A review of Miissbauer data on trioctahedral micas: Evidence ...American Mineralogist, Volume 72,...

11
American Mineralogist, Volume 72, pages 102-1 12, 1987 A review of Miissbauer data on trioctahedral micas: Evidence for tetrahedral Fe3+ and cation ordering M. D.q.RBv Dvan* Division of Geologicaland PlanetarySciences, California Institute of Technology,Pasadena, California 9l125, U.S.A. ABSTRACT Over fifty studies on M6ssbauer spectroscopy of trioctahedral micas are summarized and reviewed in order to determine reasonable ranges for parameters of different Fe sites. Typical values(in units of mm/s) include Fefr,,*r-isomer shift (d): 1.13,quadrupole split- ting (A) :2.58; Feini-d : l.l2 and l 16, A: 2.05 and 2.75:Feinl-d:0.40, A:0.55; Fefr*r-D : 0.40, A : 1.00; FeLf -D :0.20, A : 0.50. The effects of major-element com- position on M0ssbauer parameters are assessed and found to be minimal, though the substitution of Li in the octahedral sheetsystematically affectsthe quadrupole splitting of the Fe(rl doublet. The Mdssbauerand compositional data consideredtogether show that tetrahedral [l - Fs:+ substitution may be controlled by octahedral cation size and that M2-Ml cation ordering is ubiquitous. INrnooucrroN When the technique of M<issbauer spectroscopy was initially applied to minerals, biotites were among the first samples to be analyzed(Pollak et al., 1962). Sincethen a large number of trioctahedral micas have been studied with the Mdssbauereffect. This paper evaluates only the room-temperature work done over the past 23 years, as the effects of temperatureand dehydroxylation on Mdss- bauer studies of micas have been reviewed by Heller- Kallai and Rozenson (1981).Three distinct areas of in- vestigation are addressed: (l) What are reasonable ranges for Mdssbauer parametersof Fe in the different sites in micas?(2) How do variables such as composition affect Miissbauer results? Are isomer shift (I.S. or D)and quad- rupole splitting (Q.S. or A) affectedby other cations ad- jacent to Fe in the mica structure? Is there a difference in peak-area data of igneousvs. metamorphic samples? (3) Is there evidencefor cation ordering in micas? Figure I showsa drawing of the mica structurethat can be used in the following discussion:details of structural variations in trioctahedral micas are given by Bailey (1984a, 1984b), Guggenheim (1984), and Weiss et al. (l 985). RlNcps or MossnluER PARAMETERS Mtissbauer and electron-microprobe data on triocta- hedral micas are compiled in the Appendix and plotted in Figure 2. For Fe in oxygen environments, the isomer- shift and quadrupole-splitting values (as calibrated in millimeters per second relative to an Fe-foil spectrum) most commonly fall in the following ranges (Dyar, 1984): Fel"i-D : 0.15-0.30, A : 0.30-0.60; Fell-d : 0.35- * Presentaddress: Department of Geology, University of Or- egon, Eugene, Oregon97403,U.S.A. 0003-004x/87l01024102$02.00 ro2 0.50,A : 0.40-1.0; Fel"i-D : 0.90-1.0, A : 1.5-1.8; Fe3J-d : l.l-1.2, A: 1.8-3.1. Figure 2 shows a plot of isomer shift vs. quadrupole splitting for all the analyses collected. The data for Fe2+ at M2 cluster tightly around A:2.58 and 6 : l.13 mm/ s, suggesting that the local geometry about the M2 site is not radically affected by the broad compositional range of thesesamples. For the data for Fe2* at Ml, one group of analyses clusters around A : 2.05 and 6 : 1.12, and' a second, more scattered group falls around A:2.75 and 6 : Ll6 mm/s. For Fe2*,lower quadrupole splittinggen- erally implies more distortion around a site (the reverse is true for Fe3+), owing to somecombination of the effects of metal-to-oxygen distances and angular components (however, this relationship has never been fully quanti- fied). Thereforethere seemto be three types ofFe2* sites: a distorted Fe2+ Ml site, the Fe2* M2 site, and a regular Fe2+ Ml site. Mdssbauer data for Fe3* sites are less well defined; however, in my opinion the wider range of values may be due to a problem with the fitting procedures and is rol dependenton compositional effects. Fe3+ at M2 and Ml hasa similar range of D : 0.35-0.65mm/s, although each group has its own rangeof A : 0. I I -O.80 and 0.57 -l .24 mm/s respectively.Fe3+ peaksare almost always lessin- tense than the corresponding Fe2+ peaks in the samesam- ples(except in ferri-annitesand ferri-phlogopites). In gen- eral, fitted Mtissbauerdoubletsare less precise when peak areasare small. The samplesin which Fe3+A values lie between 0.60 and 1.0 mm/s probably represent spectra in which Fe3+was present at both M2 and Ml, but in such small quantities that it was impossible to distinguish them. The resultant single Fe3+doublet in such samples has a A that is the averageof the A values for the two separate sites.

Transcript of A review of Miissbauer data on trioctahedral micas: Evidence ...American Mineralogist, Volume 72,...

  • American Mineralogist, Volume 72, pages 102-1 12, 1987

    A review of Miissbauer data on trioctahedral micas:Evidence for tetrahedral Fe3+ and cation ordering

    M. D.q.RBv Dvan*Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 9l125, U.S.A.

    ABSTRACT

    Over fifty studies on M6ssbauer spectroscopy of trioctahedral micas are summarizedand reviewed in order to determine reasonable ranges for parameters of different Fe sites.Typical values (in units of mm/s) include Fefr,,*r-isomer shift (d): 1.13, quadrupole split-t ing (A) :2.58; Fein i -d : l . l2 and l 16, A: 2.05 and 2.75: Fein l -d:0.40, A:0.55;Fefr*r-D : 0.40, A : 1.00; FeLf -D :0.20, A : 0.50. The effects of major-element com-position on M0ssbauer parameters are assessed and found to be minimal, though thesubstitution of Li in the octahedral sheet systematically affects the quadrupole splitting ofthe Fe(rl doublet. The Mdssbauer and compositional data considered together show thattetrahedral [l - Fs:+ substitution may be controlled by octahedral cation size and thatM2-Ml cation ordering is ubiquitous.

    INrnooucrroN

    When the technique of M

  • DYAR: MOSSBAUER DATA ON TRIOCTAHEDRAL MICAS 103

    6666666

    In the petrologic literature, there has been a consensusthat Fe3+ does not occur at tetrahedral sites in biotites(Guidotti, 1984), although a few authors have made acase for Felj when 2(Si + Al) < 8 (Foster, 1960; Dawsonand Smith, 19771'Delaney et al., 1980; Miyano and Mi-yano, 1982). However, Mdssbauer parameters for tetra-hedral Fe3+ are well-defined by studies of tetra-ferri-phlogopite (see sample 87) and clintonites (samples 59-63). Of the Mtissbauer data collected in this study, 3lsamples contain Felf with parameters averaging d : 0.20and A:0.50 mm/s. Twenty samples are Al-deficient,whereas I I have excess Al. This observation will be dis-cussed in a later section.

    IurnnvtnNcE cHARGE TRANSFER AND MossBAUERSPECTRA OF BIOTITES

    It is well known from optical spectra that charge trans-fer ofelectrons can occur between Fe2+ and Fe3+ in edge-sharing octahedra (Gilkes etal, 1972; Robbins and Strens,1972; Smith, 1978); biotites are pleochroic because ofthis intervalence phenomena. However, intervalencecharge-transfer doublets do not appear in biotite spectraas they do in ilvaite, magnetite, and many other minerals(Burns, 1981). This issue can be addressed with a briefexplanation of the difference between the two types ofmixed valence interactions (Nolet and Burns, 1979). Theterm "charge transfer" is normally applied to dynamicoptical (phonon) transitions, as have been observed bythe workers listed above. Electron delocalization refers tothermally activated phenomena as observed in a Mdss-

    - 3 +F E

    o1 A

    bauer spectrum. In the case of biotite, the optical tran-sition is easily observed, but the thermal interaction isnot observed at room temperature. Possibly the chargetransfer in biotite is occurring too rapidly to be measuredby the Mdssbauer effect.

    ,,o* o,t*O O

    6Fig. 1. Scale drawing of a typical trioctahedral mica crystal structure. Ions in the structure are shown schematically; relative (to

    scale) sizes of the various substituting cations are shown at right.

    r

    Iq

    u

    @

    a = t rans-M1

    o= c is -M2

    v= tet

    OUADRUPOLE SPLITTING

    Fig.2. Plot of isomer shift vs. quadrupole splitting (in mm/

    s) for all analyses collected (see Appendix). Following the prec-

    edent ofBancroft and Brown (1975), the Fe3+ doublet with thelargest quadrupole splitting is assigned to represent the traw'Ml

    site; the Fe3+ doublet with the smaller A corresponds to the c,s-M2 site. For Fe'z+, the correspondence is reversed: small A is

    equated ro the trans-Ml site, and large A represents the crs-M2site.

  • IO4 DYAR: MOSSBAUER DATA ON TRIOCTAHEDRAL MICAS

    Table 1. Gorrelation coefficients (r) for M6ssbauer and compositional parameters regressed against one another

    D1NaCaFei"* At",Al" Fe9,* Mg FE,-0.97 0 04 -0.15

    -o.27 0.20-0.22

    0,06 *0.20-0.05 0.18-0.04 0,01-0.20 * 0.43

    0.38 -0.38-0.40

    0.13 0 .11-0 .15 -0 .14

    0.17 0.00-0.02 0.04

    0.25 -0.130.36 -0.09

    -o.74 0.01-0.29

    0.49 -0.88-0.46 0.82-0.23 0.08

    o.77 0.23-0.54 0.20-0.04 -0.20-o.71 0.29-o.44 -0.41

    0.77 - 0.14-0.43

    0.09 0.81 0.25-0.06 -0.75 -0.21-0.12 *0.11 -0.05-0.26 0.00 0.26-0.15 -0.01 -0.25-0 .13 0 .11 -0 .23

    0.30 -0.30 0.00-0.30 0.36 -0.07

    0.18 -0.08 0.04-0.61 -0.09 0.31*0.10 -0.96 -0.38

    0.05 0.210.26

    -0.320.34

    -0.26

    0.03

    Errncrs oF MICA coMposlTroN oNMossnnuBn pARAMETERS

    Heller-Kallai and Rozenson (1981) listed six factorsthat could affect Mdssbauer parameters of Fe at the oc-tahedral sites in phyllosilicates: (1) nature ofthe octahe-dral sheets, (2) Fe content of the samples, (3) chemicalcomposition of the octahedral sheets, (4) nature and dis-tribution of next-nearest neighbors, (5) geometry of thesites, and (6) covalency efects.

    To investigate possible relationships between compo-sition and M0ssbauer parameters, a multiple linear cor-relation analysis was done on the data in the Appendix.Multiple correlation coefrcients (R) were computed foreach pair ofvariables and are listed in Table l. In addi-tion to analysis ofeach single variable against every othersingle variable, correlation coemcients were also calcu-lated for combinations of up to three variables against allother possible combinations (of up to three variables);8 235 7 ll combinations were checked.

    A few obvious correlations exist; for example, tetra-hedral Si and Al have a high correlation (R :0.97) be-cause they often fill the site. Similarly Ca and K (R :-0.96) correlate highly. Cations that commonly substi-tute for each other are strongly related; octahedral Fe2+and Mg have an R : -0.74.

    As mentioned above, the fact that Feffi A values clusterin two groups might be attributed to some compositionalefect. Analysis of multiple combinations of variablesclearly identifies the source ofthis effect; regression ofAof Fefrol vs. octahedral Al + Fe3* + Li yields R : 0.95.The A of Fefrrl vs. Li content alone is also strongly cor-related (R :0.87), rhough A of Feffi vs. Alu, + Fe?J isnot (R less than 0.70). Possibly the presence of the rela-

    tively large Li cation (charge-balanced by Al and Fe3+) inthe octahedral layer is accommodated by structural rear-rangement or distortion of adjacent oxygens, which is inturn reflected by increased A values for Fe2+ at Ml. Re-cent work by Weiss et al. (1985) indicates that Ml tendsto be most distorted by flattening in those ordered caseswhere it is occupied by a large cation (such as Li); thisargument supports the observed increase in A for Li-bear-ing samples. Unfortunately, Li analyses could be foundin the literature for only 19 samples in the data base;perhaps the correlation would be even stronger if moreLi data were available.

    Srrp-occuplNcy DATA AppLIED To cRysrArCHEMISTRY

    Perhaps the most useful aspect of this literature reviewis that it has yielded a unique set ofdata on Fe site oc-cupancy for trioctahedral micas. Before exploring the re-lationships of this complete data set, it is important toadd a few cautionary notes on the reliability of site-oc-cupancy data generated by fitting of Mossbauer spectra.Preliminary work on the precision of the Mdssbauer tech-nique in simple spectra (as calculated from repeated runsof the same sample) suggests that area data are good toa3olo of the total area. This represents a lower limit onthe technique. Furthermore, there is often a problem withpreferred orientation of the samples, which is difficult toovercome in micas. Hogg and Meads (1970) suggestedthat this is not a problem if the particle size in the sampleholder is below 5 pm. Careful sample preparation, in-cluding mounting the particles with some inert mediumto prevent their becoming oriented, is always called forin mica studies. However, in a survey paper such as this,

  • DYAR: MOSSBAUER DATA ON TRIOCTAHEDRAL MICAS

    Table 1. Continued

    105

    M2IM1ocA'I Yo Fe+

    0.41-0.37

    0.01-0.31-0.32-0.01

    0.18-0.09-0.09-0.0s-0.40

    0.38

    0.20-o.24

    0.160.18

    -0.49-0.26

    0.20-0 .18-0.28

    u.oo-0.23

    0.380 . 1 70.800.35

    -0 .130.13

    *0.03- 0 . 1 8

    -0.03

    0.25-0.35

    0.080.290.250.25

    -0.30-0.03

    0.290.090.01

    -0 .16

    0.140.230.070.01

    -0.28o.27

    -0.080.430.27

    -0.06-0.02- 0 . 1 6-0.51

    0.340-47

    -0.520.63

    -0.55

    0.250.08

    -0.08

    0.25-0.59

    0.15

    0 . 1 10.360.200.06

    -0 .1 9-0.05-0.25

    0.340.280.53

    0.46 -0.04-0.45 0.10

    0.14 -0.24

    0.29 -0.30-0 .51 0 .15-0.30 -0.06

    0.21 0.46-0.25 *0.25-0.27 -0.32

    0.87 -0.59-0.36 0.08

    0.27 0 .100.32 -0.080.40 0.140.30 0.130.58 0.15

    -0.12

    -0.27 -0.320.26 0.28

    -0.05 0.04-0.02 0.12-0.59 0.09-0.04 -0.24

    0.38 0.21-0 .45 -0 .16

    0.32 0.09

    0.s0 0.300.19 0 .12

    -0.40 -0.23-0.25 0.32

    0.07 -0.19

    0.09 0.080.07 -0.32

    -0.33 0.170.72 0.52

    -0.92 -0.68-o.72 -0.89

    o.22

    0.32 -0.20-0 .19 0 .18-0.37 0.03

    0.1 9 0 .140.09 -0.22

    -0 .11 0 .00-0.23 -0.14

    0.27 -0.04-0.59 -0.07

    0.24 0.69-0.48 0.32-0.02 0.07

    0.42 -0.390.30 0.150.08 -0.07

    0.22 0.150.19 -0.070.14 -0.27

    -0.25 0.510.26 0.080.14 -0.20

    -o.22 0.21-0.04 0.53

    *0 .17

    -0.61

    0.75-0.65

    Al"FeP,"AlrTiFef'*

    MgFe2*MnLiCaNaKd1A1ol

    A263A3D4A4d5

    AJo/" Fe,

    o280.36

    it is impossible to determine if anomalous area data arethe result of faulty sample preparation.

    Another problem with Mdssbauer area data hinges onthe undetermined value for relative recoil-free fraction inmicas. In some minerals, such as garnets, the line strengthofFe3+ peaks can be significantly larger than those ofFe2+peaks (Whipple, 1974). In the garnet structure, the Fe3+is held more rigidly at its octahedral site, such that fewerof the Fe3+ atoms recoil than than do Fe2+ at their eight-coordinated sites. The resultant Mtlssbauer spectrum ap-p€ars to have more Fe3+ than is actually present, and theresultant area data must be con:ected for this differentialrecoil-free fraction effect. Whipple (197a) examined aphlogopite and a biotite to determine relative linestrengths, but unfortunately his results were inconclusive(Roro,,r" was 1.18, Rpmogopire was 0.78, where R : Mdss-bauer-determined Fe3*/Fe?+ ratio divided by the chem-ically determined Fe3+/Fe'z+ ratio). Thus it is not knownwhether differential recoil-free fraction efects are biasingthe Mdssbauer area data; it is hoped that such effectswould be small.

    Finally, another problem with the area data for biotiteswas raised by Mineeva (1978), who interpreted the widespread of M2lMl values to be a sign of overfitting; sheconcluded that only two doublets were present. In myopinion, the area data are real, for the following reasons:(l) peak positions for the M2 and Ml (both Fe3+ andFe'?*) peaks are fairly consistent throughout the l5l sam-ples reviewed here. If two doublets do not really exist,the positions of all the peaks would be more random. (2)As discussed above, A values for the Feinl doublet can beexplained as a systematic function of octahedral Li, Al,and Fe3+ content. If the Ml doublet does not really exist,

    it is unlikely that such a logical colTelation would be foundbetween those variables.

    SrnucruruL cHANGES BASED oN cATroN sIzE

    The compositional substitutions in mica are firmlybased on the principle of maintenance of charge balancein the structure. However, as was discussed in the Intro-duction, the sizes of substituting cations also affect thestructure. Hazen and Wones (1972) found a strong cor-relation between ionic radius of R2+ and b-, which isintuitively obvious when the wide range of cation sizesis considered (see Fig. l). Tetrahedral rotation may alsoaccommodate size differences between tetrahedral andoctahedral sheets. It is known that a is minimized whenoctahedral-cation radius increases to 0.76 A (Hazen andWones, 1972); it is also known that a may be as large as22" in clintonites, in which the low Si/AI", ratio compen-sates for Ca substitution at the A site (Annersten andOlesch, 1978). Data assembled for this review provideyet another important constraint on Si/Al,., as a functionof cation size, as follows:

    It was noticed that in ll of the 3l FeiJ-bearing sam-ples, Si + Al > 8. Tetrahedral Al is apparently displacedby Fe3+. This does not comply with crystal-chemical ex-pectations; the small Al cation generally should have agreater preference for the smaller tetrahedral site thandoes the larger Fefi. Contrary to the results of Annerstenand Olesch (1978), Figure 3 shows that Si/Al ratios donot particularly control this substitutional phenomenon:

    triangles representing Fe?.i-bearing samples with Si +Al > 8 are intermixed with the circles for Al-deficient(Si + Al < 8) Fe:* samples (except for the clintonite data,

  • 106 DYAR: MOSSBAUER DATA ON TRIOCTAHEDRAL MICAS

    o.8

    ;j\<t o

    6ttc,

    9oo

    o lo. { t a d a

    o.5

    5g,C

    .9oo6!o3oIoooN

    ooooo

    1.2o.6o.2 o.4Cations Fer3j,

    Fig. 3. Si/Al ratio vs. Fel"f cations for samples where Fe|f >0. Triangles represent data for samples where Si + Al > 8, andcircles represent Al-deficient micas. The five lowest triangles areclintonite data from Annersten and Olesch (1974).

    which have Si/Al < l). If Si/Al ratio does not controlFel"l in non-Al-deficient samples, what does?

    Annersten and Olesch (1978) postulated that the effectof Ca in the interlayer sites was to increase the relativesize of the tetrahedra, making it possible for the largerFe3+ cation to enter. As Figure 4 shows, the size of the Asite cations does not seem to correlate with Feli displac-ing Al. However, Figure 5 demonstrates that the phe-nomenon does occur when the average size of the octa-hedral cations is low ( 8.There is no apparent division between triangles and circles (Al-deficient micas).

    o.2 o.4

    Cations FefL

    Fig. 5. Average size of the octahedral cations vs. Fel"f con-tent. Triangles represent samples where Si + Al > 8. Note thatwhen octahedral-cation size is less than -0.68 A, Fe'* substi-tutes at the tetrahedral position regardless of how much AI ispresent.

    tetrahedra to allow a fit between layers. Enlarged tetra-hedra could then easily accommodate Fe3+ cations.

    ClrroN oRDERTNG

    Crystal-structure refinement is the standard method forexamination of cation ordering in micas; literature dataare summarized in Bailey (l98aa). He showed that tet-rahedral cation ordering does occur (albeit infrequently)rn mlcas.

    On the other hand, octahedral cation ordering is morecommon. Although early studies found little or no evi-dence for significant ordering of Mg and Fe in micas(Goodman and Wilson, 1973; Hazen and Burnham,1973), subsequent workers have suggested that Fe'z+ pre-fers M2 (Annersten, 197 5), or M I (Levillain et al., 198 l),and that Fe2+ in low-grade metamorphic biotites is or-dered at M2 (Heller-Kallai and Rozenson, l98l) or Ml(Annersten, 1974). Ohra et al. (1982) postulated that par-tial cation ordering of Fe3+ atM2 may occur, but Fe2+ israndomly distributed over the two M2 and one Ml sitesin each unit cell.

    The Miissbauer effect is of limited use in decipheringsite occupancies in micas because it can only describe thelocation of Fe cations in the structure. The data collectedin this study demonstrate that the ratio of Fe cations inthe crs-M2 : trans-Ml sites is rarely 2:1. This suggests thatsome cation ordering is occurring in the octahedral sheet.It is tempting to assume that only Fe and Mg are order-ing; such an assumption would allow development of anequilibrium constant for Fe-Mg exchange at the two sites.However, it is impossible to determine from Mdssbauerdata alone which of the many cations in the oclahedralsheets is ordering (especially in micas with such variedcompositions and parageneses).

    As can be seen in Table l, the amount of Fe2+ ordering

    o.8

    1?6Co

    o(J

    o

    o

    oo.!at,ootoo

  • DYAR: MOSSBAUER DATA ON TRIOCTAHEDRAL MICAS t07

    is not correlated with any of the single compositionalvariables listed, including Fe'z+/)Fe. An attempt was madeto correlate FeirllFeirl ratios with parageneses listed inAppendix Table 4; however there is not enough detailedinformation to make a worthwhile comparison. A morededicated study ofsample paragenesis vs. ordering ofcat-ions among M2 and Ml sites, using a large number ofcompositionally similar (and simpler) samples, is in prog-ress to determine the systematics of cation-ordering pro-cesses. In the context of this literature review, it can onlybe said that the ratio of Fe2+ at the M2 and Ml sites ishighly variable (from 0.70 to 5.14) and does not seem tobe a simple function of any single compositional variable,including Fe2*/ZFe.

    Sulrrtranv

    This review of Mdssbauer studies of trioctahedral mi-cas has three principal conclusions:

    1. Typical values for Miissbauer parameters of differentmica sites are as follows: Fefr,n+r-D: 1.13, A,:2.58 mm/s; Fef ln j -d : l . l2 and 1.16, A:2.05 and 2.75 mm/s;Fef l r l -D:0.40, A:0.55 mm/s; Fef lo+r-6:0.40, A: 1.00mm/s; Felj-D:0.20, A: 0.50 mm/s. It is also note-worthy that no Mtissbauer evidence for a doublet repre-senting intervalence Fe3+ - Fe2*'delocalized species hasbeen found.

    2. The effects of composition on Mtissbauer parametersseem to be minimal, although the addition of Li to theoctahedral sheet systematically affects quadrupole split-ting of the Feflnj doublet.

    3. The addition of the Mdssbauer site-occupancy datato compositional information shows that tetrahedral Al *Fe3+ substitution may be controlled by octahedral cationsize and that M2-Ml cation ordering is ubiquitous.

    AcrNowr,nocMENTS

    The author thanks Roger Burns and George Rossman (andgrants NSG-7601 and EAR-8212540, respectively) for supportover different periods ofthis study. Scott Phillips is also grate-fully acknowledged for statistical advice and the multiple regres-sion program, sEARcH. Thorough reviews by Frank Hawthorne,S. W. Bailey, and an anonymous reviewer contributed greatly tothe final version of this paper.

    RnrrnrNcrs

    Amirkhanov, Kh.I., Anokhina, L.K., Sardarov, S.S., Murina,G.A., and Gabitova, R.U. (1980) Absolute age of Aldan andSlyudyanka (USSR) biotites and phlogopites. In L.N. Ovchin-nikov, Ed. Vost Sib Dal'nego Vostoka, p. 63-65. Izd Nauka,Moscow.

    Annersten, H. (1974) Mijssbauer studies of natural biotites.American Mineralogist, 59, 143-15 l.

    -(1975) Mdssbauer study of iron in natural and syntheticbiotites. Fortschritte der Mineralogie, 52, 583-590.

    Annersten, H., and Olesch, M. (1978) Distribution of ferrousand ferric iron in clintonite and the Miissbauer characteristicsofferric iron in tetrahedral coordination. Canadian Mineral-ogist, 1 6, 199-203.

    Annersten, H., Devanarganan, S., Haggstrom, L., and Wappling,R. (1971) Mdssbauer study of synthetic ferri-phlogopiteKMgrFe3+SirO,o(OH),. Physica Status Solidi, B48, K137-K l38 .

    Astakhov. A.V., Voitkovskii, Y.B., Genralov, O.N., and Sido-rov, S.V. (1975) NGR investigation of some lamellar and bo-ron-containing silicates. Kristallograpfi ya, 20, 7 69 -7 7 4.

    Bagin, V.I., Gendler, T.S., Dainyak, L.G., and Kuzmin, R.N.(1980) M

  • 108 DYAR: MOSSBAUER DATA ON TRIOCTAHEDRAL MICAS

    Guggenheim, Stephen. (1984) The brittle micas. MineralogicalSociety of America Reviews in Mineralogy, 13, 6l-104.

    Guidotti, C.V. (1984) Micas in metamorphic rocks. Mineralog-ical Society of America Reviews in Mineralogy, l3, 357-467 .

    Haggstrom, L., Wappling, R., and Annersten, H. (1969a) Mdss-bauer study ofiron-rich biotites. Chemical Physics Letters, 4,107-108.

    -(1969b) Mrissbauer study of oxidized iron silicate min-erals. Physica Status Solidi, 33,741-748.

    Hazen, R.W., and Wones, D.R. (1972) The effect of cation sub-stitutions on the physical properties of trioctahedral micas.American Mineralogist, 57, 103-129.

    Heller-Kallai, L., and Rozenson, I. (1981) The use of Mossbauerspectroscopy of iron in clay mineralogy. Physics and Chem-istry of Minerals,7, 223-238.

    Hogarth, D.D., Brown, F.F., and Pritchard, A.M. (1970) Biab-sorption, M

  • DYAR: MOSSBAUER DATA ON TRIOCTAHEDRAL MICAS 109

    combined application of Mcissbauer spectroscopy and chem-ical transformation for chemical analysis. Radiochemical andRadioanalytical Letters, 48, 93-l 00.

    Voitovsky, Y.B., Gendler, T.S., Dainyak, L.G., and Kuzmin,R.N. (1975) Phase transformations under oxidation and de-composition of biotite. International Conference on Mtjss-bauer Spectroscopy Proceedings, 1, 387-388.

    Weiss, 2., Rieder, M., Chmielova, M., and Krajicek, J. (1985)Geometry of the octahedral coordination in micas: A reviewof refined structures. American Mineralogist, 70, 7 47-7 57 .

    Whipple, E.R. (1974) Quantitative Mijssbauer spectra andchemistry of iron. Ph.D. thesis, Massachusetts Institute ofTechnology, Cambridge.

    Yassoglov, N.J., Nobeli, C., Kostikas, A.J., and Simopoulos,A,.C. (1912) Weathering of mica flakes in two soils in northemGreece evaluated by Mtissbauer and conventional techniques.Soil Science Society ofAmerica, Proceedings, 36, 520-527.

    Mem;scnrrr REcETvED Julv 29, 1985Mewuscnrpr AccEprED Serreuprn 2, 1986

    Appendix Table 1. References used in plots and tables Appendix Table 2. Sample origins

    12-3

    4

    o- /

    8

    Voitovsky et al., 1975Shinno and Suwa,1 981Leviflain et al.,1977fvanitskiy et al.,1977lshida and Hirowatari,

    1 980Goncharov et al.,

    1 971

    88 Huggins,197689 Marfunin et al., 197.190-92 Trioathi and Lokana-

    than,197893-96 Taylor et al., 196897-102 Amkkhanov et al., 1980

    103-104 TriDathi et al.. 1978105 Goodman and Wilson.

    1 973106-108 Haggstrom et al.,

    1 969b109 Yassoglov et al., 19721 1 0 Tricker et al., 1 976111 Bancroft et al., 1977112 Chandra and Lokana-

    than ,1982113 Chandra and Lokana-

    than, 1 977114-115 Drago et al., 1977116-117 Ericsson et al., 1977118-119 Gendleret a l . , 197812O lvanitskiy et al., 1975c121 lvanitskiy et al., 1978122 Kohno and Kakitani.

    1972127 Lefelhocz et al., 196712U129 Manapov and Krinari,

    1 976130-132 Pollak et al., 1962133 Pollak and Bruyneel,

    1974134-144 Pol'shin et al ,1972145 Vertes et al., 1981146-151 Trioathi and Lokana-

    than ,1982

    4 Massif Central Frangais8 metasomatic (ore deposit)

    14 monzonite, Sierra Nevada batholith15-20 granodiorites, Sierra Nevada batholith21 Bosahan quarry, Falmouth, England34-35 adjacent to uranium ore36 high amphibolite facies, gneiss SW Greenland37 low amphibolite facies, gneiss SW Greenland38 Revsund granite, Sweden39 charnockite (granulite facies) Varberg, Sweden40 metamorphosed iron formation, Sweden41 titano-ferrousmetadiabase,Nordingrd,Sweden43-46 granites, SW England47 granulite facies, 2 px-plag mesocratic schist48 granulite facies, gn-hypersthene gneiss with gn-bi-sill bands49 granulite facies, silicified gn-bi-sil gn50 granulitefacies,garnet-biotiteplagiogneiss51 amphibolite facies, gn-bi-hb metadiorite52 amphibolite facies, gn-bi gneiss53 amphibolite facies, biotite plagiogranite54-55 intrusive carbonates, Gatineau region, Quebec56-58 phlogopite-calcite, px vein dikes59 clintonite with fassaite, grossularite, spinel, perovskite60 clintonite with tassaite, grossularite, calcite, clinochlore, mag-

    netiteclintonite with fassaite, pargasite, chondrodite, calcite, spi-

    nel, graphiteclintonite with fassaite, calcite, monticellite: contact marblemonzonite, Sierra Nevada batholith (same as 15)granodiorite, Sierra Nevada batholith (same as 16)granodiorite, Sierra Nevada batholith (same as 17)granodiorite, Sierra Nevada batholith (same as 18)Pikes Peak graniteLost Creek, Montana graniteCape Ann granitebanded iron tormation, with riebeckite, hem, mag, qtz, ank,

    stilbanded iron formation, hematite, riebeckite, low gradebanded iron formation, "higher grade"garnet, sillimanite, muscovite, quartz, plagioclase, rutilebanded iron formation, Marquette lron Rangegranodiorite, Nova Scotiapegmatites of Ukrainian shield

    I Bagin et al., 198010 Annersten,197511-13 Bowen et a l . , 196914-20 Bancroft and Brown,

    1 975.21 Rice and Williams,

    1 96922-23 Haggstrom et al.,

    1 969a24-25 lvanitskiy et al., 1975a25-33 Sanz et al., 197834-35 lvanitskiy et al., 1975b36-41 Annersten,197442 Smith et al., 1980"-43-45 Hogg and Meads,

    1 97046 Hogg and Meads,

    1 97547-53 Manaoov and Sitdi-

    kov ,197454-58 Hogarth et al., 197059-63 Annersten and

    Olesch,197864-71 Levillain et al., 198172-84 Dyar,unpublished

    data85 Astakhov et al., 197586 Hetzenberg et al.,

    1 96887 Annersten et al.. 1971

    61

    62727374

    76

    7879

    808183-8494, 96

    1 1 11 1 8 - 1 1 9

    " Analyses from Dodge et al., 1969.. Analyses from Smith, 1978.

  • 1 1 0

    Sampl e #

    DYAR: MOSSBAUER DATA ON TRIOCTAHEDRALMICAS

    Appendix Table 3. Compositions and Mossbauer data

    1 1 8 2 I B1 7 8L 5 Bt 3 P128108

    s i 4 * 5 . 5 0 5 . 8 9 5 . 9 9A t 3 * z . o 4 1 . 7 6 1 , 6 8F e 3 + 0 . 4 6 0 . 3 2 0 . 2 8Sum Tet 8 .00 7 ,97 1 .95

    At ].zBT i . . 0 . 2 2F e J r 0 . 0 0M q 2 . 1 0F ; 2 * 2 . 3 6Itln 0 .04L i 0 . 0 00 t h e .Sun oct 6.00

    7 . 0 0 5 . 1 4 5 . 4 00 , 9 8 2 . 8 6 2 . 2 00 . 0 2 - 0 . 2 08 , 0 0 8 , 0 0 8 , 0 0

    0 . 6 20 . 2 40 . 3 4 0 . 2 01 . 9 0 3 . 4 02 , 6 00 . 0 2 2 . 0 0

    6 , 2 0 6 . 0 0 5 . 3 41 . 4 0 2 , 0 0 2 . l 00 . 4 0 - 0 , 5 68 . 0 0 8 . 0 0 8 , 0 0

    - 4 .80 1 .04- 0 . 6 0 0 . 2 0

    0 , 0 05 . 0 0 - 2 . 0 20 . 4 0 0 . 6 0 2 . 1 60 . 6 0 - 0 . 0 2

    4 . 5 0 5 . 1 0 4 . 9 63 . 5 0 2 , 9 0 3 , 0 4

    8 . 0 0 8 . 0 0 8 . 0 0

    3 . 0 0 0 . 9 6 1 , 3 4- 0 . 2 8 0 . 1 0

    0 . 1 6 0 . 2 8 0 . 4 8- 1 . 7 8 0 . 4 8

    4 . 3 4 2 . 2 2 2 . 9 0

    5 . r 2 5 . 6 0 5 . 5 32 . 8 8 2 . 4 0 2 . 4 1

    8 . 0 0 8 . 0 0 8 . 0 0

    0 . 9 0 0 . 4 2 0 . 2 40 . 1 4 0 . 2 9 0 . 2 90.1 .6 0 .42 0 .484 . 0 4 2 . 4 5 2 . 6 40 . 5 8 2 . 1 2 2 . 0 2- 0 . 0 5 0 . 0 5

    0 . 0 1 0 . 0 3

    5 . 5 2 5 . 4 90 . 4 8 0 . 3 90 . 0 1

    2 .44

    0 , 0 00 . 0 2o . 4 20 . 0 5t , 5 0

    6 . 0 0

    5 . 4 2 5 . 3 7 5 . 6 3 5 . 5 2 5 , 6 2 5 . 2 92 . 5 8 2 . 6 3 2 . 3 1 2 . 4 8 2 . 3 8 2 . 2 2

    - 0 .498 . 0 0 8 . 0 0 8 . 0 0 8 . 0 0 8 . 0 0 8 . 0 0

    0 . 6 7 0 , 7 6 0 . 3 6 0 . 4 8 0 , 4 2 1 . 5 60 . 3 5 0 . 3 6 0 . 1 9 0 , 1 8 0 , 3 2 0 . 2 80 . 4 4 0 . 1 7 0 . 3 9 0 , 4 9 0 . 4 2 0 . 0 0r . 2 2 L 5 6 2 . 7 3 2 . 5 3 2 . 1 7 l . l 52 . 1 A 2 . 7 4 1 . 8 9 t . 9 1 2 . 3 8 2 . 3 40 . 1 4 0 . 0 6 0 . 0 5 0 . 1 1 0 . 0 4 0 . 0 3

    - C r 0 . 0 I6 . 0 2 5 . 9 2

    0 . o 2 0 . 0 10 . I 0 0 , 0 I1 . 9 0 2 . 0 1

    5 . 3 0 5 . 8 2 5 . 7 5

    0 . 0 30 , 0 6 0 . 1 2 0 . 0 71 ,80 1 .62 I .84

    - 0 , 1 20 . 1 0 0 . 2 2 0 . 4 0t , 7 4 1 . 5 4 1 . 6 0 1 . 8 0 2 , 4 0

    R b 0 . 1 62 . 0 0 1 . 8 8 2 . 0 0 1 . 8 0 2 . 4 0

    - 8 a 0 , 2 05 . 7 2 5 , 8 0 6 . 0 0 6 . 0 0 5 . 4 4 6 . 0 0 5 . 5 2 5 . 1 2 5 . 6 0 5 . 6 5 5 . 6 1 5 , 7 6

    0 . 0 0 0 . I 0 0 . 0 90 , 1 3 0 . 0 7 0 . 0 91 . 8 5 1 . 6 3 I . 6 1

    5 . 7 5

    0 . 0 90 , 0 81 , 7 1

    0 . 0 9 0 . 0 00 . 0 6 0 . 1 51 . 6 3 1 . 8 6

    - 0 . 0 82 . O 0 I . 7 0

    0 , 1 00 . 1 01 . 8 0

    2 . 0 0

    5 . 3 6

    0.000 . 1 01 . 1 6

    N aK0 t h e .Sun A

    6 1A 1

    62

    a 36 4A4

    l5

    F e 2 + / : F eH2/Ml Fez+

    0 . l 00 . 1 01 . 9 0

    2 , 1 0

    2 . 6 21 . t 7

    0 . 2 0r . 2 3

    0.84

    0 . 3 41 . 0 2

    0 . 2 60 , 6 2

    0 . 0 0

    2 . 0 2

    | . 1 22 . 6 5

    0 . 2 00 . 5 2

    0 . 6 0

    2 . 0 3 1 . 8 6

    I . 1 42 . 5 6l l 52 . 6 3

    - 0 , 0 30 . 2 4

    0 . 1 7

    2 . 0 0 1 . 8 6

    r . t 22 . 5 1

    0 . 5 4 0 . 5 40 . 6 0 0 . 8 0

    7 . 7 3 2 , 0 1 1 . 8 0 1 . 1 9 1 . 9 4

    | . r 2 1 . 1 62 . 6 5 2 , 6 2- l . l 8- 2 . 9 9

    0 . 2 4 0 . 2 50 . 4 7 0 . 3 5

    1 . 2 02 . 8 6I . 1 72 . 2 90 . 4 3

    0 . 4 60 . 6 2

    l . 1 3 1 , 1 7 1 . 1 9 l . 1 3 1 . 1 12 . 5 2 2 . 5 2 2 , 5 8 2 . 5 4 2 . 4 7

    l . 1 9 l . 1 82 . 1 3 2 . 0 0- 0 .40- 0 . 7 6

    1 . 1 1 t . t 2 1 . 1 3 1 . 1 3 1 . 1 4 l . 1 3 l , l 2 1 . 1 32 . 4 4 2 . 6 2 2 . 6 2 2 . 5 7 2 , 6 2 2 , 6 5 2 . 6 1 2 . 6 1- 1 . 1 0 1 . 1 0 I . 1 1 t . l 3 1 . 0 9 I . 0 9 1 . l l- 2 . 1 3 2 . 1 5 2 . 0 6 2 . 1 5 2 . 2 0 2 , 1 7 2 . 1 4- 0 . 4 6 0 . 4 7 0 , 4 8 - 0 . 4 9 0 . 4 9 0 . 5 1- 1 . 0 0 r . 0 5 r . 0 0 - r . 0 3 I . 0 0 1 . 0 5

    0 . 4 4 0 . 4 5 0 . 4 9 0 . 5 2 0 . 6 0 0 . 4 9 0 . 4 8 0 . 5 10 . 9 0 0 . 4 2 0 . 5 0 0 . 4 7 0 . 5 7 0 . 5 2 0 , 5 2 0 . 5 1

    0 . 1 5 - 0 . 1 40 . 6 3 - r . 2 3

    0 . 5 0 1 . 0 0 0 . 7 9 0 . 9 6 0 . 8 9 0 . 8 6 0 . 7 8 0 . 8 3 0 . 8 1 0 . 9 4 0 . 8 3 0 . 8 1 0 . 8 50 . 5 8 0 . 9 6 0 . 8 8- 1 . 9 1 2 . t 4

    4 1 84083 l B27P234Sampl e #

    2 . 1 55 . 4 82 . 5 2

    s i 4 +

    A l 3 *

    Fe3+othe.Sun Tet

    5 . 6 4

    0 . 0 40.08r . 7 4

    5 . 6 3 6 . 0 0 5 . 6 0 5 . 6 02 . 3 7 2 , 0 0 2 . 4 0 2 . 4 0

    5 . 6 8 5 , 4 2 5 . 4 82 . 3 2 2 . 5 8 2 . 5 2

    6 . 0 0 5 . 2 8 5 . 5 9L . 7 6 2 , 1 3 2 . 4 10.24

    8.00 8 .01 8 .00

    0 . 8 60 . 1 2 0 , 1 0 0 . 2 50 . 0 6 1 . 5 2 0 . 4 65 . 3 6 3 . 7 3 1 . 6 10 . 3 2 0 , 2 7 2 . 0 4- o . 0 2 0 . 0 2

    6 . I I 6 . 0 81 . 8 2 t . 9 2

    6 . 0 02 . 0 0

    5 . 3 9 5 . 5 0 5 . 4 5 5 . 9 2 5 . 2 0 5 . 4 42 . 6 t 2 . 5 0 2 , 3 5 2 . 0 5 2 . 3 3 2 . 5 6

    0 . 2 0 0 . 0 3 0 . 4 7 0 , 0 0

    AIT iF e 3 +

    t1ari2,MnL I0 t h e .Sum Oct

    8 . 0 0

    0 , 0 20 . 4 60 . 7 50 . 4 83 . 9 70 . 0 5

    0 . 1 80 . 3 40 . 0 43 . 8 01 . 5 00 . 0 20 . 1 8

    8.00

    2 . 0 0

    1 . 9 5

    4 . 0 5

    8.00 8 .00 8 .00 8 .00 8 .00 8 .00 8 .00 8 .00 8 .00

    1 . 2 0 0 . 3 6 0 . 1 20 . 2 6 0 . 1 0 0 . 0 40 . 3 4 0 . 0 2 0 . 0 30 . 9 2 5 . 1 0 5 . 4 62 . 4 8 0 . 3 2 0 . 3 40 . 0 8 - 0 . 0 20 . 3 8 0 . 0 1 0 . 0 3

    5 . 6 6 5 . 9 1 6 . 0 4

    0 . 0 3 0 . I 0 0 . 0 60 . 1 0 0 . 1 2 0 . 0 81 . 8 8 1 . 7 0 1 . 9 0

    8.00 8 .00 8 .00

    0 . 3 3 0 . 3 6 0 . 1 80 . 3 7 0 . 2 3 0 . 4 00 , 3 2 0 . 5 0 t . 2 t2 . 3 9 2 . 3 0 0 . 4 61 . 9 4 2 . 1 1 2 , 9 50 . 0 2 0 . 0 2 0 . 0 5

    8.00 8 .00 8 .00 8 .00

    0,00 0 .00 0 .00 0 .880 . 6 7 0 . 1 2 0 . 6 5 0 . 1 60 . 3 8 0 . 1 3 2 . 0 6 0 . 7 32 , 2 7 4 . 3 0 0 . 5 2 2 . 3 42 , 3 1 1 . 2 7 3 . 3 6 I . 5 40 . 0 1 0 . 0 5 0 . 0 3 0 . 0 8

    0 . 6 2 1 . 6 00 . 2 10 . 4 1 0 , 6 02 . 0 7 r . 6 02 . 4 a 2 . 0 0

    0 . 0 8 0 . 1 8 0 . 5 00 . 2 6 0 . 2 6 0 , 3 40 . 0 9 0 . 1 8 0 . 0 93 . 2 0 2 . 0 4 2 . 1 62 , 0 8 2 . 8 8 2 . 5 20 . 1 0 0 . 0 8 0 , 0 60 . 1 0 0 . 0 8 0 . 0 4

    5 . 9 1 5 . 7 0 5 . 7 1

    0.02 0 .04 0 .040 . 1 8 0 . 1 2 0 . 0 6I .88 1 ,96 1 .86

    1 . 9 4

    I . 1 32 , 6 5

    N A

    0 t h e rSun A

    6 1A 1

    A Z

    A36464

    A5

    5 . 7 3 6 . 0 0 5 . 7 8 5 . 8 0 6 . 0 6

    0 . 2 0 - 0 . 1 6- 0 . 2 0 0 . 1 4

    1 .88 2 .00 I .80 1 ,80 1 .88

    5 . 8 6

    0 . 0 20 . 0 21 . 9 0

    5 . 2 4 5 . 3 1 5 . 5 2 5 . 2 5 5 , 6 4 5 . 8 7

    0 . 1 71 . 8 2 1 . 7 8 1 , 7 3 I . 8 9 1 . 8 9 1 . 7 9 l 60

    0 . 0 0

    1 . 8 8 2 . 0 0 2 . 0 0 2 . 0 0 2 . 1 8

    1 . 1 3 1 , 1 5 1 . 1 4 I . 1 5 1 . 1 42 . 3 6 2 , 5 6 2 . 6 t 2 . 6 6 2 . 6 11 . 1 1 l . l l l . 1 3 1 . 1 4 t . t 22 , 1 7 2 . 1 8 2 . 1 0 2 . 2 9 ? . 2 00 . 5 5 0 , 5 4 0 . 4 6 0 . 4 6 0 . 5 40 . 5 5 0 , 5 2 0 . 8 5 1 , 0 0 0 . 6 0

    2 . 0 8 2 . 1 . 2 1 , 9 6 2 . O l

    1 . 1 5 1 . 1 4 1 . 1 5 l . 1 32 . 6 0 2 . 6 0 2 . 6 6 2 . 5 9I . 1 0 l . l 0 1 . 1 2 t . 1 22 . 1 6 2 . 1 . 7 2 . 2 3 2 . 1 , 70 . 5 7 0 . 5 0 0 . 5 1 0 . 4 90 . 5 6 0 . 6 9 0 . 6 5 0 . 6 0

    t . 7 8 I . 7 6 t . 9 21 . 9 2 2 . 0 4

    t . t 2 | . 1 22 . 5 6 2 . 6 0| , r 2 I . 1 32 . 2 2 2 , 2 00 . 6 I 0 . 6 I0 . 9 8 0 . 9 7

    1 . 8 6

    1 . 1 92 . 6 61 . 1 82 . 2 80 . 5 40 . 7 6

    1 . 6 0

    1 . 0 52 . 5 71 . 0 52 . 1 20 . 5 00.880 . 5 40 . 3 4

    1 . 8 9

    1 . 0 42 . 6 01 0 12 . 2 30 . 4 80 . 7 80 . 4 60 . 3 2

    1 . 1 8 1 . 0 6 I . 0 7 I . 0 62 . 6 6 2 . 5 6 2 . 6 2 2 , 6 0l . l 8 1 . 0 3 1 . 0 5 I . 0 12 . r 8 2 . r 0 2 . 1 9 2 . 2 00 . 5 0 0 . 4 1 0 , 5 0 0 . 4 31 . 1 1 r . 0 2 0 . 1 2 0 . 9 30 . 5 2 0 . 4 3 0 . 5 2 0 . 4 00 . 6 4 0 . 5 0 0 . 5 7 0 . 5 0

    1 . 9 0 1 . 8 4

    1 . 0 6 1 . 0 52 . 5 6 2 . 5 81 . 0 2 1 . 0 32 . 1 3 2 , 2 10 . 4 1 0 . 5 10 . 7 4 1 , l 70 . 3 9 0 . 4 60 . 5 7 0 . 6 5

    Fez+/ rFe^ 0 .84M2/Ml Fe" 2 .78

    0 . 6 8 0 . 8 61 . 5 8 1 . 9 6

    0 . 8 2 0 . 8 9 0 . 9 61 . 1 5 1 . 1 9 r . 3 5

    0 . 7 9 0 , 8 62 , 0 4 1 , 0 3

    0 . 8 6 0 , 9 l1 . 3 9 0 . 7 5

    0 . 6 2l . 3 I

    0 . 8 1 0 . i l0 . 8 0 1 . 6 4

    0 . 8 /2 . 1 1

    0 . 8 8 0 . 8 80 , 7 0 1 . 0 00 . 8 8

    0 . i 82 . 0 0

    0 . 9 0o . 7 4

    0 . 2 60 . 4 5

    0 . 7 11 . 0 0

    0 . 6 82 . 0 9

  • DYAR: MOSSBAUER DATA ON TRIOCTAHEDRAL MICAS

    Appendix T able 3.- Continued

    u l

    S a n p l e # 4 3 P 452 6 3 C6 1 C5 7 P4 9 84 1 8 5 1 8

    s i4+ 5 .60Ar l * z . 4or e - 'S u m T e t 8 . 0 0

    5 . 3 0 6 . 9 2 5 . 8 82 . 1 0 1 . 0 8 2 . 1 2

    8 . 0 0 8 . 0 0 8 . 0 0

    0 . 3 9 2 . 3 1 1 . 8 10 . 3 8 0 . 0 3 0 . 0 40 . 5 4 0 . 0 9 0 . 2 42 , 1 8 0 . 0 4 0 . I 12 . 0 5 0 . 6 6 2 , t 40 . 0 0 0 . 6 8 0 . 0 4- 2 . 2 9 0 . 9 1

    5 . 5 1 5 . 3 5 5 . 2 52 , 4 9 2 . 4 1 2 . 5 6- 0 . I 8 0 . 2 0

    8 . 0 0 8 . 0 0 8 . 0 0

    0 . 1 1 0 . 5 2 1 . 0 90 . 4 8 0 . 4 1 0 . 1 80 . 2 1 0 . 0 5 0 . 1 92 , 7 0 3 . 2 2 2 . 0 12 , 1 8 1 . 4 r 2 . 7 70 . 0 2 0 . 0 0 0 . 0 1

    5 . 1 1 5 . 1 4 5 , 2 32 , 8 9 2 . 7 7 2 . 7 1

    - 0 . 0 98 . 0 0 8 . 0 0 8 . 0 0

    5 . 6 9 5 . 6 1 2 . 4 ) .2 . 3 0 2 . 3 4 5 . 4 90 . 0 1 0 . 0 1 0 . I 08 . 0 0 8 . 0 0 8 . 0 0

    0 . 0 0 0 . 0 0 1 . 4 40 . 1 5 0 . 1 30 . 1 6 0 . 1 4 0 . 0 04 , 2 5 5 . 3 1 4 . 4 21 . 0 4 0 . 1 5 0 . 1 00 . 0 1 0 . 0 0

    2 . 4 \ 2 . 7 35 . 4 1 5 . 2 7

    8 . 0 0 8 . 0 0

    1 . 5 3 l . 1 3

    0 . 0 3 0 . 0 04 , 3 9 4 . 8 00 . 0 7 0 . 1 7

    2 . 3 5 2 . 2 35 . 3 8 5 . 2 50 . 2 7 0 . 5 28.00 8 .00

    1 . 7 0 r . 4 0

    0 . 0 3 0 . 0 84 . 2 0 4 . 4 50 . 0 5 0 . 0 0

    A ]T JF e 3 +MqF ; 2 +MnL 10 t h e rSum oct

    0 . 6 80 . 2 30 . 3 52 . 1 52 . 3 00 . 0 4

    0 . 0 0 0 . 5 50 . 4 4 0 . 2 7[ J . 5 4 0 . 4 01 , 9 4 2 . 3 12 . 7 6 2 . t 30 . 0 3 0 . 0 1

    5 . 3 8 5 . 9 6 6 . 1 0 5 . 6 52 . 6 2 1 . 6 9 1 . 8 3 2 . 0 8- 0 . 2 9 0 . 0 7 0 , 2 1

    8 . 0 0 7 , 9 4 8 . 0 0 8 . 0 0

    0 . 3 0 0 . 0 0 0 . 0 0 0 , 0 00 . 2 1 0 . 0 2 0 . 0 2 0 . 1 20 . 3 3 0 . 0 0 0 . 0 5 0 . 2 22 . 6 1 5 . 5 9 5 . 1 3 5 . 1 92 . t 6 0 . 4 9 0 . 6 9 0 . 1 60 . 0 4 0 . 0 I 0 . 0 0 0 . 0 I

    N A

    0 t h e rsum A

    6 t^ 16 2A 26 3A 36 4A46 5A 5

    0 . 1 60 . 2 30 . 0 35 , 0 70 . 3 70 . 0 0

    5 . 8 6

    0 , 0 70 , 3 61 . 5 5

    1 . 9 8

    I . 1 02 . 5 61 . 0 82 . 2 40 . 4 70 . 8 0

    5 . 5 4 6 . 1 0

    0 . 1 9 0 . 0 20 . 1 4 0 . 0 71 . 4 6 I . 8 3

    r . l 9 t . 9 2

    r , 0 12.s t t1 . 0 62 , 1 40 . 3 90 . / 2

    5 . 2 9 5 . 7 0 5 . 6 7

    0 . 2 1 0 . 0 5 0 . 0 70 . 1 0 0 . 0 2 0 . 0 11 . 8 0 r . 6 9 1 . 6 4

    0 . 0 30 . 0 5t . 1 6

    1 . 7 2 1 , 1 7 1 . 8 4

    1 . 1 3 1 . 1 5 1 . 1 52 . 4 4 2 . 6 5 2 . 6 21 . r 0 i . 1 3 r . 1 42 . 0 1 2 . t 8 2 , 1 90 . 5 9 0 . 6 3 0 . 6 00 . 5 7 0 . 6 4 0 . 5 7

    5 . 7 1 5 . 7 3

    0 . 2 0 0 . 0 30 . 0 3 0 . 0 21 . 5 8 t , 7 8

    1 . 8 1 1 . 8 3

    1 . 1 3 t . t 32 . 5 1 2 , 6 5r . 1 2 1 . 1 02 , 1 1 2 . 2 20 . 6 3 0 . 6 00 . 7 8 0 . 5 7

    6 . t l 5 . 8 9 5 . 7 0

    0 . 0 3 0 . 0 1 0 . 0 00 . 1 3 0 . 1 3 0 . 6 71 . 8 0 1 . 8 8 t . 8 2

    r . 9 6 2 , 0 2 2 . 4 9

    1 . 1 8 1 . 1 9 1 . 1 42 . 7 6 2 , 1 6 2 . 6 21 . 2 8 1 . 2 9 t . 2 42 . 9 7 2 . 9 5 2 . 8 2

    - 0 . 6 4 0 , 5 3- 1 . 2 2 0 . 9 4

    5 . 6 1 5 . 7 3

    0 . 0 0 0 . 0 00 . 8 6 0 . 6 31 . 7 8 1 . 8 9

    2 . 6 4 2 . 5 2

    1 . 1 7 1 . 1 5 1 . 0 82 . 7 9 2 . 7 6 2 . 4 4r . 2 8 1 . 1 4 1 . 0 43 . 0 1 2 , 9 7 1 . 1 20 . 5 4 0 . 5 0 0 . 5 21 . 1 5 1 . 0 6 1 . 0 5

    6 . 1 0 5 . 9 8 5 . 9 3

    1 . 9 6 t . 9 7 2 . 2 30 . 0 2 0 . 0 0 0 . 0 00 . 0 0 0 . 0 0 0 . 0 0

    1 . 9 8 1 . 9 7 2 , 2 3

    0 . 0 90 . 0 4i . 8 3

    1 . 9 6

    5 . 6 5

    0 . 0 30 , 0 81 . 6 6

    1 . 9 9o , 2 40 . 0 2

    2 . 2 5

    1 . 9 80 . 0 00 . 0 0

    1 . 9 8

    6 . 0 2

    0 . 2 1 0 . 2 4 - 0 . 2 6 0 . 2 4o . 6 2 0 . 6 8 - 0 . 6 5 0 . 8 0

    1 . 1 52 , 6 5

    0 . 4 00 . 8 9

    2 . 2 1

    1 . 1 32 . 4 41 . 1 32 . 1 40 . 3 80 . 8 3

    1 . 1 6

    1 . 0 92 . r 90 . 6 30 . 6 40 . 3 80 . 5 7

    2 , 6 11 . I l2 . 2 10 . 6 00 . 5 70 . 3 50 - 5 0

    - 1 . 1 3 1 . 0 8- 2 , 4 6 2 . 3 9

    1 . 0 9 1 . 1 52 . t t 1 . 8 50 . 5 2 0 . 4 91 . 2 0 1 . 0 8

    F e 2 + / r F e ^ o . 9 0 o , 8 IM z l l 4 l F e z ' 1 . 6 5 1 - 2 4

    0 . 0 6 0 . 1 30 . 5 0 0 . 3 6

    0 . 8 0 0 . 8 4 0 . 8 5I . 2 0 ? . 1 9 I . 9 3

    - 0 , 1 0 0 . 1 9- 0 , 4 3 0 . 4 4

    0 . 8 3 0 . 8 2 0 . 8 3 0 . 8 0 0 . 1 41 . s 4 2 . 1 5 2 . 0 4 1 . 9 6

    0 . 8 3 0 . 8 9_ 3 . 5 0

    0 , 2 10 . 4 4

    0 . 8 6 0 . 8 2 0 . 9 4 0 . 8 1 0 . 3 5 0 . 2 6 1 . 0 0 0 . 2 4- 4 . 6 3 - 3 . 2 3

    8 3 B8 1 A/ 1 87 3 87286 8 S6 6 1 6 1 t652S a m p l e #

    s i 4 *

    A t 3 *F e 3 +Sum Tet

    A ]T JFe3+M0

    MnL T0 t h e rSum oct

    N A

    0 t h e rSun A

    7 . 4 0 5 . 6 8 5 . 3 9 5 . 6 7 4 . 9 8 5 . 1 40 . 6 0 2 . 3 2 2 . 6 t 2 . 3 3 3 . 0 2 2 . 8 6

    6 . 5 1 5 . 8 5 5 . 9 4 5 . 2 10 . 1 8 1 . 0 5 1 . 5 9 2 , 7 31 . 3 1 1 . 1 0 0 . 4 18 . 0 0 8 . 0 0 8 , 0 0 8 . 0 0

    0 . 0 00 . 0 00 , 1 7I . 5 14 . 2 20 . 0 0

    5 . 4 92 . 5 1

    5 . 1 92 . 8 r

    3 . 9 9 5 . 4 74 . 0 1 2 . 5 3

    5 . 6 1 5 . 4 9 5 . s 62 . 3 9 2 . 5 1 2 . 2 9

    5 . 8 6 5 . 4 9 6 . 0 6r . 8 4 2 . 1 5 1 . 9 40 . 3 0 0 . 3 6 0 . 8 58 . 0 0 8 . 0 0 8 . 0 0

    1 . 8 8 0 . 0 0 0 . 0 00 . 0 7 0 . 4 3 0 . 0 00 . 3 0 2 . 2 5 0 . 3 00 . 0 1 0 . 0 7 2 , 7 02 . 4 0 2 . 1 6 2 . 9 60 , 2 2 0 . 0 6 0 . 0 0

    2 . 6 4

    8 . 0 08 . 0 0 8 . 0 0

    2 . 1 3 2 . 4 2

    0 . 0 0 0 . 0 0

    0 . 4 5 r . 5 8

    3 . 5 3

    0 . 0 00 . 0 01 . 7 8

    1 . 1 7 I . 1 3 1 . 1 7 1 . 1 4 1 , 1 62 . 6 3 2 . 4 2 2 . 5 1 2 . 6 6 2 . 3 61 . 1 8 1 . 1 3 1 . 1 8 1 . 1 5 1 . 1 52 . 9 6 2 . 7 1 2 . 9 0 2 . 9 3 2 . 6 9

    0 . 4 0 0 . 4 20 . 6 1 0 . 8 8- 0 . 3 8- 0 . 5 4

    8 . 0 0 8 . 0 0 8 . 0 0 8 . 0 0 8 . 0 0

    2 . 3 5 2 . 2 9 2 . 1 6 2 . 2 4 2 . 1 8

    0 . 1 8 0 . 3 3 0 . 0 3 0 . 1 6 0 - 2 6

    r .qu t - .25 2- ,55 Z . re 2J3

    2 . 0 9 2 . 0 4 1 . 3 0 1 . 3 1 r - 2 5

    8 . 0 0 8 . 0 0 8 , 0 0 8 . 0 0_ 0 . 1 5

    8 . 0 0 8 . 0 0

    1 . 8 4 0 . 4 0 0 . 2 3 0 . 3 4 0 . 1 8 0 . 0 0- 0 . 1 8 0 , 3 2 0 . 1 9 0 . 2 9 0 . 3 0

    0 . 2 r 0 . 6 6 0 . 5 i 0 . 6 2 0 . 6 5 0 . 6 0- 2 . 5 1 2 . 1 2 2 . 7 2 2 . 6 2 0 . 2 2

    3 . 9 6 1 . 7 8 2 . 1 6 1 . 6 6 1 . 8 4 4 , 3 9- 0 . 1 1 0 . 0 4 0 . 0 5 0 . 0 5 0 . 0 9

    0 . 0 0 0 . 0 0 0 . 8 1 0 . 8 00 . 0 2 0 . 0 1 0 . 1 6 0 . i 60 , 2 4 0 . 3 0 0 . 3 7 0 . 2 60 . 1 1 5 . r 1 2 . 1 4 2 . t 54 . 1 1 0 . 4 7 2 . 3 0 2 . 3 60 . 0 0 0 . 0 1 0 . 0 0 0 . 0 1

    ? . 0 9

    6 . 0 9

    0 . 0 0

    6 . O J 5 . 9 1 6 . 0 4 5 . 8 9 5 . 8 2 o . O r u . o q 5 - . 4 4 s . s g s . o : s , o o q . g e 4 ' . 9 1 5 . 9 6 5 . 9 0 5 . 8 0 5 . 9 0 5 . 7 8 5 . 1 4

    0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 9 0 . 0 9 0 . 1 0 0 . 0 9 0 . 0 1 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 o . t 2 0 . 0 0 0 . 0 0 0 . 0 00 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 9 0 . 0 7 0 . 0 7 0 . 0 6 0 . 0 3 0 . 0 5 0 . 0 3 0 . 0 5 0 . 0 0 0 . 0 0 0 . 0 3 0 . I 0 0 . 0 82 . 0 2 1 . 9 0 2 . 0 5 2 . 0 2 t . g t 1 . 9 6 1 . 5 9 t . g z 1 . 6 3 1 . 6 2 1 . 8 1 t , g l 1 . 6 6 1 . 6 1 1 . 4 0 2 . 0 6 1 . 9 i 1 . 5 6 1 . 6 9

    0 . 0 00 . 0 01 . 8 r

    1 . 7 8 1 . B l 2 . 0 2 r . 9 0 2 . 0 5 2 . C ? 1 . 9 7 1 . 9 6 r . 1 7 2 . 0 8 1 . 8 0 1 . 1 1 1 . 9 r 2 . O 2 1 . 6 9 r . t z 7 . 4 7 2 . 1 8

    6 l^ 16 2A26 3a 36 4A46 5A 5

    r , 1 1 L 1 3 1 . 1 4 1 . 1 3 1 . 1 3 1 . 1 3 1 . 1 2 1 . 1 3 1 . 1 42 , 5 t 2 . 6 4 2 . 5 5 2 . 6 0 2 . 5 1 2 . 6 0 2 , 5 8 2 . 5 3 2 . 6 8l . I 7 1 . 1 4 - t . 0 7 1 . 1 0 1 . 0 7 1 . 0 9 l . t 0 1 . 1 02 . 8 3 2 . 9 0 - 2 . 2 2 2 . 1 2 2 . 1 5 2 . t 5 2 . 0 6 2 . 3 60 . 3 8 0 . 4 8 0 . 3 4 0 . 4 2 0 . 3 9 0 . 4 1 0 . 4 5 0 . 4 3 0 . 3 40 . 6 9 0 . 9 8 0 . 3 9 7 . 2 4 1 . 1 6 r . 1 6 1 . 1 1 0 . 9 9 0 . 7 4- 0 . 3 5 - 0 . 4 r 0 . 4 4 0 . 3 9 0 . 4 6 0 . 3 9- 0 . 5 2 - 0 . 5 5 0 . 4 7 0 . 5 2 0 . 5 2 0 . 3 1

    1 . 1 3 1 . 1 3 1 . 1 02 . 6 7 2 . 6 0 2 . 5 51 . r 2 1 . 1 5 1 . t 62 . 8 2 2 . 8 3 2 , 1 60 . 3 9 0 . 3 6 0 . 4 20 . 9 4 0 . 5 6 1 . 0 10 . 4 20 . 4 60 . 1 9 0 . 2 1 0 . 2 0 0 . 1 90 . 3 9 0 . 4 0 0 . 4 5 0 . 5 6

    0 , 7 2 0 . 7 4 0 . 7 8 0 . 3 8 0 . 8 62 , 1 4 1 . 3 9 3 . 2 3 - 5 . 1 4

    1 . 1 22 . 5 0I . 1 51 . 9 0o . 4 20 . 9 80 . 3 70 . 6 10 . 2 0

    t . 7 7

    1 . 1 4

    1 . t 42 . 1 50 . 4 31 . 2 00 . 4 40 . 3 7

    1 . 9 4 I . 6 6

    l , t 2 1 . 1 42 . 6 3 2 . 6 3

    - 2 . 1 9- 0 . 4 3- 1 . 1 9- 0 . 4 4- 0 . 2 8

    0 . 1 10 . 1 5

    F e 2 + / * e ^ r . o oM2/141 Fe.+ 4.88

    1 . 0 0 0 . 9 11 . 5 6 1 . 4 3

    0 . 0 0 0 . 9 3 0 . 8 9r . 7 3 1 . 5 3 1 . 7 8

    0 . 7 3 0 . 7 9 0 . 7 33 . 5 7 2 . 5 9 4 . 2 ' l

    0 . B B 0 . 8 02 . 0 0 r . 9 6

    0 . 7 42 , 7 0

    0 . 7 9r . 2 1

    0 . 3 7

    0 . 5 22 . 2 8

    0 . 9 05 . 0 0

    B : B j o t i t e P r P h l o g o p i l e L : L e p i d o l i t e S : S r d e r o p h y l l j t e Z : Z i n n u a l d j t e A : A n n i t e C : C l i n t o n j t el 4 d s s b a u e r p a r a m e t e r s a r e c o r r e c t - A d u s j n g s t a n d a r d v a l u e s o f r e f e r e n c e p o i n t s a s t d b u l a t e d b y G e t t y s a n d S t e v e n s ( 1 g B l ) ; d a t a a r e q u o t e dr e l a t j v e t o t h e m j d p o i n t a n d v e l o c j t y 9 ; a d i e n t o f u r " i u t l i . i e ' t o i t s p e . t r u r t o u l j o r J i r u i t - . o m i a r t s o n o t a ; 1 r e s u l t s .

  • rt2 DYAR: MOSSBAUER DATA ON TRIOCTAHEDRAL MICAS

    Appendix Table 4. Data from papers with no compositional information

    S a m p l e # 9319 1 P l0oB IOIB l02B l03B l04B 1058 1068 1078

    0 . 1 7 0 . 7 6 0 . 2 6- t , 9 2 2 . 2 5

    I . O B3 . 1 3

    I . 1 82 . 4 8

    0 . 3 80 . I I

    6 lAI

    A2

    A36 4A4

    a5

    6 1A I

    8?

    A36 4A4

    A5

    1 . 0 62 . 7 31 . 0 62 . 3 8

    - 1 . 0 0 1 . 4 1 L . 0 2 1 . 0 9 I . 0 9 1 ' 1 1 1 . 1 6 1 . 1 4 I ' 1 1 1 . 1 0 1 . 1 1 I . 1 9 1 . 1 2 1 ^ . | 2 1 . 1 9 | . | 2 1 . 1 1 1 . 1 3 1 . 1 5 7 . | 2- 2 . 6 2 z , t o 2 . 4 2 2 . 5 6 z ' . i a , . i o i . a o i . q s 2 . 5 0 2 . 6 6 2 . 6 4 2 . 6 0 2 . 6 2 2 . 5 6 2 . 6 7 2 . 4 2 2 . 5 4 2 . 6 4 2 . 4 8 2 . 4 4

    l . I 5 - 1 . 0 5 0 . 9 6 l . l 0 1 . 1 0 1 . 1 8 1 . 1 4 1 . 0 9 1 . 1 7 - 1 ' 1 0 1 ' l l

    2 . 2 0 - 2 . 1 1 2 . 2 1 2 . 2 1 2 . 2 1 2 - 3 2 2 . 2 5 2 ' 3 6 2 ' 2 9 - 2 ' 0 7 2 ' 1 9

    0 . 3 1 0 . 3 5 - 0 . 4 8 0 . 3 9 0 . 3 9 - 0 . 5 8 0 ' 4 5 0 ' 4 3 0 ' 3 8 - 0 ' 4 6

    0 . 3 6 0 . 8 / - I . 1 1 0 . 9 5 0 . 9 5 - 0 . 8 0 0 ' 8 6 l ' 1 4 0 ' 8 9 - l ' 1 6

    0 , 4 9 - 0 . 4 9 o . r s 0 . 4 5 0 . 5 1 0 . 4 1 0 . 3 6 0 . 5 6 0 . 5 8 0 . 6 I - 0 . 3 9 0 ' 7 3 - 0 ' 4 4 - 0 ' 4 9

    1 . 3 2 - 0 . 3 9 0 . 4 3 0 . 5 0 0 . 6 0 0 . 3 0 0 . 3 0 0 . 6 9 0 . 5 7 0 . 6 0 - 0 . 4 4 0 . 5 2 - 0 ' 4 4 - 0 ' 5 5

    0 . 1 7 0 . 1 90 . 5 0 0 . 5 7

    F e 2 + / * e ^ .fr2/il\ Fe.'

    'lr.rit'iiz,

    F e z + l r F e ^ .H2lMl Fe. '

    0 . 8 2 0 . 5 73 . 5 6 1 , 7 1

    0 . 8 2 0 . 8 02 . 1 5 1 . 9 6

    1 . 0 0 0 . 5 33 . 1 6 2 . 7 9

    0 . 8 1 0 . 7 4

    1088 1098 l l0B t t lB 1128 1138 1t4B 1158 1168 1r7B 1188 1198 1208 l2lB 122G 1238 l24B 1258 1268 l21B 1288 1298

    r . 1 22 . 3 3

    0.360 . 7 0

    0 . 7 0 0 . 8 33 . 1 3

    1318 1328 l33B 1348 1358 1358 1378 1388 1398 1408 l41B t42B I43B 1448 1458 1468 1478 1488 1498 1508 15rB

    - l . 1 l 1 . 1 1 I . t 1 r . 0 4 1 . 0 8- 2 . 5 8 2 . 5 3 2 . 5 4 2 . 5 9 2 . 6 31 . 0 4 1 . 0 8 1 . 0 8 I . 1 0 r . 0 3 1 . 0 72 , 0 2 2 . t 5 I . 9 8 2 . O 1 2 . 0 9 2 . 2 20 . 4 3 0 . 4 3 0 . 5 I 0 . 4 3 0 . 3 40 . 9 1 0 , 7 1 0 . 1 7 I . 1 3 I . 7 00 . 4 2 - 0 . 5 1 0 . 4 4 0 . 3 80 . 5 2 - 0 . 5 4 0 . 4 4 0 . 4 5

    1 , 1 52 . 4 0

    0 . 3 70 . 7 2

    1 . 0 92 . 3 4

    0 . 4 70 . 5 7

    r , t 2 1 . l 12 . 4 3 2 . 5 8- 1 . 0 8

    - 0 . 5 7- 0 . 7 1

    1 . 1 2 L 1 32 . 5 6 2 . 6 21 . 1 0 I . 1 12 , 0 9 2 . 2 40 . 6 00 . 7 10 . 4 80 . 4 6

    1 . 1 9 I . t l 1 . 1 32 . 5 8 2 . 6 1 2 . 6 01 . 1 9 t . 1 2 1 . 0 92 . t 3 2 , t 0 2 . 2 3- 0 . 4 2- l . 8 l- o . 4 2 0 . 5 4- 0 . 5 2 0 . 5 90 . 1 41 . 2 3

    t . 2 r 1 . 2 52 , 5 1 2 . 5 3

    0 . 3 6 0 . 3 70 . 7 0 0 . 7 1

    1 . 1 02 . 5 41 . 1 02 . 0 70 . 4 3

    1 . 1 0 1 . 1 3 1 . 1 42 , 5 0 2 . 5 7 2 . 6 1- 1 . 1 2 I . r 3- 2 , 1 J 2 . 2 1- 0 . 6 3- 0 . 7 8

    0 . 6 00 . 5 7

    - 0 . 1 0 0 . 2 5- 0 . 4 3 0 . 5 0

    1308

    1 . 2 72 . 1 11 . 0 82 . 3 2

    6 lA I

    Ez

    64a4

    A5

    0 . 8 61 . 4 5

    0 . 9 1 0 . 8 9t . 2 2 2 . 3 0

    0 . 8 30 . 8 2

    0 . 1 30 . 5 4

    1 . 3 3 1 . 3 4 1 . t 2 l . l 5 I . 1 sz . A t 2 . 4 7 2 . 6 6 2 . 6 t 2 . 6 81 . 1 4 1 . 1 4 1 . 1 3 1 . 1 1 t . r 22 . 4 t 2 . 4 1 2 . 2 0 2 . 1 6 2 . 2 2

    0 . 4 00 . 9 6

    1 , 1 5 1 . 1 6 1 . 1 6 1 . 1 62 . 6 1 2 . 7 0 2 . 7 0 2 . 6 51 . 1 5 l . 1 1 1 . 1 4 1 . 1 32 . 2 2 2 . 2 6 2 . 2 4 2 . r 5

    I . 1 5 t . r l 1 . 1 7 1 . 1 8 1 . I 9 1 . 1 32 . 6 7 2 . 6 0 2 . 1 0 2 . 8 0 2 . 5 4 2 . 5 61 . 1 5 1 . l l 1 . 1 4 I . 1 7 1 . 1 4 1 . 0 12 . 2 2 2 . 1 6 2 . 2 3 2 . 4 0 2 . 2 0 2 ' 2 0

    1 . 0 02 . 5 5L 0 02 . 0 10 . 4 80 . 6 1

    1 . 0 s2 . 5 11 . 0 22 . 2 40 . 4 3l . I 40 . 4 40 . 4 8

    I . 1 22 . 5 11 . 0 72 . 2 30 . 3 4I . 1 30 . 4 50 . 5 2

    1 . 1 0 l . l 12 . 5 4 2 . 5 81 . 0 8 1 . 1 32 . 1 6 2 . 0 20 . 3 4

    0 . 4 40 . 4 8

    ].020 . 4 60 . 5 1

    0 . 3 20 . 5 8

    0 . 3 s 0 . 4 6 0 . 8 3 0 . 7 52 . 4 5 2 . 5 4 3 . 6 1 2 . 4 1