Adaptive Control of Simulated Moving Bed Plants Using Comsol’s … · 2009-01-29 · Marco...

22
On Adaptive Control of Simulated Moving Bed Plants Marco Fütterer, 6. Nov. 2008 Introduction Modeling of SMB plants Control of SMB plants Conclusions Adaptive Control of Simulated Moving Bed Plants Using Comsol’s Simulink Interface Speaker: Marco Fütterer Institut für Automatisierungstechnik Otto-von-Guericke Universität Universitätsplatz 2, D-39106 Magdeburg Germany e-mail: [email protected]

Transcript of Adaptive Control of Simulated Moving Bed Plants Using Comsol’s … · 2009-01-29 · Marco...

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    Adaptive Control of Simulated Moving Bed Plants Using Comsol’s Simulink Interface

    Speaker:Marco Fütterer

    Institut für AutomatisierungstechnikOtto-von-Guericke Universität

    Universitätsplatz 2, D-39106 MagdeburgGermany

    e-mail: [email protected]

    mailto:[email protected]

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Contents

    Adaptive Control of Simulated Moving Bed Plants Using Comsol’s

    Simulink InterfaceIntroductionModeling of SMB plants

    Control of SMB plants

    Conclusions

    • Introduction

    • Modeling of SMB plants

    • Control of SMB plants

    • Conclusions

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Introduction to chromatography

    How we can separate a mixture of two components?

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions One way is to make use of different adsorption affinities of components

    BAA B+A+B

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Introduction to chromatography

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    Consider a simple pipe

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Introduction to chromatography

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    which is filled up with adsorption materials

    Consider a simple pipe

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Introduction to chromatography

    Now, a bucket with a mixture of two components dissolved in an eluent is pumped through this adsorption column.

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Introduction to chromatography

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    The more retained component B takes more time to travel through the column as the less retained component A.

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Introduction to chromatography

    Therefore, chromatography provides a simple method to separate components.

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Introduction to simulated moving bed

    How one can achieve a continuous separation?

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    Port-shifting A

    ,A Rac ,B Rac

    RaV

    ElV

    B,A Exc ,B Exc

    ExV

    ,A Fec ,B FecFeV

    II

    I

    III

    IV

    FeU

    ExU RaU

    IU

    B A

    A B+

    A+B

    Several chromatographic columns are arranged in a circle, where the feedings and drains are shifted cyclically.

    Source: D.B. Broughton, G. Gerhold, US Patent, 2 985 589 (1961)

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Introduction to simulated moving bed

    Port-shifting A

    ,A Rac ,B Rac

    RaV

    ElV

    B,A Exc ,B Exc

    ExV

    ,A Fec ,B FecFeV

    II

    I

    III

    IV

    FeU

    ExU RaU

    IU

    B A

    A B+

    A+B

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    The four zones may be arranged in a plane to plot the associated concentration profile in cyclic-

    steady-state above the columns.

    I II III IV

    ElV ExV FeV RaV

    Bc Ac

    ,A Pc

    ,B Pc

    zAcv

    Bcv

    I II III IV

    ,Ac sv

    ,Bc sv

    B A B+A+B

    A

    The spatial coordinate is chosen so that this always begins with the first zone

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Introduction to simulated moving bed

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    The four zones may be arranged in a plane to plot the associated concentration profile in cyclic-

    steady-state above the columns.

    Port-shifting A

    ,A Rac ,B Rac

    RaV

    ElV

    B,A Exc ,B Exc

    ExV

    ,A Fec ,B FecFeV

    II

    I

    III

    IV

    FeU

    ExU RaU

    IU

    B A

    A B+

    A+B

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Modeling

    Modeling of a chromatographic columnG. Guiochon, B. Lin, Modeling for Preparative Chromatography, Academic Press, San Diego ( 2003)

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions ( ) ( ) ( ),0

    ,,0 ii in i

    z

    c t zD Ac t c tV zε

    =

    ∂= −

    ∂i A B= ,

    right boundary:

    left boundary:

    initial:( ), 0i

    z L

    c t zz =

    ∂=

    ∂i A B= , ( ) ( ),00,i ic z c z= i A B= ,

    ( ) 22

    ,,A A BA A Al

    q c cc c cF v Dt t z z

    ∂∂ ∂ ∂+ =− +

    ∂ ∂ ∂ ∂

    ( ) 22

    ,,B A BB B Bl

    q c cc c cF v Dt t z z

    ∂∂ ∂ ∂+ =− +

    ∂ ∂ ∂ ∂

    1F εε−

    =

    lVvAε

    =

    0 L z

    fluid concentration

    adsorbed concentration

    volumetric flow rate

    void fraction

    cross section area

    diffusion

    V

    ε

    A

    D

    q

    c

    ( fast adsorption)

    ( ),i i A Bq q c c=adsorption behavior

    i A B= ,

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Modeling

    Comsol ImplementationComsol®

    Multyphysics Users Guide, Comsol AB, Sweden, http://www.comsol.se ( 2005)

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    ( ) ,TA Bc c=u

    1,

    1

    A A

    A B

    B B

    A B

    q qF Fc cq qF Fc c

    ∂ ∂⎛ ⎞+ ⋅ ⋅⎜ ⎟∂ ∂⎜ ⎟=⎜ ⎟∂ ∂

    ⋅ + ⋅⎜ ⎟∂ ∂⎝ ⎠

    ad

    ,T

    A BA B

    V c V cc D c DA z A zε ε

    ⎛ ⎞∂ ∂= ⋅ − ⋅ ⋅ − ⋅⎜ ⎟⋅ ∂ ⋅ ∂⎝ ⎠

    Γ

    ( )0 0 .T=F

    t∂⋅ + ∇ ⋅ =∂aud Γ F

    ,T∂⎛ ⎞− ⋅ = + ⋅⎜ ⎟∂⎝ ⎠

    Rn Γ G μu

    =R 0

    , ,0 ,T

    A in B inzV Vc cA Aε ε=

    ⎛ ⎞= ⋅ ⋅⎜ ⎟⋅ ⋅⎝ ⎠

    G

    ,T

    A Bz LV Vc cA Aε ε=

    ⎛ ⎞= − ⋅ − ⋅⎜ ⎟⋅ ⋅⎝ ⎠

    G

    ( )0 0 0 .T

    zz L==

    =R

    Comsol’s pde equation in general form:

    boundary condition in general form:

    M. Fütterer, Proc. of the European COMSOL Conf. 2007http://www.comsol.se/academic/papers/3309

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Modeling

    Coupling of columns

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    External flow-

    rates: 0 El Fe Ex RaV V V V= + − −

    I IV ElV V V= + , , , ,i in I I i out IV IVc V c V⋅ = ⋅ ,i A B=

    II I ExV V V= − , , , , ,i in II i out I i Exc c c= =

    III II FeV V V= + , , , , ,i in III III i out II II i Fe Fec V c V c V⋅ = ⋅ + ⋅

    IV III RaV V V= − , , , , ,i Ra i in IV i out IIIc c c= =

    Eluent feed:

    Extract-

    drain:

    Feed:

    Raffinate-

    drain:

    ,i A B=

    ,i A B=

    Port-shifting A

    ,A Rac ,B Rac

    RaV

    ElV

    B,A Exc ,B Exc

    ExV

    ,A Fec ,B FecFeV

    II

    I

    III

    IV

    FeU

    ExU RaU

    IU

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    ,01 B A

    BB A B A

    H HcK H H H

    −= ⋅

    ⋅ + , ,0B Fe Bc c>

    ( ) ( )( ) ( )

    2

    ,, 2 2

    ,

    B A B B Fe B AB AB P

    B A B A B B Fe B A

    H H K c H HH HcK H H H K c H H

    + ⋅ ⋅ − −−= ⋅

    ⋅ + ⋅ ⋅ + −

    ( ) ( ) ( ) ( ) ( )( ) ( )( )

    222, , , ,

    , 2 2,

    1 4

    2

    1B A A Fe A B A A Fe B Fe B A A FeB A

    A P

    A B A B Fe B A

    A A B A

    A B

    H H c H H H c cK K K K

    K

    H H cH Hc

    H H KH c H H

    ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ − ⋅

    ⎛ ⎞− + ⋅ ⋅ + − − ⋅⎜ ⎟− ⎝ ⎠

    ⋅⋅

    ⋅ + −⋅=

    +

    ( ) ( )( )( )

    ( )( )

    ( )( )

    2

    ,2

    2

    , ,

    ,

    ,

    ,

    ,

    2

    2

    , ,

    ,

    1

    1

    B I B I

    FeB I

    FeB I

    A FeRa Fe

    A IV A P

    Fe

    B A B A

    I B B FeB A

    B A

    Ex B B FeB A

    B AS

    B A B B Fe

    H H F H HV K c

    F H H

    H HV K c

    H H

    H HF A LTF H H K

    V

    V

    cV V

    c

    cV

    τ τ

    τ

    τ

    τ

    ⎡ ⎤+ ⋅ ⋅ − ⋅ − +⎣ ⎦= ⋅ ⋅ ⋅⋅ −

    += ⋅ ⋅ ⋅

    = ⋅⋅

    −⋅= ⋅ ⋅

    + + ⋅ ⋅ I II III IVElV ExV FeV RaV

    Bc Ac

    ,A Pc

    ,B Pc

    zAcv

    Bcv

    I II III IV

    ,Ac sv

    ,Bc sv

    M. Fütterer, Chem. Eng. Tech., 2009, 32http://dx.doi.org/10.1002/ceat.200800397

    , , , ,I Ex Fe Ra SV V V V T ?Determining Operating points

    Port-shifting A

    ,A Rac ,B Rac

    RaV

    ElV

    B,A Exc ,B Exc

    ExV

    ,A Fec ,B FecFeV

    II

    I

    III

    IV

    FeU

    ExU RaU

    IU

    ST

    1i i

    ii i

    H cqK c⋅

    =+ ⋅

    adsorption behavior

    ,A Fec ,B Fec FeV ,0 1B Iτ ≤ ,0 1A IVτ ≤Given:

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Control of SMB Plants

    Why control?

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    1. robust operation in presence of disturbances

    2. minimize running costs e.g. reducing eluent consumption

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Control of SMB Plants for complete separation

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    Model the essential dynamic

    ( ) ( ) ( ) ( ) [ ]0 1L Sz k v k k T kτ τΔ = , ∈ ,

    ( ) ( ) ( )( ) ( )1R Sz k v k k T kτΔ = −

    ( ) ( )1L Rz k L z kΔ + = −Δ

    ( ) ( ) ( ) ( ) ( )( ) ( )1 1 1 1S Sv k k T k L v k k T kτ τ+ + + = − −

    UV-

    sensor mounted between two columns of one zone

    keep all controls fixed during one switching time

    model only the foot point movement.

    ( ) ( ) ( )( ) ( )( ) ( )1

    11 1

    S

    S

    L v k k T kk

    v k T kτ

    τ− −

    + =+ +

    L

    UV- sensor

    ( )v k ( )v k

    ( ),c t z ( ),Sc t T z+

    ( )Lz kΔ ( )Rz kΔ( )1Lz kΔ +

    L L( ), UVc t z

    tSTSTτ

    M. Fütterer, Chem. Eng. Tech., 2008, 31 ( 10), 1438.http://dx.doi.org/10.1002/ceat.200800277

    A,A Rac ,B Rac

    RaV

    ElV

    B,A Exc ,B Exc

    ExV

    ,A Fec ,B FecFeVzone II

    zone I

    zone III

    zone IV

    FeU

    ExU RaU

    IU

    1UV 4UV

    2UV 3UV

    1

    2

    3

    4 5

    6

    7

    8

    SMB with 8 columns

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Control of SMB Plants for complete separation

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    Use a P- controller with ideal open loop control:

    ( ) ( )( )ˆ ˆ0.25i i i ref i iu k y y kθ θ,= − ⋅ − ⋅ 1 2 3 4i = , , ,

    M. Fütterer, Chem. Eng. Tech., 2008, 31 ( 10), 1438.http://dx.doi.org/10.1002/ceat.200800277

    ( ) ( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ1 1 1i i i i ik k a u k y k y kθθ θ= − + − ⋅ − ⋅ −Use a parameter estimator for model parameters:

    1aθ < 1 2 3 4i = , , ,

    ( ) ( )i iu k V k= 1 2 3 4i = , , , ( ) ( )5 Su k T k=( ) ( ) ( )5i iu k u k u k= ( ) ( )1i iy k kτ= −

    ( ) ( ) ( )( )( )1 1

    1 i i iii

    u k y ky k

    u kθ − − −

    + =

    Rename the variables to make it nice for control peoples.

    model equations:

    ( ) ( )i ii

    Lv k V kθ

    = ⋅ * * *i i i Su V Tθ = = ⋅

    1 2 3 4i = , , ,

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Control of SMB Plants for complete separation

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    Simulation Results

    0 10 20 30 40 50 60 70 806.5

    7

    7.5

    8

    8.5

    9

    9.5

    10

    10.5

    11x 10

    -5

    tstept / [ min]

    θ 1, θ

    2, θ

    3, θ

    4 / [

    m3 ]

    0 10 20 30 40 50 60 70 800

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    tstept / [ min]

    τ I, τ

    II, τ I

    II, τ I

    V

    t

    , ,ˆ2A Fe A Fec c= ⋅

    , ,ˆ0.5B Fe B Fec c= ⋅,ˆB Fec,ˆA Fec

    ( ),A Fec t( ),B Fec t

    stept

    0 10 20 30 40 50 60 70 800

    50

    100

    150

    200

    250

    300

    tstept / [ min]

    T S /

    [ s]

    c A, c

    B / [

    mol

    / m3 ]

    ElV ExV FeV RaV

    1 2 3 4 5 6 7 8

    1UV 2UV 3UV 4UV

    zone I zone II zone III zone IV

    ElV ExV FeV RaV

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    extract

    feed

    raffinatez / [m]

    c A, c

    B / [

    mol

    / m3 ]

    cAcB

    1 2 3 4 5 6 7 8

    1UV 2UV 3UV 4UV

    zone I zone II zone III zone IV

    a counter stepdisturbance

    ( )1

    i ii i

    i i

    H cq cK c

    =+ ,i A B=

    M. Fütterer, Proc. of the European COMSOL Conf. 2008http://www.comsol.se/academic/papers

    t

    , ,ˆ2A Fe A Fec c= ⋅

    , ,ˆ0,5B Fe B Fec c= ⋅,ˆB Fec,ˆA Fec

    stept

    ( ),A Fec t( ),B Fec t

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Control of SMB Plants for complete separation

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    ˆIVˆExVˆFeVˆRaV ŜT

    ,ˆA Fec ,ˆB Fec

    adaptive controller

    ,A Fec ,B Fec

    SMBprocess

    IV

    ExV

    FeV

    RaV

    ST

    1,Refτ,A Exc,B Exc

    ,B Rac,A Rac

    controllerparameter

    disturbance

    references

    2,Refτ3,Refτ4,Refτ

    Control concept with minor a-priori knowledge.

    More knowledge is not necessary than for operation in open loop!

    Plug and Play solution

    positions of foot points

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    Conclusions

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    An adaptive control concept of SMB plants was successfully implemented and tested using Comsol®

    Multiphysics

    and Matlab®

    Simulink®.

    Comsol

    is a powerful tool to model complex dynamic systems described by partial differential equations.

    Comsol’s

    interface to Matlab

    Simulink

    provides control designers a simple way to design and test control loop’s in familiar Simulink

    environment.

  • On Adaptive Control of Simulated Moving Bed PlantsMarco Fütterer, 6. Nov. 2008

    End of Presentation

    Introduction

    Modeling of SMB plants

    Control of SMB plants

    Conclusions

    Details can be found at Comsol’s

    conference CD.

    The full simulation example will be made public for everyone.

    Thank You

    Adaptive Control of Simulated Moving Bed Plants Using Comsol’s Simulink InterfaceContentsIntroduction to chromatographyIntroduction to chromatographyIntroduction to chromatographyIntroduction to chromatographyIntroduction to chromatographyIntroduction to chromatographyIntroduction to simulated moving bedIntroduction to simulated moving bedIntroduction to simulated moving bedModelingModelingModelingDetermining Operating pointsControl of SMB PlantsControl of SMB Plants�for complete separationControl of SMB Plants�for complete separationControl of SMB Plants�for complete separationControl of SMB Plants�for complete separationConclusionsEnd of Presentation