronig Relations page 9: 3

Use of KramersUse of Kramers--Kronig RelationsKronig Relations

• Concept– if data do not satisfy Kramers-Kronig relations, a

condition of the derivation must not be satisfied• stationarity / causality• linearity• stability

– interpret result in terms of • instrument artifact• changing baseline

– if data satisfy Kramers-Kronig relations, conditions of the derivation may be satisfied

Page 236: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 9. Kramers-Kronig Relations page 9: 4

For real data (with noise)For real data (with noise)

))()(())()(()()()(ob

jjrr ZjZZZ

)()( jr j

)()( ob ZZE 0)( E

where

If and only if

0

22)()()()(2)( dx

xxZxZEZE rrrr

j

0

22

)()()()(2)()( dxx

xxZxxZEZZE jjjj

rr

Kramers-Kronig in an expectation sense

Page 237: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 9. Kramers-Kronig Relations page 9: 5

The KramersThe Kramers--Kronig relations can be Kronig relations can be satisfied ifsatisfied if

• This means– the process must be stationary in the sense of replication at every

measurement frequency. – As the impedance is sampled at a finite number of frequencies, r(x)

represents the error between an interpolated function and the “true”impedance value at frequency x. In the limit that quadrature and interpolation errors are negligible, the residual errors r(x) should be of the same magnitude as the stochastic noise r().

0)(2

0

22

dxx

xE r

0)( E and

Page 238: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 9. Kramers-Kronig Relations page 9: 6

10-4 10-3 10-2 10-1 100 101 102 103 104 105

-1000

-800

-600

-400

-200

0

(Zr(x

)-Zr(

)) /

(x2 -

2 )

f / Hz

Meaning ofMeaning of 2 2

0

2 ( ) 0r xE dxx

0.2 0.5 1-400

-300

-200

-100

0

Interpolated Value

Correct Value

(Zr(x

)-Zr(

)) /

(x2 -

2 )

f / Hz

Page 239: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 9. Kramers-Kronig Relations page 9: 7

Use of KramersUse of Kramers--Kronig RelationsKronig Relations

• Quadrature errors– require interpolation function

• Missing data at low and high frequency

Page 240: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 9. Kramers-Kronig Relations page 9: 8

Methods to Resolve Problems of Insufficient Methods to Resolve Problems of Insufficient Frequency RangeFrequency Range

• Direct Integration– Extrapolation

• single RC• polynomials• 1/ and asymptotic behavior

– simultaneous solution for missing data• Regression

– proposed process model– generalized measurement model

Page 241: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 9. Kramers-Kronig Relations page 9: 9

Page 242: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 1

Advanced Electrochemical Impedance Advanced Electrochemical Impedance SpectroscopySpectroscopy

Chapter 10. Use of Measurement ModelsChapter 10. Use of Measurement Models

• Generalized model• Identification of stochastic component of error structure• Identification of bias component of error structure

Mark E. Orazem, 2000-2010. All rights reserved.

Page 243: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 2

ApproachApproach• Experimental design

– quality (signal-to-noise, bias errors)– information content

• Process model– account for known phenomena– extract information concerning other phenomena

• Regression– uncorrupted frequency range– weighting strategy

• Error analysis - measurement model– stochastic errors– bias errors

Page 244: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 3

Error StructureError Structure

obs model res

obs model fit bias stoch

Z ZZ Z

• Stochastic errors• Bias errors

– lack of fit– experimental artifact

• Kramers-Kronig consistent• Kramers-Kronig inconsistent

Page 245: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 4

Measurement ModelMeasurement Model

• Superposition of lineshapes

01 1

nk

k k k

RZ Rj R C

Page 246: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 5

Identification of Stochastic Component Identification of Stochastic Component of Error Structureof Error Structure

How?• Replicate impedance scans.• Fit measurement model to

each scan:– use modulus or no-

weighting options.– same number of

lineshapes.– parameter estimates do

not include zero.• Calculate standard deviation

of residual errors.• Fit model for error structure.

Why?• Weight regression.• Identify good fit.• Improve experimental

design.

Page 247: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 6

Replicated MeasurementsReplicated Measurements

0

50

100

0 50 100 150 200

Zr /

-Zj /

Page 248: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 7

1 Voigt Element1 Voigt Element

0

50

100

0 50 100 150 200

Zr /

-Zj /

Page 249: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 8

2 Voigt Elements2 Voigt Elements

0

50

100

0 50 100 150 200

Zr /

-Zj /

Page 250: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 9

3 Voigt Elements3 Voigt Elements

0

50

100

0 50 100 150 200

Zr /

-Zj /

Page 251: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 10

4 Voigt Elements4 Voigt Elements

0

50

100

0 50 100 150 200

Zr /

-Zj /

Page 252: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 11

5 Voigt Elements5 Voigt Elements

0

50

100

0 50 100 150 200

Zr /

-Zj /

Page 253: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 12

6 Voigt Elements6 Voigt Elements

0

50

100

0 50 100 150 200

Zr /

-Zj /

Page 254: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 13

10 Voigt Elements10 Voigt Elements

0

50

100

0 50 100 150 200

Zr /

-Zj /

Page 255: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 14

Residual Residual ErrorsErrors

-0.005

0

0.005

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

r /

Z r

-0.03

0

0.03

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hzj

/ Zj

imaginary

real

Page 256: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 15

Residual Sum of SquaresResidual Sum of Squares

0.1

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11

# Voigt Elements

2 /

2

Page 257: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 16

Fit to Repeated Data SetsFit to Repeated Data Sets

0

50

100

0 50 100 150 200

Zr /

-Zj /

Page 258: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 17

Residual ErrorsResidual ErrorsReal

-0.005

0

0.005

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

r /

Z r

Page 259: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 18

Standard Deviation of Residual ErrorsStandard Deviation of Residual ErrorsImaginary

-0.02

0

0.02

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

j / Z

j

Page 260: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 19

Standard DeviationStandard Deviation

0.001

0.01

0.1

1

10

0.01 0.1 1 10 100 1000 10000 100000

Frequency, Hz

Stan

dard

Dev

iatio

n,

ImaginaryReal

direct calculation of standard deviation

standard deviation obtained from measurement model analysis

Page 261: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 20

Comparison to ImpedanceComparison to Impedance

0.001

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000 10000 100000

Frequency, Hz

Z or

,

RealImaginary3% of |Z|

Page 262: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 21

Identification of Bias Component of Error Structure

How?• Fit measurement model to real

component:– predict imaginary component.– Use Monte Carlo calculations to

estimate confidence interval.• Fit measurement model to

imaginary component:– predict real component.– Use Monte Carlo calculations to

estimate confidence interval.

Why?• Identify suitable

frequency range for regression.

• Improve experimental design.

Page 263: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 22

11stst of Repeated Measurementsof Repeated MeasurementsImaginary

-80

-60

-40

-20

00.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

Z j /

Page 264: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 23

11stst of Repeated Measurementsof Repeated MeasurementsReal

1

10

100

1000

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

Z r /

Page 265: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 24

Fit to Imaginary PartFit to Imaginary Part

0

50

100

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

-Zj /

Page 266: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 25

Fit to Imaginary PartFit to Imaginary Part

-0.03

0

0.03

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

j / Z

j

Page 267: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 26

Predict Real PartPredict Real Part

0

50

100

150

200

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

Z r /

150

170

190

0.01 0.1

Page 268: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 27

Predict Real PartPredict Real Part

-0.03

0

0.03

0.01 0.1 1 10 100 1000 10000 100000

Frequency / Hz

r /

Z r

Page 269: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 28

Validation of Measurement Model Validation of Measurement Model ApproachApproach

Page 270: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 29

The error structure identified should The error structure identified should be independent of measurement model be independent of measurement model

usedused

01

( )1 ( )

Ni

i i

RZ Rj

Voigt:

0

0

( )( )

( )

Mni

iiP

njj

j

b jZ

a j

Transfer Function:

1/ 2n

1/2 /20 1 2

1/2 /20 1 2

( ) ( ) ( )( ) ;( ) ( ) ( )

MM

P

b b j b j b jZa a j a j j

; 1PM P a

Page 271: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 30

Convective Diffusion to a RDEConvective Diffusion to a RDEReduction of Fe(CN)Reduction of Fe(CN)66

33-- on a Pt Disk: on a Pt Disk: i/ii/ilimlim = = ¼¼; 120 rpm; 120 rpm

0 40 80 120 160 200

0

-20

-40

-60

-80 0 8.93 0.33 9.25 0.66 9.58 1.0 9.91 1.34 1.67 1.99 2.33 0.0.022 Hz

Z j /

Zr /

0.15 Hz

Page 272: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 31

10-2 10-1 100 101 102 103 104 105

0

40

80

120

160

200 0 8.93 0.33 9.25 0.66 9.58 1.0 9.91 1.34 1.67 1.99 2.33

Z r /

f / Hz10-2 10-1 100 101 102 103 104 105

0

-10

-20

-30

-40

-50

-60

-70

-80

0 8.93 0.33 9.25 0.66 9.58 1.0 9.91 1.34 1.67 1.99 2.33

Z j /

f / Hz

Convective Diffusion to a RDEConvective Diffusion to a RDEReduction of Fe(CN)Reduction of Fe(CN)66

33-- on a Pt Disk: on a Pt Disk: i/ii/ilimlim = = ¼¼; 120 rpm; 120 rpm

real part imaginary part

Page 273: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 32

Data Sets for AnalysisData Sets for Analysis

0 2 4 6 8 10-92

-91

-90

-89

-88

-87

-86 measurement

before impedance scan after impedance scan

3 2

Cur

rent

/ m

A

time / h

1

Page 274: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 33

Regression Results for Set #1: Regression Results for Set #1: 00--1 h1 h

• Data: – 74 frequencies – 148 data points

• Voigt Model: – 10 elements + Re

– 21 parameters• Transfer Function:

– 5 ai + 6 bi

– 11 parameters0 2 4 6 8 10

-92

-91

-90

-89

-88

-87

-86

3 2

Cur

rent

/ m

A

time / h

1

Page 275: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 34

Stochastic Error Structure for Set #1: Stochastic Error Structure for Set #1: VoigtVoigt

10-2 10-1 100 101 102 103 104 105

10-3

10-2

10-1

100

real imag direct VMM

Z

r, Z j /

f / Hz

Page 276: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 35

Stochastic Error Structure for Set #1: Stochastic Error Structure for Set #1: Voigt & Transfer FunctionVoigt & Transfer Function

10-2 10-1 100 101 102 103 104 105

10-3

10-2

10-1

100

real imag direct VMM

Z

r, Z j /

f / Hz

Page 277: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 36

Regression Results for Set #3: Regression Results for Set #3: 8.98.9--9.9 h9.9 h

• Data: – 74 frequencies – 148 data points

• Voigt Model: – 9 elements + Re

– 19 parameters• Transfer Function:

– 5 ai + 6 bi

– 11 parameters0 2 4 6 8 10

-92

-91

-90

-89

-88

-87

-86

3 2

Cur

rent

/ m

A

time / h

1

Page 278: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 37

Stochastic Error Structure for Set #3: Stochastic Error Structure for Set #3: VoigtVoigt

10-2 10-1 100 101 102 103 104 105

10-3

10-2

10-1

100

real imag VMM

Z

r, Z j /

f / Hz

Page 279: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 38

Stochastic Error Structure for Set #3: Stochastic Error Structure for Set #3: Voigt & Transfer FunctionVoigt & Transfer Function

10-2 10-1 100 101 102 103 104 105

10-3

10-2

10-1

100

real imag TMM VMM

Z

r, Z j /

f / Hz

Page 280: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 39

Identification of Stochastic Component Identification of Stochastic Component of Error Structureof Error Structure

• Direct evaluation of standard deviation includes significant contributions from changes in system behavior

• The error structure identified was independent of measurement model used

• Selection of measurement model– Ease of identification of initial parameters Voigt– Number of parameters Transfer Function

Page 281: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 40

Evaluation of Consistency with the Evaluation of Consistency with the KramersKramers--Kronig relationsKronig relations

• Approach– Fit measurement model to imaginary component– Use experimental variance to weight regression– Predict real component– Compare prediction to measured data– Use Monte Carlo calculations to estimate confidence interval

• Assumption– Measurement model satisfies the Kramers-Kronig relations

Page 282: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 41

Voigt Measurement Model: Data 1Voigt Measurement Model: Data 1

10-2 10-1 100 101 102 103 104 105-0.02

-0.01

0

0.01

0.02

(Zj-Z

j,mod

) / Z

j,mod

f / Hz

• 20 parameters, guessed value for Re

• Tight confidence interval at low frequency• Justify deleting 5 data points at lowest frequency

Fit to Imaginary

10-2 10-1 100 101 102 103 104 105-0.04

-0.02

0

0.02

0.04

(Zr-Z

r,mod

) / Z

r,mod

f / Hz

Prediction of Real

Page 283: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 42

Voigt Measurement Model: Data 5Voigt Measurement Model: Data 5

• 20 parameters, guessed value for Re

• Justify keeping all data points

10-2 10-1 100 101 102 103 104 105-0.010

-0.005

0

0.005

0.010

(Zj-Z

j,mod

) / Z

j,mod

f / Hz

Fit to Imaginary

10-2 10-1 100 101 102 103 104 105-0.04

-0.02

0

0.02

0.04

(Zr-Z

r,mod

) / Z

r,mod

f / Hz

Prediction of Real

Page 284: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 43

Interpretation of Impedance SpectraInterpretation of Impedance Spectra

• Physical insight and knowledge of error structure– stochastic component

• weighting• determination of model adequacy• experimental design

– bias component• suitable frequency range• experimental design

• Measurement model approach is general– electrochemical impedance spectroscopies– optical spectroscopies– mechanical spectroscopies

Page 285: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 10. Use of Measurement Models page 10: 44

Page 286: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 11. Conclusions page 11: 1

Advanced Electrochemical Impedance Advanced Electrochemical Impedance SpectroscopySpectroscopy

Chapter 11. ConclusionsChapter 11. Conclusions

Mark E. Orazem, 2000-2010. All rights reserved.

• Overview of Course• Credits

Page 287: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 11. Conclusions page 11: 2

Overview of CourseOverview of Course

• Chapter 1. Introduction • Chapter 2. Motivation • Chapter 3. Impedance Measurement • Chapter 4. Representations of Impedance Data• Chapter 5. Development of Process Models• Chapter 6. Constant Phase Elements• Chapter 7. Regression Analysis• Chapter 8. Error Structure• Chapter 9. Kramers-Kronig Relations• Chapter 10. Use of Measurement Models• Chapter 11. Conclusions• Chapter 12. Suggested Reading• Chapter 13. Notation

Page 288: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 11. Conclusions page 11: 3

Impedance SpectroscopyImpedance Spectroscopy• Electrochemical measurement of macroscopic properties• Example of a generalized transfer-function measurement• Can be used to extract contributions of

– electrode reactions– mass transfer– surface layers

• Can be used to estimate – reaction rates– transport properties

• Interpretation of data– graphical representations– regression– process models – error analysis

Page 289: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 11. Conclusions page 11: 4Integrated ApproachIntegrated Approach

Page 290: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 11. Conclusions page 11: 5

AcknowledgementsAcknowledgements• Students

– University of Florida• P. Agarwal, M. Durbha, S. Carson, M. Membrino, P. Shukla, V. Huang, S. Roy, B. Hirschorn,

S-L Wu– CNRS

• T. El Moustafid, I. Frateur, H. G. de Melo– CIRIMAT

• J-B Jorcin • Collaborators

– University of South Florida• L. García-Rubio

– University of Florida • O. Crisalle

– CNRS, Paris• B. Tribollet, C. Deslouis, H. Takenouti, V. Vivier

– CIRIMAT, Toulouse• N. Pébère

– CNR, Italy• M. Musiani

• Funding– NSF, ONR, SC Johnson, CNRS, NASA, ExxonMobil, BP

• Other– The Electrochemical Society– The Fuel Cell Seminar

Page 291: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 11. Conclusions page 11: 6

Page 292: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 12. Suggested Reading page 12: 1

Advanced Electrochemical Impedance Advanced Electrochemical Impedance SpectroscopySpectroscopy

Chapter 12. Suggested Reading Chapter 12. Suggested Reading

• General• Process Models• Orazem group work on Fuel Cells• Measurement Models• CPE• Plotting

Mark E. Orazem, 2000-2010. All rights reserved.

Page 293: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 12. Suggested Reading page 12: 2

Suggested ReadingSuggested ReadingGeneralGeneral

• J. R. Macdonald, editor, Impedance Spectroscopy Emphasizing Solid Materials and Analysis, John Wiley and Sons, New York, 1987.

• E. Barsoukov and J. R. Macdonald, editors, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd Edition, John Wiley and Sons, New York, 2005.

• C. Gabrielli, Use and Applications of Electrochemical Impedance Techniques, Technical Report, Schlumberger, Farnborough, England, 1990.

• D. Macdonald, Transient Techniques in Electrochemistry, Plenum Press, NY, 1977.

• M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley and Sons, New York, 2008.

• Other Sources– See instrument vendor websites for for application notes.

Page 294: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 12. Suggested Reading page 12: 3

Suggested ReadingSuggested ReadingProcess ModelsProcess Models

• A. Lasia, “Electrochemical Impedance Spectroscopy and Its Applications,” Modern Aspects of Electrochemistry, 32, R. E. White, J. O'M. Bockris and B. E. Conway, editors, Plenum Press, New York, 1999, 143-248.

• C. Deslouis and B. Tribollet, Flow Modulation Techniques in Electrochemistry, Advances in Electrochemical Science and Engineering, 2, H. Gerischer and C. W. Tobias, editors, VCH, Weinheim, 1992, 205-264.

• M. E. Orazem, “Tutorial: Application of Mathematical Models for Interpretation of Impedance Spectra,” Tutorials in Electrochemical Engineering - Mathematical Modeling, PV 99-14, R.F. Savinell, A.C. West, J.M. Fenton and J. Weidner, editors, Electrochemical Society, Inc., Pennington, N.J., 68-99, 1999.

• B. Tribollet, Look-up Tables for Rotating Disk Electrode, April 28, 2000, http://www.ccr.jussieu.fr/lple/EnglishVersion.html

Page 295: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 12. Suggested Reading page 12: 4

Suggested ReadingSuggested ReadingCPECPE

• G. J. Brug, A. L. G. van den Eeden, M. Sluyters-Rehbach, and J. H. Sluyters, “The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element,” Journal of ElectroanalyticChemistry, 176 (1984), 275-295.

• C. H. Hsu and F. Mansfeld,Technical Note: “Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance,” Corrosion, 57 (2001), 747-748.

• V. Huang, V. Vivier, M. Orazem, N. Pébère, and B. Tribollet, “The Apparent CPE Behavior of a Disk Electrode with Faradaic Reactions: A Global and Local Impedance Analysis,” Journal of the Electrochemical Society, 154 (2007), C99-C107.

• B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur and M. Musiani, Determination of Effective Capacitance and Film Thickness from CPE Parameters, Electrochim. Acta, in press, 2010.

Page 296: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 12. Suggested Reading page 12: 5

Suggested ReadingSuggested ReadingMeasurement ModelsMeasurement Models

• P. Agarwal, M. E. Orazem, and L. H. García-Rubio, "Measurement Models for Electrochemical Impedance Spectroscopy: 1. Demonstration of Applicability," Journal of the Electrochemical Society, 139 (1992), 1917-1927.

• P. Agarwal, Oscar D. Crisalle, M. E. Orazem, and L. H. García-Rubio, "Measurement Models for Electrochemical Impedance Spectroscopy: 2. Determination of the Stochastic Contribution to the Error Structure," Journal of the Electrochemical Society, 142 (1995), 4149-4158.

• P. Agarwal, M. E. Orazem, and L. H. García-Rubio, "Measurement Models for Electrochemical Impedance Spectroscopy: 3. Evaluation of Consistency with the Kramers-Kronig Relations,” Journal of the Electrochemical Society, 142 (1995), 4159-4168.

• M. E. Orazem “A Systematic Approach toward Error Structure Identification for Impedance Spectroscopy,” Journal of Electroanalytical Chemistry, 572 (2004), 317-327.

Page 297: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 12. Suggested Reading page 12: 6

Suggested ReadingSuggested ReadingPlottingPlotting

• M. Orazem, B. Tribollet, and N. Pébère, “Enhanced Graphical Representation of Electrochemical Impedance Data,” Journal of the Electrochemical Society, 153 (2006), B129-B136.

Page 298: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

AAddvvaanncceedd EElleeccttrroocchheemmiiccaall IImmppeeddaannccee

SSppeeccttrroossccooppyy

CChhaapptteerr 1133.. NNoottaattiioonn

Roman Greek

Page 299: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 13. Notation page 13: 2

Roman a coefficient in the Cochran expansion for velocity, 0.51023 a

b coefficient in the Cochran expansion for velocity, -0.61592 b

ic concentration of reacting species i , mol/cm3

ic steady-state value of the concentration of reacting species i , mol/cm3

ic Oscillating component of the concentration of reacting species i , mol/cm3

,oic concentration of species i on the electrode surface, mol/cm3

,oic steady-state value of the concentration of species i on the electrode surface, mol/cm3

,oic Oscillating component of the concentration of species i on the electrode surface, mol/cm3

c bulk concentration of the reacting species, mol/cm3

dC double layer capacitance, F/cm2

dlC double layer capacitance, F/cm2

iD diffusion coefficient of species i , cm2/s

f arbitrary function, e.g., ,f ii f V c

F Faraday’s constant, C/equiv

i Total current density, A/cm2

i Steady-state total current density, A/cm2

Page 300: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 13. Notation page 13: 3

i Oscillating component of total current density, A/cm2

fi Faradic current density, A/cm2

fi Steady-state Faradic current density, A/cm2

fi Oscillating component of Faradic current density, A/cm2

0i Exchange current density, A/cm2

j imaginary number, 1

Ak rate constant for reaction identified by index A (units depend on reaction stoichiometry)

dimensionless frequency,

1 13 31/3

2 2

9 9 Sci ii

Ka D a

iM notation for species i

n number of electrons produced when one reactant ion or molecule reacts

R universal gas constant, J/mol/K

eR Ohmic resistance, cm2

,t AR Charge-transfer resistance associated with reaction A, cm2

r radial coordinate, cm

0r radius of disk, cm

is stoichiometric coefficient for species i , ( 0is for a reactant and 0is for a product)

K

Page 301: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 13. Notation page 13: 4

Sci Schmidt number, Sc /i iD

T electrolyte temperature, K

t time, s

zr vv , radial and axial velocity components, respectively, cm/s

V potential, V

V steady-state potential, V

V oscillating contribution to potential, V

Z impedance, cm2

z axial position, cm

dz diffusion impedance, cm2

iz charge for species i

Greek coefficient used in the exponent for a constant-phase element. When 0 , the element behaves as an ideal capacitor in

parallel with a resistor.

A apparent transfer coefficient for reaction A

A Tafel slope for reaction A, V

i Fractional surface coverage by species i

Page 302: Advanced Electrochemical Impedance Spectroscopy EIS 2010 O… ·  · 2012-10-23Chapter 1. Introduction page 1: 1 Advanced Electrochemical Impedance Spectroscopy Mark E. Orazem Department

Chapter 13. Notation page 13: 5

Maximum surface coverage

i characteristic diffusion length for species i

homogeneous solution to the oscillating dimensionless convective diffusion equation

(0) derivative of the solution to the oscillating dimensionless convective diffusion equation evaluated at the electrode surface

surface overpotential, V

solution conductivity, ( cm)-1

characteristic length for a finite-length diffusion layer, 1/ 3 2 / 32.598 /iD

viscosity, g/cm s

kinematic viscosity, / , cm2/s

density, g/cm3

finite-length diffusion time constant, 2 / iD

normalized axial position, / iz

ohmic potential, V

frequency of perturbation, rad/s

rotation speed, rad/sec