9. Necesidades y oportunidad investigacion - Teixeira

45
University of Minho Institute for Biotechnology and Bioengineering Centre for Biological Engineering J. A. Teixeira [email protected] Dairy workshop Lugo, 26 October 2010 Necessidades e oportunidades de investigação no sector lácteo Dairy research – opportunities and needs

description

University of Minho Institute for Biotechnology and Bioengineering Centre for Biological Engineering Dairy workshop Lugo, 26 October 2010 J. A. Teixeira [email protected] Braga Guimarães Universidade do MINHO Overview Sustainable and clean processes Healthier foods Extended shelf‐life of milk and milk products

Transcript of 9. Necesidades y oportunidad investigacion - Teixeira

Page 1: 9. Necesidades y oportunidad investigacion - Teixeira

University of Minho

Institute for Biotechnology and Bioengineering

Centre for Biological Engineering

J. A. [email protected]

Dairy workshop

Lugo, 26 October 2010

Necessidades e oportunidades de investigação no  sector lácteo

Dairy research –

opportunities and needs

Page 2: 9. Necesidades y oportunidad investigacion - Teixeira

Universidade do MINHO

Braga

Guimarães

Page 3: 9. Necesidades y oportunidad investigacion - Teixeira

Introduction

Overview

Consumer demands for more convenient and varied milk  products

Extended shelf‐life of milk and milk products

Healthier foods

Sustainable and clean processes

Page 4: 9. Necesidades y oportunidad investigacion - Teixeira

Severity of the  traditional processing 

food processing  technologies

Production of high  volume effluents

Introduction

Development of thermal and  non‐thermal technological 

approaches capable of  substituting the traditional 

well established preservation  processes.

Development of process for  valorization of the effluents 

Page 5: 9. Necesidades y oportunidad investigacion - Teixeira

Introduction

Dielectric heating•

Radio frequency

Microwave heating•

Ohmic heating

High pressure•

Pulsed electric fields

New packaging systems

Novel and emergent thermal technologies have been  developed and can replace the traditional heating 

methods that rely on conductive and convective heat  transfer

Page 6: 9. Necesidades y oportunidad investigacion - Teixeira

Ohmic

heating

Why ?

:•

Heat is generated directly inside the food and this has direct 

implications in terms of both energetic and heating efficiency 

Ohmic Heating

Page 7: 9. Necesidades y oportunidad investigacion - Teixeira

Ohmic Heating

Heat transfer (cond./conv.)

Mass transfer (diffusion)

Momentum transfer

Internal heat gen.Mass transf. (conv.)Heat transf. (conv.)

Heat transfer (cond./conv.)

Flow eventually

entering the ohmic heater

(zero, if in batch

operation)

Flow eventually leaving the

ohmic heater (zero, if in

batch operation)

Limit of the heating volume

LIQUID PHASE

SOLID PARTICLE

Electrodes

Internal heat gen.Mass transf. (diff.)Heat transf. (cond.)

Page 8: 9. Necesidades y oportunidad investigacion - Teixeira

60 kW continuous ohmic heater (pilot‐scale)

Ohmic Heating

Pilot‐scale continuous  ohmic

heater

Page 9: 9. Necesidades y oportunidad investigacion - Teixeira

Overall the major benefits claimed for ohmic heating  technology are as follows:

Ohmic Heating

Temperature required for HTST processes can be achieved very quickly;

Suitable for continuous processing without heat transfer surfaces;

Uniform heating of milk with faster heating rates;

Electric fields may provide a non‐thermal killing effect over some microorganisms, reducing 

the time for their inactivation

Reduced problems with of overheating of the product compared to conventional heating;

No residual heat transfer after the current is shut off, and very low heat losses;

Low maintenance costs (no moving parts) and high energy conversion efficiencies;

Environmentally friendly system.

Page 10: 9. Necesidades y oportunidad investigacion - Teixeira

Applications: 

Possible applications include most of the heat treatments such as  blanching, evaporation, dehydration ,fermentation as well as 

pasteurization and sterilization. 

Processing of low‐acid particulate product in a can and pasteurized  liquid egg

Innovative applications, such as fruit puree

Meat  cooking

Milk pasteurization

Ohmic Heating

Page 11: 9. Necesidades y oportunidad investigacion - Teixeira

Microbial InactivationTime to reduce 90 % of a microbial population (D values) is faster when ohmic

heating is applied;

Effects on EnzymesPresence of an moderate electric does not cause an enhanced inactivation of Alkaline Phosphatase

(ALP) and β-Galactosidase

(β-GAL).

Effects on Milk LipidsOhmic

HTST pasteurization does not promote modification of Free

Fatty Acids (off-flavour) in goat milk, when compared with conventional HTST pasteurization;Composition of fat was not altered by the presence of electric fields during ohmic

heating.

Ohmic Heating

Page 12: 9. Necesidades y oportunidad investigacion - Teixeira

Effects on Proteins

Less protein denaturation

problems associated with heat transfer  surfaces are eliminated (volumetric heating)

Non‐thermal effects: presence of electric fields can promote  conformational disturbances on tertiary protein structure (due to 

rearrangement of hydrogen bonds, hydrophobic interactions, and ionic  bonds)

Less association or aggregation of milk proteins

Ohmic Heating

Important consequences on the acid‐induced gelation

properties of milk 

Page 13: 9. Necesidades y oportunidad investigacion - Teixeira

Ohmic Heating

Research is required in the following areas:•

To elucidate on the relative importance of electric current properties

and the corresponding 

temperature 

values 

on 

the 

killing 

of 

microbes

and 

in 

particular 

resistant 

structures 

(e.g., 

spores).

To 

characterize 

the 

effect 

of 

OH 

on 

the 

nutritive, 

organoleptic, and

functional 

properties 

of 

dairy foods. 

To 

develop 

methods 

that 

will 

allow 

for 

more 

precise 

mapping 

of

temperatures 

on 

foods 

submitted to OH.

To develop models that can adequately describe ohmic

processing of foods.

To 

implement 

these 

models 

so 

that 

an 

adequate 

control 

of 

the 

rate 

ofheating

can 

be 

achieved, 

thus 

minimizing 

the 

thermal 

degradation

effects 

on 

desirable 

product 

attributes 

but maintaining a safe product

Page 14: 9. Necesidades y oportunidad investigacion - Teixeira

Non‐thermal approaches to milk processing may be also valuable  alternative to the thermal processing:

High Hydrostatic Pressure

Why ?

:•

Ability

to inactivate microorganisms at near‐ambient temperatures, 

avoiding the undesirable effects of heat on the organoleptic properties of foods.

Maintenance of sensorial and nutritional properties of the products 

High Hydrostatic Pressure

Page 15: 9. Necesidades y oportunidad investigacion - Teixeira

High pressure in food processing

High Hydrostatic Pressure (HHP)

Novel non‐thermal processing technology 

Hydrostatic pressure (between 100‐600 MPa) is applied to the  food at room temperatures;

High Hydrostatic Pressure

Page 16: 9. Necesidades y oportunidad investigacion - Teixeira

Advantages of the use of HHP in food processing

Applied pressure is transmitted instantaneously and  homogeneously into the food,  regardless of its shape and 

geometry

The 

minimum 

processing 

using 

no 

additives 

allows 

the  obtention of higher nutritional and organoleptic quality foods,  with a better texture and improved shelf life

High 

pressure 

systems 

have 

wide 

application 

in 

other  industries 

– they 

just 

need 

to 

be 

“transferred”

to 

the 

food 

industry

High Hydrostatic Pressure

Page 17: 9. Necesidades y oportunidad investigacion - Teixeira

Japan 

was 

the 

first 

country 

where 

High 

Pressure 

processed  foods 

were 

produced 

and 

sold, 

namely 

jams, 

fruit 

yoghurts, 

sauces and lemon juice

Nowadays, there is a wide range of HPP processed products – meat products, fruit juices & smoothies, seafood, dairy 

products, RTE meals,…

These products are targeted as high quality and high price 

High Hydrostatic Pressure

Page 18: 9. Necesidades y oportunidad investigacion - Teixeira

Applications in dairy products

Yogurt•

Inactivation of yeast and moulds 

Reduction of Lactobacillus number•

Inactivation of contamination and acidification bacteria (survival of 

probiotics starins)

Cheese•

Enhanced maturation and elimination of pathogenic bacteria

Increase cheese yield 

Milk•

Improved shelf life and improved properties of products made with HPP 

processed milk

High Hydrostatic Pressure

Page 19: 9. Necesidades y oportunidad investigacion - Teixeira

High pressure in food processing

Milk Processing

HPP 

is 

considered 

an 

interesting 

alternative 

for 

milk 

heat  pasteurization and sterilization

Microoganism

and certain enzymes are inactivated:

Due to absence of heat, fresh flavor, color, taste and vitamins are  minimally affected

High Hydrostatic Pressure

Applications in dairy products

Page 20: 9. Necesidades y oportunidad investigacion - Teixeira

Control migration of O2

, CO2

, H2

O, aromas and/or lipids

Carry active compounds (antimicrobials, antioxidants)

Improve appearance

Materials used: Polysaccharides (starch, cellulose, 

chitosan); Proteins (milk, soy); Lipids (waxes, oil)

Consumer demand for ready-prepared

foods Consumer Health and

Safety

Shelf-life extension

Environmental impact

Edible coatingEdible coating

Edible coatings and films

Page 21: 9. Necesidades y oportunidad investigacion - Teixeira

Wetability,

Water vapour permeability,

O2 and CO2

permeability,

Solubility in water,

Colour –

opacity and L*a*b*

Thermal analysis (DSC and TGA),

Mechanical analysis –

tensile streght, elongation-at-break and Young’s modulus (Instron).

Relevant Coating and films properties

Edible coatings and films

Page 22: 9. Necesidades y oportunidad investigacion - Teixeira

Cheese with coating has a lower gas transfer rates as well as a decrease of  the 

relative 

weight 

loss 

(ca. 

8‐fold 

less 

the 

value 

in 

the 

absence 

of 

coating). 

O2

and CO2

transfer rates in cheese at 21.86 ±

0.76 °C. 

Cerqueira et al. (2009). J. Agric. Food Chem. 57, 1456–1462

Cheese Applications

Edible coatings and films

Page 23: 9. Necesidades y oportunidad investigacion - Teixeira

Visual 

evaluation 

also 

confirmed 

that 

the 

uncoated 

cheese 

suffered 

from  an extensive mold growth when compared with the coated cheese.

Cheese with coating (a) and without coating (b).

(a) (b)

Cerqueira et al. (2009). J. Agric. Food Chem. 57, 1456–1462

Cheese Applications

Edible coatings and films

Page 24: 9. Necesidades y oportunidad investigacion - Teixeira

Cheese Applications

Extend product shelf-life •

Reduce the risk of pathogen growth on food surface

Inhibition of A. niger with chitosan‐natamycin  coating. Cheese uncoated (A) and coated with  chitosan containing natamycin 0.125 mg∙mL‐1

(B), 0.25 mg∙mL‐1

(C) and 0.50 mg∙mL‐1

(D). 1

A B

C D

A B

C D

Fajardo et al. (2010). Journal of Food Engineering 101, 349–356.

Incorporation of antimicrobial agent

Edible coatings and films

Page 25: 9. Necesidades y oportunidad investigacion - Teixeira

Potential application of nisin-coated films onto cheese in order to overcome the problems associated with post-process contamination of Listeria monocytogenes

The addition of nisin to galactomannan films is a viable alternative to reduced microbial growth, reduce water loss and increase ricotta cheese shelf-life.

Nisin-added coating prevented the growth of L. monocytogenes

during 21 days

0

1

2

3

4

5

6

7

8

0 2 7 14 21 28

log CFU/g

Storage time (days)

ControlCoating (no nisin‐added)Coating with nisin

Martins et al. (2010). J. Agric. Food Chem. 58, 1884–1891.

Incorporation of antimicrobial agent

Edible coatings and films

Page 26: 9. Necesidades y oportunidad investigacion - Teixeira

Lactose intolerance is the inability to metabolize lactose, because of a lack of the required enzyme lactase in the digestive system. It is estimated that 75% of adults worldwide show some decrease in lactase activity during adulthood

Global map of lactose intolerance frequencies

Lactose free products

Page 27: 9. Necesidades y oportunidad investigacion - Teixeira

Lactose free products

Solutions for lactose intolerance

Consume lactose-free and lactose-reduced milk and milk

products

Lactose hydrolysis by the addition of lactase (-

galactosidase

Development of efficient system for lactose hydrolysis (use of

immobilized lactase)

Development of low lactose content dairy products

Page 28: 9. Necesidades y oportunidad investigacion - Teixeira

Probiotics are live microrganisms thought to be healthy for the host organism. According to the currently adopted definition by FAO/WHO, probiotics are: "Live microorganisms which when administered in adequate amounts confer a health benefit on the host".

Lactic acid bacteria (LAB) and bifidobacteria are the most common types of microbes used as probiotics; but certain yeasts and bacilli may

also be

helpful.

Probiotics are commonly consumed as part of fermented foods with specially added active live cultures; such as in yogurt, soy yogurt or as dietary supplements.

Probiotics are able to survive in the product and become active when entering the consumer’s gastrointestinal tract

Probiotic dairy products

Page 29: 9. Necesidades y oportunidad investigacion - Teixeira

Factors to be considered in the development of probiotic dairy products

the physiologic state of the probiotic

selection/identification of new probiotic strains

the physical conditions of product storage (eg, temperature)

the chemical composition of the product to which the probiotics are added (eg,

acidity, available carbohydrate content, nitrogen sources, mineral content, water

activity, and oxygen content)

development of techniques to enhance the survival of probiotic bacteria

interactions of the probiotics with the starter cultures (eg, bacteriocin

production, antagonism, and synergism)

understanding of probiotic health benefits.

Probiotic dairy products

Page 30: 9. Necesidades y oportunidad investigacion - Teixeira

Cheese whey valorization

Page 31: 9. Necesidades y oportunidad investigacion - Teixeira

Cheese whey

MILK

Casein (80%) Whey (20%)

s1-casein

s2-casein

-casein

-casein

-lactoglobulin (50%)

-lactalbumin (20%)

Bovine albumin serum (10%)

Immunoglobulins (10%)

Minor proteins (10%)

(e.g. LF, LP, PP, OPN, GMP)

Page 32: 9. Necesidades y oportunidad investigacion - Teixeira

Cheese whey

Whey

Growth factors

Hormones

Ultra-residual elements

Bioactive peptides

Minor proteins

Major proteinsGram/L Microgram/L

Miligram/L Nanogram/L

Residual elements

Main minerals

Milk fat

Lact

ose

Vita

min

s

Enzy

mes

Non proteic

nitrogen

Am

ino acids

Page 33: 9. Necesidades y oportunidad investigacion - Teixeira

Cheese whey

Page 34: 9. Necesidades y oportunidad investigacion - Teixeira

Cheese whey

Page 35: 9. Necesidades y oportunidad investigacion - Teixeira

Cheese whey

Source –

3A Business Consulting

Cheese whey proteins - Market growth rates

Page 36: 9. Necesidades y oportunidad investigacion - Teixeira

Cheese whey

Page 37: 9. Necesidades y oportunidad investigacion - Teixeira

Cheese whey

Page 38: 9. Necesidades y oportunidad investigacion - Teixeira

Whey to bioethanol…

8 million tons of lactose

(worldwide

annual

whey production)

~50% not transformed into added‐value                    sub‐products

~2.3 million

m3

ethanol

considering a 85% conversion yield

Worldwide production of bioethanol for fuel in 2008: ~65 million

m3

~3.5% of the 2008 world production~3.5% of the 2008 world production

Biotechnol Adv (2010) 28: 375-384

Cheese whey

Page 39: 9. Necesidades y oportunidad investigacion - Teixeira

Whey to Ethanol Industrial Plants

Ireland Carbery Milk ProductsCarbery Milk Products

since 1978, potable ethanol & ethanol for fuel (since 2005)11 000 tons ethanol /year

New Zealand FonterraFonterra

Anchor Ethanol (Fonterra subsidiary)potable ethanol & ethanol for fuel (since 2007)17 million liters ethanol /year

United States Golden CheeseGolden Cheese

Land OLand O’’LakesLakes

Germany MMüüllermilch llermilch

near Dresden; 10 million litres ethanol /year from dairy by-products

Cheese whey

Page 40: 9. Necesidades y oportunidad investigacion - Teixeira

Cheese whey

Page 41: 9. Necesidades y oportunidad investigacion - Teixeira

Prebiotics -

“selectively fermented ingredients that allow specific changes, both in the composition and/or activity in the gastrointestinal microbiota that confers benefits upon host well-being and health”

Classification criteria

Resistance to the upper gut tract

Fermentation by intestinal microbiota

Beneficial to the host health

Selective stimulation of probiotics

Stability to food processing treatments

Cheese wheyLactose as a source of prebiotics

Page 42: 9. Necesidades y oportunidad investigacion - Teixeira

Method % (p/p) rsd

Ash AOAC 31.013 0.02 4.2

Moisture AOAC 925.45 1.12 24.2

Protein Kjeldahl 0.15 6.2

Saccharides HPLC 99.5 3.6

Monosaccharides 2.2 4.9

Disaccharides 4.1 25.9

Oligosaccharides 94.0 1.7

Trisaccharides 41.8 2.5

Tetrasaccharides 41.6 1.9

Pentasaccharides 10.5 3.5

•Fermentation process –

high yields and productivity;

•Purified GOS are pure with ~99.5% of saccharides and ~94.0% of oligosaccharides;

•GOS are stable under severe gastric and duodenal conditions

•The PI score of the GOS sample is relatively high.

Cheese whey

Page 43: 9. Necesidades y oportunidad investigacion - Teixeira

Universidade do MINHO

Braga

Guimarães

Page 44: 9. Necesidades y oportunidad investigacion - Teixeira

Thank you for your attention !

Page 45: 9. Necesidades y oportunidad investigacion - Teixeira