859063351 00 PROV CalculationReportBifurcazioneFinal

download 859063351 00 PROV CalculationReportBifurcazioneFinal

of 18

Transcript of 859063351 00 PROV CalculationReportBifurcazioneFinal

  • 8/10/2019 859063351 00 PROV CalculationReportBifurcazioneFinal

    1/18

    TECHNICAL REPORT

    Document No. 859 063351

    Project PROVIDENCIA

    Author (s) Stoll V

    Date 21/07/2011

    Via Daniele Manin, 16/18

    I-36015 Schio (VI) Italia

    Title

    Calculation Report Bifurcation

    Summary

    The present report on the structural analysis of the inlet bifurcation of PROVIDENCIA shows that its

    design fulfils all requirements according to the standard ASME B.P.V.C. VIII-2 AD, Appendix 4, Article

    4.1 e Appendix 5, Article 5.1 applying the Design Pressure pk = pnom +30% = 0,5898 [MPa], theNominal Pressure pnom = 0,4537 [MPa] amd the Test Pressure pT = pk +50% = 0,8847 [MPa]. The

    Nominal Pressure is determined by the Static Head (51 m) and the difference of Centerlines of Turbine

    (250,64 masl) and Biforcation (256,50 masl). The following table summarizes the results obtained:

    Stress Range Eff. Value Allow. Limit Approval

    Primary General Membrane, pk 63 [MPa] 163,3 [MPa] OK

    Primary General Membrane, pT 95 [MPa] 310,5 [MPa] OK

    Primary Local Membrane, pk 72 [MPa] 245,0 [MPa] OK

    Primary Bending, pk 146 [MPa] 245,0 [MPa] OK

    Primary Membrane + Bending, pk 72 [MPa] 163,3 [MPa] OK

    Primary Local + Secondary, pk 104 [MPa] 490,0 [MPa] OK

    Max. Total Primary Stress, pT 224 [MPa] 490,0 [MPa] OK

    Cumulative Usage Factor (fatigue) 0,025 1 OK

    Copy to: CompleteReport

    Page. 1only

    Copy to: CompleteReport

    Page.1 only Author::

    Stoll/V

    Verified by:

    Cristian Vanzin

    HIDRO PROVIDENCIA SA

    ANDRITZ Hydro Srl.

    2

    1

    Proj. Manager (F. Trentin)

    Tech.Proj.Man. (E. Zordan)

    1

    1

    Approved by:

    G. Pasqualotto

    Relative report(s): Number of pages, incl. header: 18

    Calculation File(s):Associated Drawing n

    859 063 351

    Mod.

    00

    Page No.

    1

  • 8/10/2019 859063351 00 PROV CalculationReportBifurcazioneFinal

    2/18

    Andr itz Hydro sr l, Schio, Italia

    Technical Report n 859063351

    Dept

    U.T.

    Date

    Jul. 11

    Document n

    859 063 351

    Mod.

    00

    Page n

    2 / 18

    Content

    1. CALCULATION DATA ...............................................................................3

    1.1MATERIALS .................................................................................................................. 3

    1.2LOADSDEFINITION OF LOAD CASES ............................................................................ 3

    2. MODELLING..............................................................................................4

    2.1GEOMETRY AND MESH.................................................................................................. 4

    2.2LOADS AND CONSTRAINS .............................................................................................. 5

    3. CRITERIA ..................................................................................................7

    3.1CRITERIA FOR THE STATICANALYSIS ............................................................................. 7

    3.2DEFINITION OF THEADMISSIBLE LIMITS........................................................................... 8

    3.2.1 Limiting Stress Sm ........................................................................................................8

    3.2.2 Limiting Stress Sps........................................................................................................8

    3.2.3 Limiting Stress Exceptional..........................................................................................8

    3.3CRITERIA FOR THE LIFE STRESSANALYSIS ..................................................................... 9

    4. RESULTS ................................................................................................10

    4.1LOCALIZING OF STRESS ZONES ................................................................................... 10

    4.2LOAD CASE #1:DESIGN PRESSURE PK ........................................................................ 10

    4.2.1 Primary General Membrane............................................................................................10

    4.2.2 Primary Local Membrane ................................................................................................11

    4.2.3 Primary Bending..............................................................................................................12

    4.2.4 Primary Combined (Membrane & Bending) ....................................................................12

    4.2.5 Secondary Combined (Secondary Membrane & Bending) .............................................13

    4.2.6 Deformation.....................................................................................................................14

    4.2.7 Conclusion.......................................................................................................................15

    4.3LOAD CASE #2:NOMINAL PRESSURE PNOM ................................................................... 16

    4.4LOAD CASE #3:TEST PRESSURE PT ............................................................................ 16

    4.5.LOAD CASE #4:LIFE STRESSANALYSIS ...................................................................... 18

    5. CONCLUSION.........................................................................................18

  • 8/10/2019 859063351 00 PROV CalculationReportBifurcazioneFinal

    3/18

    Andr itz Hydro sr l, Schio, Italia

    Technical Report n 859063351

    Dept

    U.T.

    Date

    Jul. 11

    Document n

    859 063 351

    Mod.

    00

    Page n

    3 / 18

    1. Calculation Data

    1.1 Materials

    The bifurcation is realized in steel plates S355J2G3 EN 10025Note with its mechanical properties

    depending on the size of steel plates as indicated in the following table:

    Thickness s

    [mm]

    Tensile Strength

    RmMPa]

    Min. Tensile

    Strength Rm[MPa]

    Applicable

    parts

    Effective Thickness

    of parts [mm]

    Tensile

    Strength

    3 < s100 490 630 490 All 10 - 30

    Table 1.1.1

    Thickness s

    [mm]

    Min. Yield

    Strength Rs[MPa]Applicable parts

    Effective Thickness

    of parts [mm]

    10 < s16 355 Pipe Downstream 10

    10 < s16 355 Pipe Upstream 12

    10 < s16 355 Steel Cones 15

    Yield

    Strength

    16 < s40 345 Rib (Scythe) 30

    Table 1.1.2

    The general properties of carbon steel used for the FE- analysis:

    - youngs modulus E = 210.000 [MPa]

    - poisons ration = 0,3

    - density = 7.850 [kg/m3]

    1.2 Loads Defin ition of Load Cases

    The following load cases are considered for the analysis based on the standards of Andritz Hydro for

    operation of hydraulic turbines:Type of

    Application

    Load

    Case

    Type of

    caseCondition Description Applied Loads

    Intern. Pressure pkPressure at level 256,50 masl

    pk= 1,3 x pnom= 0,5898 [MPa]1 Normal Design

    Pressure LoadPartial Load* on outlet pipe

    60% x Aoutx pk= 1350 [kN]

    Intern. Pressure

    pnom

    Nominal Pressure at level 256,50 masl:

    pnom=0,4537[MPa] @ Qmax= 14 [m3/s]

    2 Normal Nominal

    Pressure LoadPartial Load* on outlet pipe

    60% x Aoutx pnom= 1030 [kN]

    Static

    3 Exceptional Test Test Pressure pTTest Pressure

    pT= 1.5*pk= 0,8847 [MPa]

    Life Stress

    Analysis4 Normal Fatigue

    Cycles of pressure

    fluctuation

    Conventional Life Cycle of 50 years with

    500 start-ups per year (from p=0 to pnom)

    of which 8000 cycles are considered to

    water hammer (pk)

    Table 1.2.1

    As defined in the above table for the fatigue analysis considers a complete pressure rise and a

    depressure to zero for each start-up and stop, which is a conservative approach. Further one third of

    the cycles are considered to be under the condition of water hammer. For the load this is a cycle form

    p=0 to pnom, and additionally a cycle from pnom to pk.

    Nota 1EN 10025: Hot-Rolled Products of Non-Alloyed Structural Steels International Conformity

  • 8/10/2019 859063351 00 PROV CalculationReportBifurcazioneFinal

    4/18

    Andr itz Hydro sr l, Schio, Italia

    Technical Report n 859063351

    Dept

    U.T.

    Date

    Jul. 11

    Document n

    859 063 351

    Mod.

    00

    Page n

    4 / 18

    2. Modelling

    2.1 Geometry and Mesh

    The latest manufacturing drawing (dwg. no. 859055104) is the basis of the calculation models. The 3-D

    models for the calculation are created in UNIGRAPHICS. For simplification the welds have beenmodelled as part of the sheet metal as they look like after manufacturing. For meshing, calculation and

    evaluation of the results the finite element program ANSYS 12.1 was used. The mesh consists of

    quadratic tetrahedron with 10 nodes. In total there are 489211 nodes & 254786 elements.

    Figure 2.1.1

  • 8/10/2019 859063351 00 PROV CalculationReportBifurcazioneFinal

    5/18

    Andr itz Hydro sr l, Schio, Italia

    Technical Report n 859063351

    Dept

    U.T.

    Date

    Jul. 11

    Document n

    859 063 351

    Mod.

    00

    Page n

    5 / 18

    2.2 Loads and Constrains

    The inlet and the outlet pipes have been added to apply a frictionless bearing at their ends and the

    pressure has been applied at the inside of the structure. Further the pressure load effects have been

    applied on the outlet pipes. Please note that only 60% of the force created by the pressure load on thearea has been applied, as this is the conventional portion transferred into the structure. The other

    portion of 40% is usually transferred into the surrounding oncrete.

    The thickness of the steel plate on the upstream side has been considered to be 12 mm in order to

    have a safe transmission at the welding between the steel pipe and the inlet cone. However the

    penstock does not necessarily have to be 12 mm on its total length. From a level of approx. 265 masl

    and above the thickness could be reduced to 10 mm.

    Figure 2.2.1

  • 8/10/2019 859063351 00 PROV CalculationReportBifurcazioneFinal

    6/18

    Andr itz Hydro sr l, Schio, Italia

    Technical Report n 859063351

    Dept

    U.T.

    Date

    Jul. 11

    Document n

    859 063 351

    Mod.

    00

    Page n

    6 / 18

    Pressure only:

    Figure 2.2.2

    Forcse from pressure load Pressure only:

  • 8/10/2019 859063351 00 PROV CalculationReportBifurcazioneFinal

    7/18

    Andr itz Hydro sr l, Schio, Italia

    Technical Report n 859063351

    Dept

    U.T.

    Date

    Jul. 11

    Document n

    859 063 351

    Mod.

    00

    Page n

    7 / 18

    3. Criteria

    3.1 Criteria for the Static Analysis

    The analysis of the static loads is executed according to the standard ASME BPVC VIII-2 Appendix 4applying the method of Stress Categories, which is outlined below:

    Figure 3.1.1

  • 8/10/2019 859063351 00 PROV CalculationReportBifurcazioneFinal

    8/18

    Andr itz Hydro sr l, Schio, Italia

    Technical Report n 859063351

    Dept

    U.T.

    Date

    Jul. 11

    Document n

    859 063 351

    Mod.

    00

    Page n

    8 / 18

    3.2 Definition of the Admissible Limits

    3.2.1 Limit ing Stress Sm

    The limiting stress Smis defined in ASME II Part as the lower value of 1/3 of the Tensile Strength or 2/3

    of the Min. Yield Strength, which gives in our case the following values:

    Rib (Scythe): thickness < 40 [mm] Sm= Rm/ 3 = 490 / 3 = 163,3 [MPa]

    Steel Cones: thickness < 16 [mm] Sm= Rm/ 3 = 490 / 3 = 163,3 [MPa]

    The value of the factor k for the load cases 1 & 2 under the condition Normal according to the definition

    in 1.2 equals to k = 1.

    3.2.2 Limit ing Stress Sps

    With respect to the limiting stress Sps it is proposed in the Appendix 4, 4.134-b to summarize the

    primary and the secondary stresses excluding the peak stresses.

    Rib (scythe): applying 7.0704.0490

    345

    ==m

    s

    R

    R, follows Sps= 3*Sm= 490 [MPa]

    Steel cones: applying 7.0724.0490

    355==

    m

    s

    R

    R, follows Sps= 3*Sm= 490 [MPa]

    These considerations do not release to check in parallel all other criteria, such as the low cycle fatigue

    and further that the limiting stress criteria are applied to obtain a safe behaviour even with local effects

    in yielding zones which are always based on data from the linear elastic behaviour.

    3.2.3 Limit ing Stress Exceptional

    Finally the stress limits during the exceptional pressure test are defined by ASME Test Load case and

    are therefore based on different limitations (ASME VIII 2, Part AD, AD-151.1):

    The primary membrane stress must be less than 90 [%] of Yield Strength Rs:

    Rib (scythe): Pm0,9 x 345 = 310, 5 [MPa]

    Steel cone: Pm0,9 x 355 = 319, 5 [MPa]

    The sum of all Primary Membrane Stresses is based on a function referred to the Primary

    Meme bran Stress:

    o in case m0,67 x Rsthan Pm+ Pb1,35 x Rs, which means that for:

    Rib (scythe): Pm+ Pb466 [MPa] if m231 [MPa]

    Steel cone: Pm+ Pb479 [MPa] if m240 [MPa]

    o

    in case 0,67 x Rs