Advanced Acid Base on the Pediatric Intensive Care Unit

39
Advanced Acid/Base on the PICU David Schmidt SUMMA / Clinician Scientists Training Program

description

acid base, fencl, figge, stewart, anion gap, corrected anion gap, outcomes, mortality, ICU length of stay, education, medical

Transcript of Advanced Acid Base on the Pediatric Intensive Care Unit

Page 1: Advanced Acid Base on the Pediatric Intensive Care Unit

Advanced Acid/Base on the PICU David Schmidt SUMMA / Clinician Scientists Training Program

Page 2: Advanced Acid Base on the Pediatric Intensive Care Unit

Stewart 101

Page 3: Advanced Acid Base on the Pediatric Intensive Care Unit

Definitions

•  Ions, Kations, Anions •  Strong electrolytes and weak electrolytes •  Acid •  pH

Page 4: Advanced Acid Base on the Pediatric Intensive Care Unit

Governing principles •  Law of Electrical Neutrality •  Law of Mass Conservation •  Law of Mass Action

Acid Base Chemistry

H2O! "# H + +OH $

Kd = [H+][OH $ ]H2O

Kd  =  the  dissocia-on  constant  Dependent  on  temp,  molecular  structure  

Page 5: Advanced Acid Base on the Pediatric Intensive Care Unit

Strong vs weak electrolytes (e.g. acids)

KA =[H + ][A! ][HA]

HA! "# H + + A$

HA  =  an  acid  H+  =  a  hydrogen  ion  that  lost  an  electron  A-­‐  =  a  deprotonated  acid  Ka  =  the  dissocia-on  constant  for  the  acid  (a)  

NaCl(s) H 2O! "!! Na+ +Cl#(aq)S  =  solid  Aq  =  aqueous  

Page 6: Advanced Acid Base on the Pediatric Intensive Care Unit

Proteins = acids and bases

Alberts,  NCBI  Bookshelf  

Albumin  (weak  acid)  IgA  (weak  acid)  IgG  (weak  ka-on)  

Page 7: Advanced Acid Base on the Pediatric Intensive Care Unit

Stewart’s Message: [H+] and [HCO3

-] are dependent

Page 8: Advanced Acid Base on the Pediatric Intensive Care Unit

Strong Ion Difference (SID)

•  Completely dissociated ions at body pH 1 organic acids with a pKa <4 (’strong acids’) 2 strong electrolytes

•  Q: Law of electrical neutrality?

•  Unmeasured anions: e.g. lactate, ketones, SO42-

•  Unmeasured kations: e.g. lithium, Mg, Ca

pKa  =  acid  dissocia-on  constant  

SID = [strongkations]![stronganions]"[Na+ ]+[K + ]![Cl! ]

Page 9: Advanced Acid Base on the Pediatric Intensive Care Unit

Weak non-volatile acids

HA! "# H + + A$

ATOT = HA+ A!

Page 10: Advanced Acid Base on the Pediatric Intensive Care Unit

Meet the Stewart players

•  Strong ion difference •  Non-volatile weak acids •  pCO2

These determine •  H+ •  HCO3- by •  Law of Electrical Neutrality •  Law of Mass Conservation •  Law of Mass Action

Page 11: Advanced Acid Base on the Pediatric Intensive Care Unit

The formulas that govern acid base status

HA! "# H + + A$

SID+[H + ]![HCO3! ]![CO3

2! ]![A! ]![OH ! ]= 0

For  each  acid  (including  water)  

CO32-­‐  =  carbonate    

A-­‐  =  total  anionic  weak  non-­‐vola-le  acids  

CO2 +H2OCA! "# H2CO3! "# H + +HCO3

$

Page 12: Advanced Acid Base on the Pediatric Intensive Care Unit

SID & pH

PCO2  is  held  constant  at  40  mm  Hg.  ATOT  20  mEq/L  

Morgan  TJ.  Clin  Biochem  Rev.  2009  May  13;30(2):41–54.    

Page 13: Advanced Acid Base on the Pediatric Intensive Care Unit

SID & pH

PCO2  is  held  constant  at  40  mm  Hg.  SID  =  42mEq/L  

Morgan  TJ.  Clin  Biochem  Rev.  2009  May  13;30(2):41–54.    

Page 14: Advanced Acid Base on the Pediatric Intensive Care Unit

Summary

•  Strong ion difference •  Non-volatile weak acids •  pCO2

These determine •  H+ •  HCO3-

Page 15: Advanced Acid Base on the Pediatric Intensive Care Unit

Stewart Acid Base Physiology

Page 16: Advanced Acid Base on the Pediatric Intensive Care Unit

Stewart Acid Base Status

www.acidbase.org    Paul  Elbers,  MD  ©  

Page 17: Advanced Acid Base on the Pediatric Intensive Care Unit

Stewart Acid Base Status

www.acidbase.org    Paul  Elbers,  MD  ©  

Page 18: Advanced Acid Base on the Pediatric Intensive Care Unit

Stewart Acid Base Status

www.acidbase.org    Paul  Elbers,  MD  ©  

Page 19: Advanced Acid Base on the Pediatric Intensive Care Unit

Hyperchloremic SID acidosis

•  0.9% saline •  Rapid infusion

–  reduces SID (metabolic acidosis) –  reduces ATOT (metabolic alkalosis) SID change predominates over ATOT

•  SID changes may also be induced by low Cl- fluids

–  0.45% saline –  mannitol –  5% dextrose

Morgan.  Clin  Biochem  Rev  2009  

Page 20: Advanced Acid Base on the Pediatric Intensive Care Unit

Fluids & Stewart Acid Base

•  The balanced crystalloid SID lower than plasma (acidotic) to counteract ATOT dilutional alkalosis

•  Experimentally: SID 24 mEq/L

•  E.g. Ringer’s lactate (SID=28), Hartmann’s (SID=27)

Morgan  TJ.  Crit  Care.  2005  Apr;9(2):204–11.    

Page 21: Advanced Acid Base on the Pediatric Intensive Care Unit

Calculating the Strong ion gap

•  A- = albumin * constant + phosphate * constant •  SID = Na + K + Mg + Ca – Cl – A- •  SIG = SID – lactate – bicarb

•  Anion gap = Na + K – Cl – bicarb – lactate •  AGc = AG / (2.5x reference albumin – pt albumin)

Page 22: Advanced Acid Base on the Pediatric Intensive Care Unit

5 Minutes of ICU Acid Base

Page 23: Advanced Acid Base on the Pediatric Intensive Care Unit

Acidosis •  Sympathoadrenal activation •  Right-shift Hb dissociation

curve (+Haldane effect) •  Hyperkalemia (shift) •  SMC Cathecolamine

responsiveness decreases

Alkalosis •  Left-shift Hb dissociation

curve •  Hypocalcemia (plasma

protein binding) - cardiac - neuromuscular

•  Reduced cerebral blood flow

•  Increased peripheral vascular resistance

•  Coronary vasospasm •  Bronchoconstriction

The physiological effects of pH changes

Morgan  &  Mikhail’s  Clinical  Anesthesiology  5e  (AccessMedicine)  

Page 24: Advanced Acid Base on the Pediatric Intensive Care Unit

Prognostic value

•  Metabolic acidosis predicts mortality, lactate > other causes

•  Increased anion gap acidosis predicts morbidity & mortality

•  Metabolic acidosis = 2x mortality risk [adults] •  Hyperchloremic acidosis associated with ICU stay, renal

dysfunction, mortality [adults]

Lucking  SE,  Maffei  FA,  Tamburro  RF.  Pediatric  Cri-cal  Care  Study  Guide.  Springer;  2012.    Gunnerson  KJ,  Saul  M,  He  S,  Kellum  JA.  Crit  Care.  2006  Feb;10(1):R22.    McCluskey  SA,  Karou-  K,  Wijeysundera  D,  Minkovich  L,  Tait  G,  Beadle  WS.  Anesthesia  &  Analgesia.  2013  Nov  6.    

Page 25: Advanced Acid Base on the Pediatric Intensive Care Unit

Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Critical Care Medicine. 1999 Aug 1;27(8):1577. -  n=255, retrospective cohort -  inclusion: PICU + acid base status measured -  ATOT determination superior to AG/BE/lactate for predicting

mortality -  Discussion: Possibly same with AGc ? Multiple

measurements, error

AGc  =  albumin  corrected  anion  gap  

Page 26: Advanced Acid Base on the Pediatric Intensive Care Unit

Dubin A, Menises MAM, Masevicius FD, Moseinco MC, Kutscherauer DO, Ventrice E, et al. Comparison of three different methods of evaluation of metabolic acid-base disorders*. Critical Care Medicine. 2007 May;35(5):1264–70 -  n=953, prospective observational cohort -  inclusion: ICU -  Stewart detected metabolic alterations in 14% of patients

with normal HCO3- / BE

-  SIG and AGc are correlated R2=.97 -  Stewart and AGc perfomed as good in detecting metabolic

acidosis, and were superior to the traditional approach

SIG  =  strong  ion  gap  AGc  =  albumin  corrected  anion  gap  

Page 27: Advanced Acid Base on the Pediatric Intensive Care Unit

No Consequence for Clinical Practice ?

•  Traditional approach is more intuitive and well known, supported by robust experience and evidence

•  Provision of clear epidemiological evidence for Steward approached Dx / Tx is not given yet (sample size of research…)

Rastegar  A.  Clinical  Journal  of  the  American  Society  of  Nephrology.  2009  Jul;4(7):1267–74.    

Page 28: Advanced Acid Base on the Pediatric Intensive Care Unit

5 Minutes of Periop Cardio Acid/Base

Page 29: Advanced Acid Base on the Pediatric Intensive Care Unit

Murray DM, Olhsson V, Fraser JI. Defining acidosis in postoperative cardiac patients using Stewart’s method of strong ion difference*. Pediatric Critical Care Medicine. 2004 May;5(3):240–5. -  n=44, prospective -  inclusion: PICU post-cardiac Sx -  Daily acid-base status -  Metabolic acidosis: lactate, UA, SID -  CPB results in more SID acidosis -  Stewart detection of acids is superior: 13% of normal BE

samples had UA. However, AGc almost as good by ROC AUC

UA  =  unmeasured  acids,  part  of  ATOT  AGc  =  albumin  corrected  anion  gap  ROC  AUC  =  receiver  operated  characteris-cs  area  under  the  curve  

Page 30: Advanced Acid Base on the Pediatric Intensive Care Unit

Hatherill M. Hyperchloraemic metabolic acidosis following open cardiac surgery. Archives of Disease in Childhood. 2005 Dec 1;90(12):1288–92. -  n=97, prospective -  inclusion: PICU post-cardiac Sx -  Metabolic acidosis: lactate, UA, SID (less SID than Murray) -  No association with CPB time, ventilation, but complexity of

surgery -  No association with PICU length of stay -  Chloride from CPB priming / renal hypoperfusion?

Page 31: Advanced Acid Base on the Pediatric Intensive Care Unit

Durward A, Tibby SM, Skellett S, Austin C, Anderson D, Murdoch IA. The strong ion gap predicts mortality in children following cardiopulmonary bypass surgery*. Pediatric Critical Care Medicine. 2005 May;6(3):281–5. -  n=85, prospective -  inclusion: PICU post-cardiac Sx -  41% (admission) and 52% (24h) raised strong ion gap -  SIG and lactate increased with surgical complexity, but not

length of CPB or aortic cross-clamping

-  5 deaths, 4 of which persistent SIG, 2 lactaemia

Page 32: Advanced Acid Base on the Pediatric Intensive Care Unit

Mann C, Held U, Herzog S, Baenziger O. Impact of normal saline infusion on postoperative metabolic acidosis. Pediatric Anesthesia. 2009 Nov;19(11):1070–7. -  n=119, prospective -  inclusion: PICU post-cardiac Sx -  Intervals of Saline infusion / no saline infusion -  Saline infusion post-op is associated with metabolic acidosis -  This can be calculated by chloride effect of SID

Page 33: Advanced Acid Base on the Pediatric Intensive Care Unit

WKZ PICU: 2 patient analyses

•  pH, bicarbonate, PCO2, PO2, lactate, urea, ketones, Hb/Ht, Na, K, phosphate, albumin, glucose, osmolality

•  Pt A, pH 7.27 – mixed acidosis: low SID (high Cl), increased ATOT (explained by lactate and ketones), phosphate effect (high P). Alongside hypoalbuminemia (metabolic alkalosis).

•  Pt B, pH 7.23 – low SID acidosis (high Cl), phosphate effect (high P)

Page 34: Advanced Acid Base on the Pediatric Intensive Care Unit

Discussion Translation WKZ Practice

Page 35: Advanced Acid Base on the Pediatric Intensive Care Unit

David Schmidt [email protected]

Page 36: Advanced Acid Base on the Pediatric Intensive Care Unit

Figge-Fencl Stewart Modification

•  Albumin charge is approximately linear over pH 6.9-7.9 •  Can thus be calculated

Page 37: Advanced Acid Base on the Pediatric Intensive Care Unit

Stewart modification

•  Story DA. Strong ions, weak acids and base excess: a simplified Fencl-Stewart approach to clinical acid-base disorders. British Journal of Anaesthesia. 2004 Jan 1;92(1):54–60.

Page 38: Advanced Acid Base on the Pediatric Intensive Care Unit

The Scheingraber Gynecology Trial

•  Two groups of 12 patients undergoing major intraabdominal gynecologic surgery, saline or lactated Ringer at 30ml / kg BW/h

•  Saline caused metabolic acidosis with hyperchloremia and SID decrease

•  Infusion of both fluids results in hypoproteinemia and decreased anion gap

•  Authors consider condition benign, but argue for treatment

•  Complication of respiratory acidosis by opiate analgesics ?

Scheingraber  et  al.  Anesthesiology.  1999  May;90(5):1265–70.    Prough  DS.  Anesthesiology.  1999  May;90(5):1247–9.    

Page 39: Advanced Acid Base on the Pediatric Intensive Care Unit

Further Repots Saline & Metabolic Acidosis

•  Stephens RCM, Mythen MG. Saline-Based Fluids Can Cause a Significant Acidosis That May Be Clinically Relevant. Critical Care Medicine. 2000 Sep 1;28(9):3375.

•  Prough DS, Bidani A. Hyperchloremic metabolic acidosis is a predictable consequence of intraoperative infusion of 0.9% saline. Anesthesiology. 1999 May;90(5):1247–9.

•  Dorje P, Adhikary G, Tempe DK. Avoiding latrogenic hyperchloremic acidosis--call for a new crystalloid fluid. Anesthesiology. 2000 Feb;92(2):625–6.

•  Constable PD. Hyperchloremic Acidosis: The Classic Example of Strong Ion Acidosis. Anesthesia & Analgesia. 2003 Apr;:919–22.

•  Eisenhut M. Causes and effects of hyperchloremic acidosis. Crit Care. 2006;10(3):413; authorreply413.