Adjusting Numerical Model Data in Real Time: AQMOS Prepared by Clinton P. MacDonald, Dianne S....

15
Adjusting Numerical Model Data in Real Time: AQMOS Prepared by Clinton P. MacDonald, Dianne S. Miller, Timothy S. Dye, Kenneth J. Craig, Daniel M. Alrick Sonoma Technology, Inc. Petaluma, CA Presented at the 2010 National Air Quality Conferences Raleigh, NC March 15-18, 2010 3805

Transcript of Adjusting Numerical Model Data in Real Time: AQMOS Prepared by Clinton P. MacDonald, Dianne S....

Adjusting Numerical Model Data in Real Time: AQMOS

Prepared byClinton P. MacDonald, Dianne S. Miller, Timothy S. Dye,

Kenneth J. Craig, Daniel M. AlrickSonoma Technology, Inc.

Petaluma, CA

Presented at the 2010 National Air Quality ConferencesRaleigh, NC

March 15-18, 2010

3805

2

Introduction

What: The Air Quality Model Output Statistics (AQMOS) forecasting tool provides air quality model predictions adjusted in real time.

Why: Gridded numerical weather and air quality models have some errors in their predictions.

How: Like model output statistics for weather models, AQMOS uses regression equations to correct for air quality model errors.

AQMOS is• Automated• Dynamically updated after each

model run• City-, pollutant-, and model-specific

3

How AQMOS Works

• AQMOS calculates regression equations from recent air quality observations and numerical model predictions (the critical component).

• The forecasting tool applies these equations to the current numerical model predictions.

AQMOS prediction = numerical model prediction x correlation factor + constant

+

0

5

10

15

20

25

30

35

0 10 20 30 40 50

Model predicted PM2.5 (ug/m3)

Ob

se

rve

d P

M2

.5 (

ug

/m3

)

Many days of observed and predicted data

4

AQMOS Data Sources

• Air quality observations from AIRNow Gateway – Peak daily 8-hr ozone– Daily 24-hr PM2.5

• Model data– NOAA Air Quality Forecast Guidance (6Z and 12Z)– BlueSky Gateway Experimental CMAQ (0Z)

The system’s flexibility allows new models and parameters to be added as data become available.

5

Acquire Data

Extract the concentration at the geographic centroid of each ZIP Code and calculate the maximum concentration in the area (in this example, 53 ppb for Des Moines).

Hourly NOAA grib data provides peak next-day 8-hr ozone forecast.

Store daily predictions for each area and model run in AQMOS database.

AQMOSAIRNow Gateway files provide peak 8-hr ozone concentrations for each forecast area.

AIRNowGatewayData File

Store daily peak concentration data in AQMOS database.

6

Calculate Regression

• Match recent forecasts (within the last year) with observations• Calculate regression for each city using up to six months of data

Observation = recent numerical model prediction x correlation factor + constant

NOAA 6Z 8-hr Ozone - Dallas

30

40

50

60

70

80

90

100

110

30 40 50 60 70 80 90 100 110

Observed ozone (ppb)

Mo

del

pre

dic

ted

ozo

ne

(pp

b)

Top 15% threshold(88 ppb for Dallas)

High

Low

7

AQMOS Website (1 of 2)

62.8 ppb = 89.0 ppb x 0.73 + (-2.36 ppb)

Original NOAA forecast in AQI

NOAA prediction: 89.0 ppb AQMOS prediction: 62.8 ppbVerification: 60.0 ppb

AQMOS prediction

current model prediction x slope + constant=

8

AQMOS Website (2 of 2)

9

AQMOS Performance (1 of 6)

NOAA 6Z Next-Day OzoneApril 1-October 31, 2009

>-4 and ≤-2

MOS Improvement (ppb)

-3.104257 - -2.000000

-1.999999 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

8.000001 - 10.000000

10.000001 - 12.000000

12.000001 - 14.000000

14.000001 - 16.000000

16.000001 - 18.000000

MOS Improvement (ppb)

-3.104257 - -2.000000

-1.999999 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

8.000001 - 10.000000

10.000001 - 12.000000

12.000001 - 14.000000

14.000001 - 16.000000

16.000001 - 18.000000

MOS Improvement (ppb)

-3.104257 - -2.000000

-1.999999 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

8.000001 - 10.000000

10.000001 - 12.000000

12.000001 - 14.000000

14.000001 - 16.000000

16.000001 - 18.000000

MOS Improvement (ppb)

-3.104257 - -2.000000

-1.999999 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

8.000001 - 10.000000

10.000001 - 12.000000

12.000001 - 14.000000

14.000001 - 16.000000

16.000001 - 18.000000

MOS Improvement (ppb)

-3.104257 - -2.000000

-1.999999 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

8.000001 - 10.000000

10.000001 - 12.000000

12.000001 - 14.000000

14.000001 - 16.000000

16.000001 - 18.000000

MOS Improvement (ppb)

-3.104257 - -2.000000

-1.999999 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

8.000001 - 10.000000

10.000001 - 12.000000

12.000001 - 14.000000

14.000001 - 16.000000

16.000001 - 18.000000

MOS Improvement (ppb)

-3.104257 - -2.000000

-1.999999 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

8.000001 - 10.000000

10.000001 - 12.000000

12.000001 - 14.000000

14.000001 - 16.000000

16.000001 - 18.000000

MOS Improvement (ppb)

-3.104257 - -2.000000

-1.999999 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

8.000001 - 10.000000

10.000001 - 12.000000

12.000001 - 14.000000

14.000001 - 16.000000

16.000001 - 18.000000

MOS Improvement (ppb)

-3.104257 - -2.000000

-1.999999 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

8.000001 - 10.000000

10.000001 - 12.000000

12.000001 - 14.000000

14.000001 - 16.000000

16.000001 - 18.000000

>-2 and ≤0

>0 and ≤2

>2 and ≤4

>4 and ≤6

>6 and ≤8

>8 and ≤10

>10 and ≤12

>12 and ≤14

MOS Improvement (ppb)

-3.104257 - -2.000000

-1.999999 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

8.000001 - 10.000000

10.000001 - 12.000000

12.000001 - 14.000000

14.000001 - 16.000000

16.000001 - 18.000000

MOS Improvement (ppb)

-3.104257 - -2.000000

-1.999999 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

8.000001 - 10.000000

10.000001 - 12.000000

12.000001 - 14.000000

14.000001 - 16.000000

16.000001 - 18.000000>14 and ≤16

>16 and ≤18

Improvement = avg (abs (raw model – observed)) – avg (abs (AQMOS – observed))

AQMOS Improvement (ppb)

10

AQMOS Performance (2 of 6)

BlueSky Gateway 0Z Next-Day PM2.5

April 1-October 31, 2009

MOS Improvement (ug/m3)

-1.712867 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

MOS Improvement (ug/m3)

-1.712867 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

MOS Improvement (ug/m3)

-1.712867 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

MOS Improvement (ug/m3)

-1.712867 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

MOS Improvement (ug/m3)

-1.712867 - 0.000000

0.000001 - 2.000000

2.000001 - 4.000000

4.000001 - 6.000000

6.000001 - 8.000000

>-2 and ≤0

>0 and ≤2

>2 and ≤4

>4 and ≤6

>6 and ≤8

Improvement = avg (abs (raw model – observed)) – avg (abs (AQMOS – observed))

AQMOS Improvement (µg/m3)

11

AQMOS Performance (3 of 6)

Between April 1-October 31, 2009, AQMOS improved predictions in

CityAQMOS improvement, 6Z NOAA Ozone model (ppb)

Yuba City/Marysville, CA 17.3

York/Chester/Lancaster, PA

15.0

Charleston, SC 13.5

Rock Island-Moline, IL 13.4

East San Gabriel, CA 12.4

. . . . . .

Banning, CA -0.8

Imperial Valley, CA -0.9

Provo, UT -1.2

Washakie Reservation, UT -1.7

Ogden, UT -3.1

Improvement = avg (abs (raw model – observed)) – avg (abs (AQMOS – observed))

• 312 of 326 forecast cities for the next-day NOAA 6Z ozone model

• 239 of 252 forecast cities for the next-day BlueSky Gateway PM2.5 model

12

AQMOS Performance (4 of 6)

Days on which either observed or model-predicted air quality was USG or higher • GreenGreen – forecast improved on at least 75% of these days• YellowYellow – forecast improved on 50-75% of these days• RedRed – forecast improved on fewer than 50% of these days

CityNOAA 6Z

OzoneNOAA 12Z

OzoneBlueSky 0Z PM2.5

Atlanta 92% 90% 33%

Houston 50% 50% 67%

Philadelphia 82% 67% 100%

Sacramento 76% 80% 100%

St. Louis 63% 75% 100%

Salt Lake City 60% 38% ----

13

AQMOS Performance (5 of 6)

Atlanta Next-Day 6Z NOAA Ozone ModelApril 1-October 31, 2009

y = 1.3404x

R2 = 0.2704

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

Observed ozone (ppb)

Pre

dic

ted

ozo

ne

(pp

b)

Model

Linear (Model)

y = 0.965x

R2 = -0.0223

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

Observed ozone (ppb)

Pre

dic

ted

ozo

ne

(pp

b)

Model

AQMOS

Linear (Model)

Linear (AQMOS)

14

AQMOS Performance (6 of 6)

Salt Lake City Next-Day 6Z NOAA Ozone ModelApril 1-October 31, 2009

y = 0.9689x

R2 = 0.2133

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

Observed ozone (ppb)

Pre

dic

ted

ozo

ne

(p

pb

)

ModelLinear (Model)

y = 0.9326x

R2 = 0.2906

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

Observed ozone (ppb)

Pre

dic

ted

ozo

ne

(pp

b)

Model

AQMOS

Linear (Model)

Linear (AQMOS)

15

Summary

• AQMOS is available to air quality agencies.• AQMOS should be used in conjunction with other

guidance.• On most days, AQMOS shows improvement over the raw

model output in predicting air quality for specific cities. • AQMOS showed improvement on at least 50% of critical

days in the six cities evaluated.

For more information, please visit http://aqmos.sonomatech.comor contact Dianne Miller

[email protected]