A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme...

28
? A Robust Hybrid Intelligent Position/Force Control Scheme for Cooperative Manipulators Wail Gueaieb School of Information Technology and Engineering University of Ottawa Wail Gueaieb 1 of 28

Transcript of A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme...

Page 1: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

A Robust Hybrid Intelligent Position/ForceControl Scheme for Cooperative

Manipulators

Wail Gueaieb

School of Information Technology and EngineeringUniversity of Ottawa

Wail Gueaieb 1 of 28

Page 2: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Talk Overview

Ô Introduction

Ô Problem Statement

Ô Standard Adaptive Control of CR

Ô Adaptive Fuzzy Controllers

Ô A Hybrid Adaptive Control Scheme

Ô Conclusions

Ô Future Research Directions

Wail Gueaieb 2 of 28

Page 3: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Introduction

z Why Cooperative Robots?F More efficient handling of certain objects

ã Cardboardsã Large sheets of glassã Heavy and/or large objects, in general

F Certain tasks may be too complex for a single manipulator system

ã Space missionsã Underwater oil pipelines maintenance

Wail Gueaieb 3 of 28

Page 4: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Introduction (cont’d)

z Research ScopeAlthough cooperative robots usually consist of several modules, themain focus here is on:

O Position and force control, and

O External disturbance attenuation.

ManipulatorsJoints Joints

Wrists

Vision

VisionController

Device(s)Vision

Coordinator

Grippers

scope of this research

Modules within the

Controller

DisturbanceRejection

Coordinator

GripperController

GripperOverallMotion

Coordinator

ControllerCoordinationMotion and

Algorithmic Hardware Layer

Expert Layer

High

Low

Ban

dwid

th

Wail Gueaieb 4 of 28

Page 5: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Introduction (cont’d)

z Challenges of CR Control

O Not much research done in the control of strongly coupled CR.

O Control of strongly coupled CR is much more complex than that ofsingle robotic systems:

F Kinematic and dynamic coordination.

F Ubiquitous presence of uncertainties.

F Stricter stability criteria.

à Necessity to develop robust control approaches to keep up with theincreasingly demanding design requirements.

Wail Gueaieb 5 of 28

Page 6: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Introduction (cont’d)

z Brief History of CR Control

TypesMain

References Shortcomings

Non-adaptive Tarn et al. 87, 88, 92Bergerman et al. 98

F No control on internal forces.

F Model based: no uncertainties.

Adaptive

Hu et al. 93Vukobratovic et al. 98

Liu et al. 98Sun et al. 02

Szewczyk et al. 02

F No modeling uncertainties.

Soft computing Ge et al. 99

F No control on internal forces.

F Neural networkà too many parameters.

F Controller’s behavior not wellunderstood.

Wail Gueaieb 6 of 28

Page 7: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Problem Statement

O Consider two or morecooperative manipulatorsholding a common object.

E 2

Em

E1

Robot m

Robot 2

Robot 1

Object

O Control Objectives:

F Simultaneously

ã Track predefined object’s trajectory

(position and orientation.)

ã Make internal forces converge to de-sired values.

F In the presence of

ã Parametric (structured) uncertainties

(e.g., load’s mass and inertia.)

ã Modeling (unstructured) uncertainties(e.g., unknown time-varying externaldisturbances.)

Wail Gueaieb 7 of 28

Page 8: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

CR Dynamics

In a CR system, the ith manipulator’s dynamics may be expressedas

τi = Di(qi)qi + Ci(qi, qi)qi + Gi(qi)− τdi− JT

φi(qi)fi

qi : joint coordinatesτi : joint torque/force applied by actuator (controller’s output)τdi

: disturbance vectorJφi

(qi) : Jacobian matrix from payload’s center of mass to qi

fi : internal force between end-effector and payloadDi(qi) : inertial matrix including payload’s inertia

Ci(qi, qi) : Coriolis and centrifugal matrix including payload’s termsGi(qi) : Gravitational vector including payload’s gravitational terms

Wail Gueaieb 8 of 28

Page 9: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Standard Adaptive Control of CR

O One of the most recent and efficient CACs was proposed by Liu et al.Control law of ith manipulator:

τi = Di(qi)qri+ Ci(qi, qi)qri

+ Gi(qi)−Ksisi − JT

φi(qi)(Kix + fdi

)

A : estimate of matrix A with parametric uncertainties onlyx = x− xd : position error of the payload’s center of massqri

= J+φi

(qi)(xd − γix) : the reference joint velocitysi = qi − qri

: residual error of the reference joint velocityJ+

φi(qi) : pseudo-inverse of Jφi

(qi)fdi

: desired internal forceKsi

and Ki : positive definite gain matrices

F Compensates for parametric uncertainties only.

F Assumes perfect knowledge of the working environment model.

à No compensation for modeling uncertainties nor for unstructuredexternal disturbances.

Wail Gueaieb 9 of 28

Page 10: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Standard Adaptive Control of CR (cont’d)

z Numerical ResultsF Two 3-DOF manipulators.

F Payload to follow an oblique line between the two manipulators.

F Internal forces lines of actions are not orthogonal to payload’s tra-jectory, with desired values fd1

= −fd2= 10 N.

F τd1= α(Γq1 + ρ(t) + λ), τd2

= −α(Γq2 + ρ(t) + λ)

Wail Gueaieb 10 of 28

Page 11: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Standard Adaptive Control of CR (cont’d)

y Experiment 1

F Parametric uncertainties only (payload’s mass).

F No modeling uncertainties and no unstructured external distur-bances (α = 0).

0 5 10 15 20 25 300.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Time (s)

x (m

)

DesiredActual

0 5 10 15 20 25 300.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Time (s)

y (m

)

DesiredActual

0 5 10 15 20 25 305

10

15

20

25

30

35

Time (s)

ψ (d

eg)

DesiredActual

0 5 10 15 20 25 30−18

−16

−14

−12

−10

−8

−6

−4

−2

Time (s)

Inte

rnal

For

ce f 1 (N

)DesiredActual

Wail Gueaieb 11 of 28

Page 12: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Standard Adaptive Control of CR (cont’d)

y Experiment 2

F Modeling uncertainties are introduced in the form of unknown time-varying external disturbances (intensity level α = 1)

0 5 10 15 20 25 300.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Time (s)

x (m

)

DesiredActual

0 5 10 15 20 25 300.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Time (s)

y (m

)

DesiredActual

0 5 10 15 20 25 305

10

15

20

25

30

35

40

45

50

Time (s)

ψ (d

eg)

DesiredActual

0 5 10 15 20 25 30−18

−16

−14

−12

−10

−8

−6

−4

−2

Time (s)

Inte

rnal

For

ce f 1 (N

)

DesiredActual

Wail Gueaieb 12 of 28

Page 13: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Soft Computing Based Controllers

O CR usually have very complex dynamics.à deriving a precise model is extremely difficult.

O Soft computing tools do not require a precise dynamics model.

O Main focus here: fuzzy logic based controllers (FLCs.)

F Rule-based expert systems: use of human-like linguistic variables,values, and simple if-then rules.

F Powerful in representing human knowledge.

Wail Gueaieb 13 of 28

Page 14: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Soft Computing Based Controllers (cont’d)

Working EnvironmentSensors Plant

CrispInput

CrispOutput

Fuzzy Fuzzy

KnowledgeBase

Decision-Making Logic(Decision Rules)

Fuzzification Defuzzification

Fuzzy Logic Controller

Wail Gueaieb 14 of 28

Page 15: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Soft Computing Based Controllers (cont’d)

z Merits of FLCs

å No need for a precise model.

å Robustness: tolerate noise and time-varying parameters in theplant’s dynamics.

å Generic: can be transferred from one platform to another withminor modifications.

z Drawbacks of FLCs

æ heavily dependent on human expertise.

æ Lack of efficient and systematic online adaptation mechanism toadapt to varying working conditions.

Wail Gueaieb 15 of 28

Page 16: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Adaptive Fuzzy Controllers

O Adaptive fuzzy controllers (AFCs) compensate for the shortcomings ofstatic FLCs while inheriting their strengths.

F Adaptation: ability to learn plant’s dynamics online.

F Higher robustness than CACs in the face of parametric and model-ing uncertainties.

O Adaptive fuzzy controller’s jth output:

yj =

L∑l=1

y(l)j ξl(x) = ΘT

j ξ(x)

ΘTj = (y

(1)j , . . . , y

(L)j ) , ξT (x) = (ξ1(x), . . . , ξL(x))

ξl(x) =

∏ni=1 µ

A(l)i(xi)∑L

k=1

( ∏ni=1 µ

A(k)i

(xi)), l = 1, . . . , L.

Wail Gueaieb 16 of 28

Page 17: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Adaptive Fuzzy Controllers (cont’d)

N

N

N

Σ

Σ

Inputlayer layer

fuzzificationnormalizationInference and

layer

Outputlayer

x2xnx1

�L(x)�2(x)�1(x) �y(1)1�y(L)1�y(1)m �y(L)m�y(2)m �y(2)1 y1ymWail Gueaieb 17 of 28

Page 18: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

A Hybrid Adaptive Control SchemeLet A∗ denote the best possible approximation of matrix A in the face ofparametric uncertainties.

Then A’s modeling error can be expressed as A = A− A∗.

Hence, the ith manipulator control law may be reformulated as:

τi = D∗i (qi)qri

+ C∗i (qi, qi)qri

+ G∗i (qi)−Ksi

si − JTφi

(qi)(Kix + fdi)︸ ︷︷ ︸

τ(c)i

+ Di(qi)qri+ Ci(qi, qi)qri

+ Gi(qi)− τdi︸ ︷︷ ︸τ

(f)i

τ(c)i : CAC’s torque output (parametric uncertainties only)

τ(f)i : supervisory adaptive fuzzy regulator operating at a higher hierar-

chical level (lower bandwidth) than that of the CAC.

τ(f)i is modeled as an AFC à τ

(f)i = Ui(qi, qi, qri

, qri|Θi)

Wail Gueaieb 18 of 28

Page 19: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

A Hybrid Adaptive Control Scheme (cont’d)

z AFC’s Computational complexity

τ(f)i = Ui(qi, qi, qri

, qri|Θi)

F 4 input vectors

F ki DOF for manipulator i

F κi membership functions to fuzzify each input element

à Total number of fuzzy rules fired by the AFC at manipulator i isLi = (κi)

4ki

For κi = 5 and ki = 3 à Li = 244, 140, 625 (too large!)

Wail Gueaieb 19 of 28

Page 20: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

A Hybrid Adaptive Control Scheme (cont’d)

z Rule Decomposition Scheme

F Idea: aggregate Ui(qi, qi, qri, qri

|Θi) into several MIMO AFCs:

τ(f)i =

Ui(qi,qi,qri,qri

|Θi)︷ ︸︸ ︷Di(qi)qri

+ Ci(qi, qi)qri+ Gi(qi)− τdi︸ ︷︷ ︸

U2i (qi,qi,qri

)

F Unknown time-varying jth column of Di(qi) can be approximatedby a MIMO AFC U 1

ij(qi|Θ1ij).

à Di(qi)qri≈

∑ki

j=1 U 1ij(qi|Θ1

ij)qrij.

F qriis dependent on qi

à U 2i (qi, qi, qri

) can be replaced by U 2i (qi, qi|Θ2

i ).

F The torque offset generated by the supervisory adaptive fuzzyregulator module is:

τ(f)i =

ki∑j=1

U 1ij(qi|Θ1

ij)qrij+ U 2

i (qi, qi|Θ2i )

Wail Gueaieb 20 of 28

Page 21: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

A Hybrid Adaptive Scheme (cont’d)

z Computational Complexity

F Each U 1ij(qi|Θ1

ij) fires L1ij = (κi)

ki rules.

F Number of rules fired by U 2i (qi, qi|Θ2

i ) is L2i = (κi)

2ki.

F Hence, the total number of rules fired by the AFC isLi = ki(κi)

ki + (κi)2ki for each robot.

+ Only [(κi)ki + (κi)

2ki] of them have different firing strengths(� (κi)

4ki).

F For κi = 5 and ki = 3 à number of distinct firing strengths tobe computed for each robot is 15, 750 (� 244, 140, 625).

Theorem 1 If the controller’s gains satisfy the required constraints, thenthe HIC gives rise to an asymptotic convergence of the payload’s positionand the internal forces tracking errors, x and fi, to zero.

Wail Gueaieb 21 of 28

Page 22: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

A Hybrid Adaptive Scheme (cont’d)

z Numerical Results

F 5 Gaussian membership functions are used to fuzzify each input ofthe AFC module of the HIC.

F AFC module has no prior knowledge of the manipulators dynamics(i.e., Θ1

ij and Θ2i are initially set to zero for i = 1, 2 and j =

1, . . . , ki).

F 50% of the manipulators dynamics model is assumed to be known(for CAC.)

F For better computational efficiency, the supervisory adaptive fuzzyregulator module of the HIC is set to operate at a bandwidth 4times lower than that of the CAC.

Wail Gueaieb 22 of 28

Page 23: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

A Hybrid Adaptive Scheme (cont’d)

KinematicsForward

High

Ban

dwid

th

CAC

Low

Expert Layer

Hard Algorithmic Layer

AFC

������

��� �����

�� �� �

�� �� �� ���� ��� � ���

�����

��� �

� �

� �

� � � �� � ��� �

� ����

��

� � �

� �!#"�

� � � �� � �$� ��� %'&)(*&)+', � ��� ��� -/.10�

-3240�

�5 "� � � ��� ����� � �6 "� � � � � �� ��������� � �7 "� � � ���

8:9 �;�<*= �> =� ; � � ��? @ =� ; � ����� A � �>CB� � � � � �� �D? @CB� �

Wail Gueaieb 23 of 28

Page 24: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

A Hybrid Adaptive Scheme (cont’d)

y Experiment

F Intensity level of modeling uncertainties is varied by letting α spanthe interval [0, 2.5].

CAC’s Tracking Error HIC’s Tracking Error

05

1015

0

0.5

1

1.5

2

2.5−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Time (s)α

∆x (m

)

05

1015

0

0.5

1

1.5

2

2.5−0.15

−0.1

−0.05

0

0.05

Time (s)α

∆x (m

)

05

1015

0

0.5

1

1.5

2

2.5−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time (s)α

∆y (m

)

05

1015

0

0.5

1

1.5

2

2.5−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time (s)α

∆y (m

)

Wail Gueaieb 24 of 28

Page 25: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

A Hybrid Adaptive Scheme (cont’d)

CAC’s Tracking Error HIC’s Tracking Error

05

1015

0

0.5

1

1.5

2

2.5−30

−20

−10

0

10

20

30

Time (s)α

∆ψ (d

eg)

05

1015

0

0.5

1

1.5

2

2.5−20

−15

−10

−5

0

5

10

15

Time (s)α

∆ψ (d

eg)

0 5 10 150

1

2

3−8

−6

−4

−2

0

2

4

6

8

Time (s)α

∆fi (N

)

0 5 10 150

1

2

3−8

−6

−4

−2

0

2

4

6

8

Time (s)α

∆fi (N

)

Wail Gueaieb 25 of 28

Page 26: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Conclusions

O Complex problem of controlling closed kinematic chain mechanisms:kinematic and dynamic coordination.

O Most adaptive controllers show success in the face of parametric un-certainties only.

O A novel hierarchical knowledge-based control scheme is proposed forthe control of CR.

O Innovative rule reduction technique is presented to significantly reducethe computational complexity.

O First attempt to control CR in the face of both structured and unstruc-tured uncertainties.

Wail Gueaieb 26 of 28

Page 27: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Conclusions (cont’d)

O Key characteristics of proposed hierarchical knowledge-based con-troller:

F Robustness in the face of parametric and modeling uncertainties ofvarying intensity levels.

F Both, position and internal force tracking errors are proven to con-verge to zero.

F Generic: easily portable from one platform to another (minor tun-ings may be needed.)

Wail Gueaieb 27 of 28

Page 28: A Robust Hybrid Intelligent Position/Force Control Scheme ...€¦ · A Hybrid Adaptive Scheme (cont’d) Computational Complexity Each Uˆ1 ij (q i|Θ1 ij) fires L1 ij = (κ i)

à áá à Ö n ? . 5 6

Future Research Directions

O Allow the automatic tuning of antecedent membership functions.

O Extend the zero-order Sugeno-type AFC to a first-order one: potentialof higher approximation capabilities.

O Extend the FLC model to a type-2 FLC to improve controllers robust-ness.

Wail Gueaieb 28 of 28