A New Surface Potential-based Compact Model for IGZO TFTs in … · 2016. 8. 29. · 0 5 10 15 20...

32
A New Surface Potential-based Compact Model for IGZO TFTs in RFID Applications Ling Li , Guanhua Yang, Ming Liu Institute of MicroelectronicsChinese Academy of Sciences, China

Transcript of A New Surface Potential-based Compact Model for IGZO TFTs in … · 2016. 8. 29. · 0 5 10 15 20...

  • A New Surface Potential-based Compact Model for IGZO TFTs in

    RFID Applications

    Ling Li, Guanhua Yang, Ming Liu

    Institute of Microelectronics,Chinese Academy of Sciences, China

  • Outline

    Introduction of IGZO TFT

    Multiple Trapping and Release Theory

    Surface Potential and Model Equations

    RFID Circuit simulation

    Summary

  • IGZO TFT application-Display

    a-Si LTPS a-IGZO Organic

    Mobility(cm2/Vs) ~0.5 ~100 10~80 5~6

    Uniformity Good Poor Good Poor

    Reliability Poor Good Good Poor

    Cost Low High Low Low

  • IGZO TFT application-Flexible Circuit

    Haitian, et al., “Large-scale complementatrymacroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors”

    Adrian Chasin, et al., “An Integrated a-IGZO UHF Energy Harvester for Passive RFID Tags”

    Flexible

    Transparent

    Room temperature

    process

    Low cost

  • IGZO TFT Structure

    S/D: CrAu

    L= 5um

    T=294K

  • Motivation

    IGZO TFT is an excellent candidate for display and

    flexible circuit application

    Circuit designers need accurate but fast compact

    model

    The charge transport mechanism in IGZO is

    different from a-Si and organic

    More physical meaning. Without numerical

    calculation.

  • Outline

    Introduction of IGZO TFT

    Multiple Trapping and Release Theory

    Surface Potential and Model Equations

    RFID Circuit simulation

    Summary

  • Multiple-trapping and release theory

    Band-like

    Hopping like

    Free carrier density

    Trapped carrier densityEffective mobility

  • Gate voltage and temperature dependent

    mobility,Mobility vs. Temperature, at different Gate Voltage

    Multiple-trapping and release theory

  • Outline

    Introduction of IGZO TFT

    Multiple Trapping and Release Theory

    Surface Potential and Model Equations

    RFID Circuit simulation

    Summary

  • Analytical Surface Potential Solution

    Density of total carrier

    Poisson’s Equation

    Gauss Law

    F(0): The electric field at

    the interface x=0

    =

  • Analytical Surface Potential Solution

    Density of states in IGZO

    Trapped carrier density

    Final Surface Potential Equation

    Free carrier Trapped carrier

  • Analytical Surface Potential Solution

    Taylor expansion

    Schroder series modification

    0 2 4 6 8 10 12 14 160

    1

    2

    3

    4

    5

    6

    7

    8

    9

    Vch=2.5V

    Vch=5V

    Su

    rfac

    e P

    ote

    nti

    al (

    V)

    Vg-Vfb (V)

    Line: Analytic solution

    Symbol: Numerical result

    Vch=7.5V

    Maximum error : 0.03mV

    Fully analytical without adding

    new fitting parameters

  • Model equations

    Effective Mobility Equation

    Drain Current Equation

    0 5 10 15 20

    40

    80

    120

    160

    Ids

    (uA

    )

    Vds (V)

    Vg=20V

    Vg=16V

    Vg=12V

    Line:Model

    Symbol:Experimental

    Integrate from FSS to FSD

  • Model equations

    Capacitance Equations

    Minkyung Bae, et al., “Analytical Current and Capacitance Models for Amorphous IGZO Thin-Film Transistors”

    Ward’s charge-

    partitioning scheme

  • Gummel Symmetry Test

    All derivatives are continuous at Vds=0

    2nd-order

    1st-order

    3rd-order

    Key requirements for GST

    • Odd function

    • Nonsingular for nth-order derivative

  • Parameters extraction

    Parameter initialization

    Choose fitting strategy

    RMS lsqError

    RMS lsqError without noise

    Log RMS lsqError

    Input experimental

    data

    Converge

    Least square method

    Output fitting parameters

    Exit

    Change convergence

    condition

    No

    Yes

    m0

    TA

    n0t0

  • Parameters extraction

    -20 -10 0 10 200

    0.5

    1

    1.5

    2x 10

    -5

    Vgs [V]

    Ids [A

    ]

    data

    model

    Automatic parameter extraction

    Vds=1V, 20V

    5 10 15 20 250

    0.5

    1

    1.5x 10

    -5

    Vds [V]

    Ids [A

    ]

    data

    model

    Automatic parameter extraction

    Vgs=-4V, 4V, 12V, 20V

    Vds [V]

    Accurate

    &

    Rational

  • Model results

    Output and gds-Vds curves

    0 5 10 15 20

    40

    80

    120

    160

    Ids

    (uA

    )

    Vds (V)

    Vg=20V

    Vg=16V

    Vg=12V

    Line:Model

    Symbol:Experimental

    0 5 10 15 200

    4

    8

    12

    gd

    s (mS

    )

    Vds (V)

    Line: Model

    Symbol: Measurements

    Vgs=12V,16V,20V

    Comparison between the calculation and experimental

    data for output characteristics of IGZO under different

    gate voltages and gds-Vds curves.

  • Model results

    Transfer and trans-conductance curves

    -5 0 5 10 15 20

    1E-10

    1E-9

    1E-8

    1E-7

    1E-6

    1E-5

    1E-4

    1E-3

    Ids(

    A)

    Vg(V)

    Vds=0.1V

    Vds=3.1V

    Vds=9.1VLine:Model

    Symbol:Experimental

    0 5 10 15 200

    2

    4

    6

    8

    10

    gm

    (mS

    )Vgs (V)

    Vds=0.1V, 3.1V, 9.1V

    Line: Model

    Symbol: Measurements

    Comparison between the calculation and experimental

    data for transfer characteristics of IGZO under different

    drain-source voltages and transconductance curves.

  • Model results

    Temperature and gate capacitance curves

    -15 -10 -5 0 5 10 151

    2

    3

    4

    5

    6

    Gate

    capacit

    ance (

    pF

    )Gate voltage (V)

    L=40um

    L=30um

    L=20um

    L=40um

    L=30um

    L=20um

    Line:Model

    Symbol:Experiment

    0 5 10 15 20

    0

    5

    10

    15

    20

    25

    30

    35

    Ids

    (uA

    )

    Vds (V)

    T=300K

    T=280K

    T=260KLine: Model

    Symbol: Experiment

    Vg=5V

    Model results and experimental

    data a good agreement

  • Outline

    Introduction of IGZO TFT

    Multiple Trapping and Release Theory

    Surface Potential and Model Equations

    RFID Circuit simulation

    Summary

  • RFID circuit simulation

    Verilog-A Module

    Minkyung Bae, et al., “Analytical Current and Capacitance Models for Amorphous IGZO Thin-Film Transistors”

  • Simulation results & discussion

    0 1 2 3 4 50

    1

    2

    3

    4

    5

    60

    Vout

    (V)

    Vin (V)

    60

    50

    25

    16.7

    12.5

    10

    W/L=

    W/L=60

    W/L=10

    0 4 8 12 16 20

    0

    50

    100

    150

    200

    250

    300

    Fre

    qu

    ency

    (K

    Hz)

    VDD (V)

    W/L=50/1

    W/L=50/2

    W/L=50/5

    Pseudo

    -CMOS

  • RFID circuit simulation

    RFID digital circuit block

    • Ring Oscillator

    • Synchronous Counter

    • 3-8 Decoder

    • 64bit ROM

    • Manchester EncoderR

    ing Oscillato

    r

    Synchron

    ous

    coun

    ter

    3-8

    Deco

    der

    64bit ROM

    DFF

    Manchester encoder

    3-8

    Deco

    der

    Synchron

    ous

    coun

    ter

    BL

    WL

    CLK RFID logic output

  • RFID circuit simulation

    Schematic diagram

  • Simulation results & discussion

    Failure situation 1:

    • Vdd=5V

    • Driver transistor W/L=35

    Minimum power

    consumption

    1111111111111100 111111101111100011110000111000001100000010000000

  • Simulation results & discussion

    Failure situation 2:

    • Vdd=12V

    • Driver transistor W/L=50

    1111111111111100 111111101111100011110000111000001100000010000000

    Maximum Clock

    Frequency

  • Simulation results & discussion

    40 50 60 70 800

    5

    10

    15

    20

    25

    30

    Fail

    ure

    vo

    ltag

    e (

    V)

    W/L

    Failure voltage at different W/L of driver transistor

    The shaded area

    shows available region

    for VDD and W/L.

  • Simulation results & discussion

    RFID circuit simulation results

    Manchester

    encoded data

    1111111111111100111111101111100011110000111000001100000010000000

  • Summary

    •Incorporated multiple-trapping and release theory into compact modeling

    •Proposed a new method for calculating surface potential analytically

    •Developed the parameter extraction program for IGZO TFT compact model

    •RFID circuit design based on developed model•Discussed the maximum operating frequency and

    minimum power consumption in particular situation

  • Thanks for your attention!

    Q & A