AAE 451 FALL 2006 TEAM 4

17
Click to edit Master title style • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level 1

description

Aerodynamics QDR. AAE 451 FALL 2006 TEAM 4. Mark Koch Matt Lossmann Ki Bon Kim Andrew Martin. Tung Tran Matt Drodofsky Ravi Patel Nizam Haris. Overview. Aircraft Geometry Airfoil Selection [wing, vertical tail and horizontal tail] Wing and Tail Geometry 3 – view Drawing - PowerPoint PPT Presentation

Transcript of AAE 451 FALL 2006 TEAM 4

Page 1: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

1

Page 2: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

2

Aircraft Geometry

Airfoil Selection [wing, vertical tail and horizontal tail]

Wing and Tail Geometry

3 – view Drawing

Aerodynamic Modeling

Method

Coefficient of Lift and Drag

Page 3: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

3

Wing NACA 4410

CLmax and CD fits mission requirement

Horizontal Tail NACA 0009

Minimize Drag

Vertical Tail NACA 0009

Minimize Drag

Small deflection compensate Propeller torque

Page 4: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

4

Wing Geometry

Zero Sweep

Zero Dihedral

Taper Ratio = 0.4

Aspect Ratio = 11.25

Wing Span = 75 inch

Wing Area ≈ 500 sq. inch

Page 5: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

5

VT VTVT

W W

VT

VT

VT

W

W

L Sc

b S

c

L

S

S

b

HT HTHT

W W

HT

HT

HT

W

W

L Sc

C S

c

L

S

S

C

Volume Coefficient Horizontal Tail

Moment Arm Horizontal Tail

Area Horizontal Tail

Area Wing

Mean Wing Chord

Volume Coefficient Vertical Tail

Moment Arm Vertical Tail

Area Vertical Tail

Area Wing

Wing Span

Page 6: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

6

Horizontal Tail Geometry

Span = 20 inch

Root Chord = 7 inch

Tip Chord = 4.8 inch

Area ≈ 108 sq. inch Vertical Tail Geometry

Root Chord = 8 inch

Tip Chord = 4 inch

Area ≈ 53 sq. inch

Page 7: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

7

Fuselage Approximation

Lateral area of a cone:

(π * R) * [sqrt(R² + H²)]

Surface area of a sphere:4*π*r²

Main Wing: 2*SW

Horizontal Tail: 2*SHT

Vertical Tail: 2*SVT

A/C Wetted Area: 1750 sq. in

Page 8: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

8

Page 9: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

9

XFOIL Compute 2-D Data

Find approximate stall angle

Derive Cla – slope of lift curve

Convert to 3-D

57.31

lL

l

CC

C

eAR

e = span efficiency factor

Cla – 2-D Cl-alpha slope

Page 10: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

10

Compute Effect of Flap (Brandt pg. 152-153)

..

2

..2 cos

lh

f

Da

lhf

Daa

aLflapsL

S

S

S

S

CC

Ratio of flapped area to total wing area

Sweep angle of flap hinge

2-D change in alpha max

a

Page 11: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

11

Compute Effect of Tail (Brandt pg. 154-155)

0.25

0.725

21 10 31

7

1a at

oL avg h

h

tL L

C c z

AR l b

SC C

S

St/S - tail area over wing area

De/da - empirical curve fit

CLat – 3-D CL-alpha slope of tail

Page 12: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

12

Compute Total Lift Coefficient

Compute Total Drag Coefficient

eARk

CCkCC LLDD o

1

1

1

0LflapLtotalLL

awingLflapL

tailLwingLtotalL

CCCC

CC

CCC

64.0045.0178.1 68.0 ARe

CDo = 0.021

k1 = 0.039

e = 0.72

Page 13: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

13

Wing at Take-Off (Main Wing, Flaps, Tail)

Re: ~100,000

Max alpha: ~9.5-10 [deg]

-5 0 5 10 15-0.5

0

0.5

1

1.5

2

Angle of Attack [deg]

CL

2-D

3-DPlus Tail

Plus Flaps

Page 14: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

14

Wing at Cruise Conditions (Main Wing, Tail)

Re: ~600,000

-5 0 5 10 15-0.5

0

0.5

1

1.5

2

Angle of Attack [deg]

3-D

Lif

t C

oe

ffic

ien

t

Page 15: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

15

Drag Polar

Take-Off Speed

Cruise Speed

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.180

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CD

CL

Stall

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18-0.5

0

0.5

1

1.5

2

CD

CL

Cruise

Page 16: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

16

More Accurately Define CLmax

Possibly re-design tail so that CD is lower at cruise conditions

Page 17: AAE 451 FALL 2006 TEAM 4

Click to edit Master title style

• Click to edit Master text styles

• Second level

• Third level

• Fourth level

• Fifth level

17