8-Bit Kogge Stone Adder Ppt

25
8bit Kogge Stone Adder EE619 Course Project EE619 Course Project Ashish Bhatia (Y5827121) Anurag Sindhu(Y5106)

description

koggestone adder

Transcript of 8-Bit Kogge Stone Adder Ppt

Page 1: 8-Bit Kogge Stone Adder Ppt

8‐bit Kogge Stone Adder

EE619 Course ProjectEE619 Course Project

Ashish Bhatia  (Y5827121)Anurag Sindhu(Y5106)g ( )

Page 2: 8-Bit Kogge Stone Adder Ppt

Kogge Stone Adder(KSA)Kogge Stone Adder(KSA)

• Most popular carry look ahead adderMost popular carry look ahead adder

• Fastest adder design 

C i f i d• Fast Computation at cost of increased area

Page 3: 8-Bit Kogge Stone Adder Ppt

TheoryTheory

• Pre processingPre processing– Generate (pi, gi) from (Ai, Bi)

p = A xor B– pi = Ai xor Bi– gi = Ai and Bi

Page 4: 8-Bit Kogge Stone Adder Ppt

TheoryTheory

• Carry look ahead networkCarry look ahead network – Generate (Pij, Gij) from (Gi, Pi) and (Gj, Pj)

P = P and P– Pi:j  = Pi:k+1 and Pk:j– Gi:j  = Gi:k+1 or (Pi:k+1 andGk:j )

Page 5: 8-Bit Kogge Stone Adder Ppt

TheoryTheory

• Post processingPost processing– Sumi = pi xor Carryi‐1C = G or (C and P )– Ci = Gi:0   or (Cin and Pi:0)

Page 6: 8-Bit Kogge Stone Adder Ppt

Ill iIllustration

Page 7: 8-Bit Kogge Stone Adder Ppt

B3=1 A3=1 B2=1 A2=0 B1=0 A1=1 B0=0 A0=1 Cin=0

g3=1 p3=0 g2=0 p2=1 g1=0 p1=1 g0=0 p0=1g3 p3 g2 p2 g1 p1 g0 p0

Pre processingPre processing– pi = Ai xor Bi

d– gi = Ai and Bi

Page 8: 8-Bit Kogge Stone Adder Ppt

B3=1 A3=1 B2=1 A2=0 B1=0 A1=1 B0=0 A0=1 Cin=0

g3=1 p3=0 g2=0 p2=1 g1=0 p1=1 g0=0 p0=1g3 p3 g2 p2 g1 p1 g0 p0

G3:2=1 P3:2 =0

G2:1=0 P2:1 =1

G1:0=0 P1:0 =1

G0=C0 =0

Carry look ahead networkCarry look ahead network – Pi:j  = Pi:k+1 and Pk:j– G = G or (P andG )– Gi:j  = Gi:k+1 or (Pi:k+1 andGk:j )

– Ci   = Gi:0   or (Cin and Pi:0)

Page 9: 8-Bit Kogge Stone Adder Ppt

B3=1 A3=1 B2=1 A2=0 B1=0 A1=1 B0=0 A0=1 Cin=0

g3=1 p3=0 g2=0 p2=1 g1=0 p1=1 g0=0 p0=1g3 p3 g2 p2 g1 p1 g0 p0

G3:2=1 P3:2 =0

G2:1=0 P2:1 =1

G1:0=0 P1:0 =1

G0=C0 =0

G3:0=1 P3:0 =0

G1 = C1 =0G2 = C2 =0

3:0 

Carry look ahead networkCarry look ahead network – Pi:j  = Pi:k+1 and Pk:j– G = G or (P andG )– Gi:j  = Gi:k+1 or (Pi:k+1 andGk:j )

– Ci   = Gi:0   or (Cin and Pi:0)

Page 10: 8-Bit Kogge Stone Adder Ppt

B3=1 A3=1 B2=1 A2=0 B1=0 A1=1 B0=0 A0=1 Cin=0

g3=1 p3=0 g2=0 p2=1 g1=0 p1=1 g0=0 p0=1g3 p3 g2 p2 g1 p1 g0 p0

G3:2=1 P3:2 =0

G2:1=0 P2:1 =1

G1:0=0 P1:0 =1

G0=C0 =0

G3:0=1 P3:0 =0

G1 = C1 =0G2 = C2 =0

3:0 

G3 = C3 =1 Carry look ahead networkCarry look ahead network – Pi:j  = Pi:k+1 and Pk:j– G = G or (P andG )– Gi:j  = Gi:k+1 or (Pi:k+1 andGk:j )

– Ci   = Gi:0   or (Cin and Pi:0)

Page 11: 8-Bit Kogge Stone Adder Ppt

Cin=0

p3=0 p2=1 p1=1 p0=1

• Post processing

p3 p2 p1 p0

G0=C0 =0– Si = pi xor Ci‐1

G1 = C1 =0G2 = C2 =0

G3 = C3 =1

S0= 1S1= 1S2= 1S3= 0Cout = 1 0123out 

Page 12: 8-Bit Kogge Stone Adder Ppt

B3=1 A3=1 B2=1 A2=0 B1=0 A1=1 B0=0 A0=1 Cin=0

g3=1 p3=0 g2=0 p2=1 g1=0 p1=1 g0=0 p0=1g3 p3 g2 p2 g1 p1 g0 p0

A = 1011

G3:2=1 P3:2 =0

G2:1=0 P2:1 =1

G1:0=0 P1:0 =1

G0=C0 =0B = 1100Cin = 0

S = 0111

G3:0=1 P3:0 =0

G1 = C1 =0G2 = C2 =0

S   0111Ccout = 1

3:0 

G3 = C3 =1

S0= 1S1= 1S2= 1S3= 0Cout = 1 0123out 

Page 13: 8-Bit Kogge Stone Adder Ppt

SpecificationsSpecifications

• Max frequency = 374.94 MHzMax frequency   374.94 MHz

• Area = 440 µm X 300 µm = 0.132 mm^2

• Power = 460 uWPower = 460 uW

Page 14: 8-Bit Kogge Stone Adder Ppt

Worst Case DelayWorst Case Delay

Page 15: 8-Bit Kogge Stone Adder Ppt

Power ConsumptionPower Consumption

Avg Power = (1.224*10^‐12)*fmax = 0 46 mW0.46 mW

Page 16: 8-Bit Kogge Stone Adder Ppt

Implementation DetailsImplementation Details

• Designed schematic of 8‐bit KSA (Full adder)es g ed sc e at c o 8 b t S ( u adde )– Technology        = AMS 0.35 µm (4 metal layer)– 518 MOSFETs (=259 CMOS)– Cadence Virtuoso Schematic Editor– Spectre (simulator)

• Designed complete layout– Cadence Virtuoso Layout Editor

f l d if d i• Successful DRC and LVS to verify design• Synthesis – Xilinx Spartan‐3 FPGA

Page 17: 8-Bit Kogge Stone Adder Ppt

SchematicSchematic

Page 18: 8-Bit Kogge Stone Adder Ppt

LayoutLayout

Page 19: 8-Bit Kogge Stone Adder Ppt

DRC ReportDRC Report

Page 20: 8-Bit Kogge Stone Adder Ppt

LVS ReportLVS Report

Page 21: 8-Bit Kogge Stone Adder Ppt

Synthesis ReportSynthesis Report

Page 22: 8-Bit Kogge Stone Adder Ppt

AdvantagesAdvantages

• High SpeedHigh Speed

• Low and regular Fan out

l i G• Regular structure – easy mapping to FPGA fabric

Page 23: 8-Bit Kogge Stone Adder Ppt

Main ChallengesMain Challenges

• Layout DesignLayout Design

• DRC constraints

S i• LVS constraints

Page 24: 8-Bit Kogge Stone Adder Ppt

ConclusionConclusion

• We designed and implemented 8 bit Kogge‐We designed and implemented 8 bit KoggeStone Tree Adder that operates at 375 MHz(f ) and complete layout takes an areaMHz(fmax) and complete layout takes an area of 440 X 300 um^2

24

Page 25: 8-Bit Kogge Stone Adder Ppt

ReferencesReferences

• Swaroop Ghosh Patrick Ndai Kaushik Roy "ASwaroop Ghosh, Patrick Ndai, Kaushik Roy.  A Novel Low Overhead Fault Tolerant Kogge‐Stone Adder Using Adaptive Clocking" DATEStone Adder Using Adaptive Clocking . DATE 2008.

• J Rabaey "Digital Integrated Circuits: A Design• J. Rabaey,  Digital Integrated Circuits: A Design Perspective", Prentice Hall, 1996.