Advanced analytical approaches in ecological data analysis

20
Advanced analytical approaches in ecological data analysis The world comes in fragments

description

Advanced analytical approaches in ecological data analysis. The world comes in fragments. Early plant succession in the Saxon (Germany) post brown co a l mining area Chicken Creak. 2005. 2010. - PowerPoint PPT Presentation

Transcript of Advanced analytical approaches in ecological data analysis

Page 1: Advanced  analytical approaches  in  ecological  data  analysis

Advanced analytical approaches in ecological data analysis

The world comes in fragments

Page 2: Advanced  analytical approaches  in  ecological  data  analysis

Early plant succession in the Saxon (Germany) post brown coal mining area Chicken Creak

2005 2010

Succession starts with colonising species from a regional species pool and from the initial seed bank

Page 3: Advanced  analytical approaches  in  ecological  data  analysis

Species co-occurrences

How do patterns of species co-occurrences change in time?

2005 A1-2 A3-2 A4-2 A4-3 B1-2 B2-1 B2-4Agrostis_capillaris 0 0 0.1 0 0 0 0Agrostis_stolonifer 0.1 0 0 0 0 0.1 0.1Cirsium_arvense 0.1 0.5 0 0 0.1 0 0

2011 A1-1 A1-2 A1-3 A1-4 A2-1 A2-2 A2-3Achillea_pannonica 0 0.5 0 0 3.0 0.1 0Agrostis_capillaris 0 0.5 0 0.5 0.5 0.5 0.5Agrostis_stolonifer 0 0 0.5 0 0 0 0Agrostis_vinealis 0 0 0 2.0 0 0 0Ajuga_genevensis 0 0 1.5 0 0 0 0Apera_spica-venti 0 0.4 0 0 0.7 0 0Arenaria_serpyllifo 0 0 0 0 0.5 0.5 0.1

Early plant succession

Starting hypothesis1. Island biogeography predicts initial

species occurrences to be random.2. Compretition theory predicts

equilibrium species occurrences to be not random but driven by interspecific competition.

Basic questions1. Which species colonise initially?2. Is initial colonisation directional?3. Is colonisation predictable?

Page 4: Advanced  analytical approaches  in  ecological  data  analysis

How to test for (non-) randomness?

Sites1 2 3 4 5 6 7 8

Species

A 0 1 0 0 0 0 1 1B 0 0 1 0 1 0 1 1C 0 0 0 0 1 0 0 0D 1 0 0 0 0 1 1 1E 0 1 0 0 0 0 1 1

Clustered co-occurrence

Joined co-occurrence

SegregationReciprocal segregation

Checkerboard

Common ecological requirements

Habitat filtering

Niche conservatism

Competition

Reciprocal habitat requirements

Facilitation, mutualism

Habitat engineering by the

earlier colonizer

Joined absences

Habitat filtering

𝐶−𝑠𝑐𝑜𝑟𝑒=4∑ h𝑐 𝑒𝑐𝑘𝑒𝑟𝑏𝑜𝑎𝑟𝑑𝑠𝑚𝑛(𝑚−1)(𝑛−1)

𝐶𝑙𝑢𝑚𝑝𝑖𝑛𝑔𝑠𝑐𝑜𝑟𝑒=4∑𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑚𝑛(𝑚−1)(𝑛−1)

Niche conservatism is the tendency of closed related species to have

similar ecological requirements and life

history raits

Page 5: Advanced  analytical approaches  in  ecological  data  analysis

Sites1 2 3 4 5 6 7 8

Species

A 0 1 0 0 0 0 1 1B 0 0 1 0 1 0 1 1C 0 0 0 1 1 0 0 0D 1 0 0 0 0 1 1 1E 0 1 0 0 0 0 1 1

EV -0.7 -0.6 0.3 2.4 1.4 -0.7 -0.4 -0.4

EV-0.50.262.16-0.6-0.5

Sites4 5 3 7 8 2 1 6

Species

C 1 1 0 0 0 0 0 0 2.16B 0 1 1 1 1 0 0 0 0.26A 0 0 0 1 1 1 0 0 -0.5E 0 0 0 1 1 1 0 0 -0.5D 0 0 0 1 1 0 1 1 -0.6

2.4 1.4 0.3 -0.4 -0.4 -0.6 -0.7 -0.7

Sort according to the dominant eigenvector of correspondence analysis

Spatial species turnover (b-diversity)

Sorting a presence-absence matrix according to the dominant eigenvectors of corresondence analysis (seriation) maximizes the number of occurrences along the left to right diagonal.

Metric for spatial species turnover

1 2 3 4 5 6 7 812345

Squared correlation R2 of row and column ranks of species occurrrences.

R C Pearson1 1 0.751 22 2 R2

2 3 0.562 42 53 43 53 64 44 54 65 45 55 75 7

Page 6: Advanced  analytical approaches  in  ecological  data  analysis

Sites1 2 3 4 5 6 7 8 Sum

Species

A 1 1 1 1 1 1 1 1 8B 1 1 1 1 1 0 0 0 5C 1 1 1 0 0 0 0 0 3D 1 1 0 0 0 0 0 0 2E 1 0 0 0 0 0 0 0 1

Sum 5 4 3 2 2 1 1 1

A nested subset pattern

Nestedness describes a situation where a species poorer site is a true subset of the next species richer site.

A presence – absence matrix ordered according to total species richness (marginal totals, degree distributions)

Sites1 2 3 4 5 6 7 8 Sum

Species

A 1 1 1 1 1 1 1 1 8B 1 0 1 1 1 0 0 0 4C 1 1 1 0 0 0 0 0 3D 1 1 0 0 0 1 0 0 3E 1 0 0 0 0 0 0 0 1

Sum 5 3 3 2 2 2 1 1

Unexpected absence

Unexpected presence

Page 7: Advanced  analytical approaches  in  ecological  data  analysis

I A C M O P D F H K E B J N L G Sum1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 163 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 167 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 12

15 1 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1120 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 104 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 99 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 9

13 1 0 1 1 0 1 1 1 1 0 1 0 1 0 0 0 92 1 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 7

11 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 617 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 618 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 65 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 58 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 3

16 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 26 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 112 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 114 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 119 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Sum 12 11 10 10 10 10 9 9 9 8 7 6 6 6 5 4

X;Y

13;J

20;Pd

d

D

D

The measurement of nestedness

The distance concept of nestedness.

Sort the matrix rows and columns according to some gradient.Define an isocline that divides the matrix into a perfectly filled and an empty part.

The normalized squared sum of relative distances of unexpected absences and unexpected presences is now a metric of nestedness the nestedness temperature.

-8-6-4-202468

0 50 100

Matrix size

Z-sc

ore

𝑇=100

0.041451𝑚𝑛 (∑1

𝑚

∑1

𝑛

( 𝑑𝑖𝑗

𝐷𝑖𝑗 )2

)

Page 8: Advanced  analytical approaches  in  ecological  data  analysis

1 1

1 1

0 1

1 1

1 0

1 1

1 1

0 1

1 1

1 0

1 0

1 0

0 1

1 1

1 1

1 0

1 0

0 1

1 1

1 1

1 0

1 0

0 1

1 0

1 1

1 0

1 0

0 1

1 0

1 1

0

0

0

0

1

1

1

0

1

1

0

0

0

0

1

1

1

0

1

1

1 0

1 0

1 1

1 1

0 1

1 0

1 0

1 1

1 1

0 1

1 0

1 0

1 1

1 0

0 1

1 0

1 0

1 1

1 0

0 1

0

0

0

0

1

1

1

1

1

0

0

0

0

0

1

1

1

1

1

0

0 0

0 0

1 1

1 0

1 1

0 0

0 0

1 1

1 0

1 1

0

0

0

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

0

1

0

0

0

0

1

0

0

1

0

1

0

1

1 1 1 0

1 0 1 1

0

1

1 1 1 0

1 0 1 1

0

1

0 1 1 1

1 0 1 1

0

1

0 1 1 1

1 0 1 1

0

1

1 1 0 0

1 0 1 1

0

1

1 1 0 0

1 0 1 1

0

1

1 1 0 0

1 0 1 1

0

1

1 1 0 0

1 0 1 1

0

0

0 1 1 1

1 1 1 0

0

0

0 1 1 1

1 1 1 0

0

0

1 1 0 0

1 1 1 0

0

0

1 1 0 0

1 1 1 0

0

0

1 1 0 0

1 1 1 0

0

0

1 1 0 0

1 1 1 0

0

0

1 1 0 0

0 1 1 1

0

0

1 1 0 0

0 1 1 1

0

0

1 1 0 0

0 1 1 1

0

0

1 1 0 0

0 1 1 1

0

0

1 1 0 0

1 1 0 0

0

0

1 1 0 0

1 1 0 0

Nestedness among rowsN

este

dnes

s am

ong

colu

mns

c5c4c3c2c1

r5

r4

r3

r2

r1

0

0

0

0

1

1 1 0 0

1 1 0 0

0 1 1 1

1 1 1 0

1 0 1 1

c5c4c3c2c1

r5

r4

r3

r2

r1

0

0

0

0

1

1 1 0 0

1 1 0 0

0 1 1 1

1 1 1 0

1 0 1 1

c1 c2 c1 c3 c1 c4 c1 c5 c2 c3

c2 c4 c2 c5 c3 c4 c3 c5 c4 c5

Npaired=0 Npaired=67 Npaired=50 Npaired=100 Npaired=67

Npaired=50 Npaired=0 Npaired=100 Npaired=100 Npaired=100

r1

r2

r1

r3

r1

r4

r1

r5

r2

r3

r2

r4

r2

r5

r3

r4

r3

r5

r4

r5

Npaired=67

Npaired=67

Npaired=50

Npaired=50

Npaired=50

Npaired=50

Npaired=0

Npaired=0

Npaired=100

Npaired=100

Ncolumns = 63.4

Nrows = 53.4

NODF = 58.4

1 1

1 1

0 1

1 1

1 0

1 1

1 1

0 1

1 1

1 0

1 0

1 0

0 1

1 1

1 1

1 0

1 0

0 1

1 1

1 1

1 0

1 0

0 1

1 0

1 1

1 0

1 0

0 1

1 0

1 1

0

0

0

0

1

1

1

0

1

1

0

0

0

0

1

1

1

0

1

1

1 0

1 0

1 1

1 1

0 1

1 0

1 0

1 1

1 1

0 1

1 0

1 0

1 1

1 0

0 1

1 0

1 0

1 1

1 0

0 1

0

0

0

0

1

1

1

1

1

0

0

0

0

0

1

1

1

1

1

0

0 0

0 0

1 1

1 0

1 1

0 0

0 0

1 1

1 0

1 1

0

0

0

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

1

1

0

0

0

0

1

0

0

1

0

1

0

0

0

0

1

0

0

1

0

1

0

1

1 1 1 0

1 0 1 1

0

1

1 1 1 0

1 0 1 1

0

1

0 1 1 1

1 0 1 1

0

1

0 1 1 1

1 0 1 1

0

1

1 1 0 0

1 0 1 1

0

1

1 1 0 0

1 0 1 1

0

1

1 1 0 0

1 0 1 1

0

1

1 1 0 0

1 0 1 1

0

0

0 1 1 1

1 1 1 0

0

0

0 1 1 1

1 1 1 0

0

0

1 1 0 0

1 1 1 0

0

0

1 1 0 0

1 1 1 0

0

0

1 1 0 0

1 1 1 0

0

0

1 1 0 0

1 1 1 0

0

0

1 1 0 0

0 1 1 1

0

0

1 1 0 0

0 1 1 1

0

0

1 1 0 0

0 1 1 1

0

0

1 1 0 0

0 1 1 1

0

0

1 1 0 0

1 1 0 0

0

0

1 1 0 0

1 1 0 0

Nestedness among rowsN

este

dnes

s am

ong

colu

mns

c5c4c3c2c1

r5

r4

r3

r2

r1

0

0

0

0

1

1 1 0 0

1 1 0 0

0 1 1 1

1 1 1 0

1 0 1 1

c5c4c3c2c1

r5

r4

r3

r2

r1

0

0

0

0

1

1 1 0 0

1 1 0 0

0 1 1 1

1 1 1 0

1 0 1 1

c5c4c3c2c1

r5

r4

r3

r2

r1

0

0

0

0

1

1 1 0 0

1 1 0 0

0 1 1 1

1 1 1 0

1 0 1 1

c5c4c3c2c1

r5

r4

r3

r2

r1

0

0

0

0

1

1 1 0 0

1 1 0 0

0 1 1 1

1 1 1 0

1 0 1 1

c1 c2 c1 c3 c1 c4 c1 c5 c2 c3

c2 c4 c2 c5 c3 c4 c3 c5 c4 c5

Npaired=0 Npaired=67 Npaired=50 Npaired=100 Npaired=67

Npaired=50 Npaired=0 Npaired=100 Npaired=100 Npaired=100

r1

r2

r1

r3

r1

r4

r1

r5

r2

r3

r2

r4

r2

r5

r3

r4

r3

r5

r4

r5

Npaired=67

Npaired=67

Npaired=50

Npaired=50

Npaired=50

Npaired=50

Npaired=0

Npaired=0

Npaired=100

Npaired=100

Ncolumns = 63.4

Nrows = 53.4

NODF = 58.4

Nestedness based on Overlap and Decreasing Fill (NODF)

NODF is a gap based metric and more conservative than temperature.

𝑁𝑂𝐷𝐹=2∑𝑁 𝑝𝑎𝑖𝑟𝑒𝑑

𝑚 (𝑚−1 )+𝑛(𝑛−1)

Page 9: Advanced  analytical approaches  in  ecological  data  analysis

Back to the HuehnerwasserHow does species co-occurrence change during early succession?

Page 10: Advanced  analytical approaches  in  ecological  data  analysis

00.0020.0040.0060.008

0.010.012

2005 2006 2007 2008 2009 2010 2011

C-sc

ore

Study year

00.10.20.30.40.50.6

2005 2006 2007 2008 2009 2010 2011

NO

DF

Study year

0

0.2

0.4

0.6

0.8

1

2005 2006 2007 2008 2009 2010 2011

R2

Study year

The number of reciprocal species co-occurrences increases in time The degree of nestedness

is at an average level (neithert nested nor anti-nested)

The degree of species spatial turnover decreases in time

But are raw scores reliable?

What do we expect if colonisation were a simple random process?

Page 11: Advanced  analytical approaches  in  ecological  data  analysis

Statistical inference using null models

What is random in ecology?

Sites1 2 3 4 5 6 7 8 Sum

Species

A 0 0 0 0 0 0 0 0 8B 0 0 0 0 0 0 0 0 5C 0 0 0 0 0 0 0 0 3D 0 0 0 0 0 0 0 0 2E 0 0 0 0 0 0 0 0 1

Sum 5 4 3 2 2 1 1 1

11

1 1

11

1 Fill the matrix at random but proportional to observed

marginal (row/column) totals until the observed total

number of occurrences is reached

The proportional- proportional null model

Fill the matrix at random until for each row and each column the observed total number of

occurrences is reached

The fixed - fixed null modelSites1 2 3 4 5 6 7 8 Sum

Species

A 1 1 1 1 0 1 0 1 6B 1 1 1 1 1 0 0 0 5C 1 1 0 0 1 0 1 0 3D 1 1 1 0 0 0 0 0 3E 1 0 0 0 0 0 0 0 1

Sum 5 4 3 2 2 1 1 1

Take a checkerboard pair and swap. Do this 100000 times to

randomize the matrix.

Page 12: Advanced  analytical approaches  in  ecological  data  analysis

0.000.050.100.150.200.250.30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Freq

uenc

y

Score class

020406080

100120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Freq

uenc

y

Score class

Statistical inference using null models

Observed score

400 randomized matrices

For each randomized matrix we calculate the respective metric (C-score, NODF, R2).

𝑆𝐸𝑆=(𝑂𝑏𝑠−𝐸𝑥𝑝)

𝑆𝑡𝐷𝑒𝑣Standardized effect sizes (SES) are Z-transformed scores and can be linked to a normal distribution.

P(-1 < X <+1) = 68%P(-1.65 < X < +1.65) =

90%P(-1.96 < X < +1.96) =

95%P(-2.58 < X < +2.58) =

99% P(-3.29 < X < +3.29) =

99.9%

The Fisherian significance levels

SES- SES

Page 13: Advanced  analytical approaches  in  ecological  data  analysis
Page 14: Advanced  analytical approaches  in  ecological  data  analysis
Page 15: Advanced  analytical approaches  in  ecological  data  analysis

Year Score Average null distribution score

Standard deviation

Z-score (SES)FF null model P(Z)

C-score2005 0.01087 0.01085 0.00009 0.193 0.8471842006 0.00106 0.00104 0.00002 1.106 0.268572007 0.00132 0.0013 0.00001 3.036 0.0023192008 0.00355 0.00349 0.00001 4.995 6E-072009 0.00492 0.00487 0.00001 4.454 7.9E-062010 0.00756 0.00747 0.00001 7.273 02011 0.00813 0.008 0.00001 10.273 0

NODF2005 0.05931 0.05999 0.00575 -0.12 0.9048512006 0.48707 0.48834 0.00116 -1.095 0.273622007 0.53815 0.53838 0.00171 -0.138 0.8900532008 0.46488 0.4686 0.00274 -1.358 0.1742242009 0.49842 0.49832 0.00122 0.083 0.9339612010 0.52119 0.52159 0.00081 -0.498 0.6186282011 0.49632 0.49627 0.00089 0.053 0.95803

R2

2005 0.91608 0.92746 0.02176 -0.523 0.6010392006 0.27526 0.28248 0.04284 -0.168 0.8662522007 0.20723 0.17799 0.02361 1.238 0.2154092008 0.12074 0.05448 0.011 6.025 02009 0.06106 0.02695 0.00509 6.705 02010 0.04678 0.01907 0.00507 5.463 1E-072011 0.02964 0.01728 0.00497 2.488 0.012634

Page 16: Advanced  analytical approaches  in  ecological  data  analysis

0

2

4

6

8

10

12

2005 2006 2007 2008 2009 2010 2011

SES

C-sc

ore

Study year

SES scores (FF mull model)The degree of reciprocal species segregation constantly increases during early succession

Local plant communities are not significantly

nested during succession

Species spatial turnover peaks at intermediate stages of succession

In ecological research raw metrics are most often meaningless!!-1

012345678

2005 2006 2007 2008 2009 2010 2011

SES

R2

Study year

-1.6-1.4-1.2

-1-0.8-0.6-0.4-0.2

00.2

2005 2006 2007 2008 2009 2010 2011

SES

NO

DF

Study year

Page 17: Advanced  analytical approaches  in  ecological  data  analysis

Different null assumptions give different answers

FF

PP

FF PP

-1.6-1.4-1.2

-1-0.8-0.6-0.4-0.2

00.2

2005 2006 2007 2008 2009 2010 2011

SES

NO

DF

Study year

-2

-1

0

1

2

3

4

2005 2006 2007 2008 2009 2010 2011

SES

NO

DF

Study year

-2

-1.5

-1

-0.5

0

0.5

1

2005 2006 2007 2008 2009 2010 2011

SES

C-sc

ore

Study year

0

2

4

6

8

10

12

2005 2006 2007 2008 2009 2010 2011

SES

C-sc

ore

Study year

Page 18: Advanced  analytical approaches  in  ecological  data  analysis

FF PP

The FF null model assumes that sites are filled with species and that each species occupies the

maximal number of sites.

The PP null model assumes that sites might differ dynamically in species richness and that each

species might occupy a variable number of sites.

The PP null model points often to a random pattern in species occupancy.

-2-1012345

2005 2006 2007 2008 2009 2010 2011

SES

R2

Study year

-1012345678

2005 2006 2007 2008 2009 2010 2011

SES

R2

Study year

Page 19: Advanced  analytical approaches  in  ecological  data  analysis

Idiosyncratic species are those that deviate in their patterns of occurrences

Species 2005 TotalOcc NODF ExpNODF SpResult Z-SpResu DeltaSpC

Cirsium_arvense 11 56.618 63.431 6.087 0.864 -2.229Chenopodium_album_agg. 7 69.118 69.402 5.975 1.049 -1.146Agrostis_stolonifera_agg. 6 75 74.615 5.409 -0.529 -1.452Crepis_tectorum 6 91.176 79.348 5.365 -0.607 -1.382Echium_vulgare 6 66.912 80.944 6.245 3.091 -0.536Rumex_acetosella_var._tenuifoliu 3 86.029 86.852 5.919 1.163 -0.05

Calamagrostis_epigejos 3 94.118 85.908 5.311 -1.004 -0.841Arenaria_serpyllifolia_agg. 2 92.647 90.293 5.859 1.341 -0.008Festuca_rubra_agg. 2 85.294 90.795 5.97 1.683 0.075Daucus_carota 2 92.647 92.899 5.505 -0.527 -0.383Agrostis_capillaris 2 92.647 91.203 5.831 1.133 -0.092Carex_ericetorum 2 98.529 91.166 5.792 1.035 -0.133Bromus_tectorum 2 92.647 91.345 5.822 0.806 -0.092Robinia_pseudoacacia 1 92.647 96.805 5.838 1.672 0.075Lupinus_luteus 1 92.647 96.949 5.789 1.126 0.075Poa_palustris 1 92.647 94.787 5.816 1.269 0.075Rubus_fruticosus_agg. 0 100 100 5.629 0 0.075

Sites1 2 3 4 5 6 7 8

Species

A 1 1 1 1 1 1 1 1B 1 1 1 1 1 0 0 0C 1 1 1 1 0 0 0 0D 1 1 0 0 0 1 1 0E 1 0 0 0 0 0 0 1

Cirsium arvense increases (DeltaC < 0) the degree of nestedness

None of the species decreases the nestedness pattern. There are few unexpected occurrences . All species behave similar.

Page 20: Advanced  analytical approaches  in  ecological  data  analysis