7.Calculus of Residues

46
7. Calculus of Residues 0 ,1 0 2 circles once n n C z z i dz C z Residue Theorem : 0 n n n f z a z z 1 2 C f z ia dz a 1 = residue of f at z 0 . For a meromorphic function f with n isolated singularities, one can deform C to circumvent them all so that 1 0 i n i C C f z f z dz dz 1, 1 2 n i i C f z i a dz Residue Theorem a 1, i = residue at singularity i.

description

7.Calculus of Residues. Residue Theorem :. a 1 = residue of f at z 0. . For a meromorphic function f with n isolated singularities, one can deform C to circumvent them all so that. . Residue Theorem. a  1, i = residue at singularity i. Computing Residues. - PowerPoint PPT Presentation

Transcript of 7.Calculus of Residues

Page 1: 7.Calculus of Residues

7. Calculus of Residues

0 , 1

0

2

circles once

n

n

C

z z id z

C z

Residue Theorem :

0

n

nn

f z a z z

12

C

f z i ad z a1 = residue of f at z0 .

For a meromorphic function f with n isolated singularities,one can deform C to circumvent them all so that

1

0

i

n

iC C

f z f zd z d z

1,1

2n

ii

C

f z i ad z

Residue Theorem

a1, i = residue at singularity i.

Page 2: 7.Calculus of Residues

Computing Residues 0

n

nn

f z a z z

1

0 1 00

n

nn

z z f z a a z z

0

1 0limz z

a z z f z

If f has a simple pole at z0 , 01

n

nn

f z a z z

simple poles

If f has a pole of order m at z0 , 0

n

nn m

f z a z z

2

1

0 0 1 0 00 0

mm k m n m

nm kk n

z z f z a z z a z z a z z

0

1

1 01

1lim

1 !

mm

mz z

da z z f z

m d z

poles of order m

Page 3: 7.Calculus of Residues

Example 11.7.1. Computing Residues

Some examples :

1/4

1 1 1 1Res ; lim

4 1 4 4 4 1zz z

z z

1

4

0

1 1Res ; 0 lim

sin sinzz z

z z

1

/2

/22 22

ln lnRes ; 2 lim 2

4 4i

i

z e

z zz e z i

z z

ln 2 / 2

4

i

i

22 2Res ; lim

sin sinz

z d zz z

z dz z

2lim 3 2 cot cscz

z z z z z z

1

/22

lnlim

2iz e

z

z i

Mathematica

Page 4: 7.Calculus of Residues

2 31

cotRes ; 0

2

1 1 11

2 2 3

zz

z z

z za of O z O z

z z

31cot

3

xx O x

x

1

4

21 11

2 2 2

zO z

z

1/ 21

1Res ; 0 1ze z a of O z

z

1

Alternatively, z = 0 is a pole of 2nd order :

2

0

cot cotRes ; 0 lim

2 2z

z d zz z

z z d z z z

2

20

cot cot csclim

2 22z

z z z z z

z zz

1

4

Mathematica

Page 5: 7.Calculus of Residues

Cauchy Principal ValueSimple pole on path :

Eg.0

1b

a

I d xx x

Path: a b on real axis.

Simple pole at x = x0.

At x0, integral diverges as 0ln x x

Cauchy principal value of a real integral with a simple pole at x0 is defined as

0

0

0lim

xb b

a a x

d x f x d x f x

P

But the divergence cancels out if the pole is approached from both sides in a limiting process.

Caution: The real part of such integral is often defined by its Cauchy principal value.

However, the integral itself is actually not convergent. For example, the value of the limit changes if we use different values of for different sides of x0 .

Mathematica

Page 6: 7.Calculus of Residues

Example 11.7.2. A Cauchy Principal Value

0

sin xI d x

x

1 sin

2

xd x

x

0

1 sinlim

2

xI d x

x

P

02

i x i xe ed x

ix

0 0

1

2

i x i xe ed x d x

i x x

1

2

i xed x

i x

0lim

2

i xed x

ix

Page 7: 7.Calculus of Residues

Contour Integral & Cauchy Principal Value

Contour C = ( ) + C (x0) + ( + ) + C .

CC C

f z d x f x d z f z d z f zd z

P

0

Res

2Res Res

jj

jj

z

iz x

zj = poles inside C (excluding x0 )

0

0

Res

Res 2Res Res

jj

jj

z

d x f x i x iz x

P

0

C

d z f z

0Res

rC

d z f z i x

0Res 2 Res jj

d x f x i x i z

P

Mathematica

Contribution of a pole is halved if it lies on the contour.

Page 8: 7.Calculus of Residues

Pole Expansion of Meromorphic Functions

Expansion of f about

1.A regular point Taylor series.

2.A pole Laurent series.

3.All simple poles (Mittag-Leffler) pole expansion.

Page 9: 7.Calculus of Residues

Consider where CN is a circle centered at w=0, of radius RN,

that encloses the 1st N poles of f closest to w=0.

Mittag-Leffler Theorem

Let f be meromorphic with simple poles at zj 0, (with residue bj) ; j = 1,..., M.If for large |z| , then

1

1 10

M

jj j j

f z f bz z z

Proof :

N

N

C

f wI d w

w w z

For RN ,

0NN

N

f RI

R

0

f z

z

1

02

Nj

Nj j j

bf f zI i

z z z z z

1

00

Mj

j j j

bf f z

z z z z z

QED

Page 10: 7.Calculus of Residues

Example 11.7.3.Pole Expansion of tan z

1

1 10

M

jj j j

f z f bz z z

sin

tancos

i z i z

i z i z

z e ez

z i e e

poles at 2 12jz j 0,1, 2,j

Res tan ; 2 12jb z j

2 1 2 1

2 2

2 1 12lim limcos sinz j z j

z j

z z

1jb

Let

0

1 1 1 1tan

2 1 / 2 2 1 / 2 2 1 / 2 2 1 / 2j

zz j j z j j

0

1 1

2 1 / 2 2 1 / 2j z j z j

2 2 20

2tan

1 / 2j

zz

j z

tan 0 0

tan 1lim lim 0z z

z

z z

Page 11: 7.Calculus of Residues

Example 11.7.4.Pole Expansion of cot z

1

1 10

M

jj j j

f z f bz z z

coscot

sin

zz

z

has poles at jz j 1, 2,j

Res ;jb f z j

2 4

3 5

11cos 2

1sin6

z j O z jz

z z j z j O z j

1jb

Let

Similarly

1

1 1 1 1

j

f zz j j z j j

0 0f

lim 0z

f z

z

has at z = 0 with residue 0 0

coslim lim cos 1

sinz z

z zz

z

1cotf z z

z

cos sin

sin

z z z

z z

2 2 21

2

j

z

z j

2 2 2

1

1 2cot

j

zz

z z j

2 2 2

0

2 1sec

1 / 2

j

j

jz

j z

2 2 2

1

1 2csc

j

j

zz

z z j

Page 12: 7.Calculus of Residues

if only zero or pole enclosed by C is z0.

Set where g is regular at z0.

Counting Poles & Zeros

Let z0 be either a pole or zero of f (z).

0f z z z g z

0

f z g z

f z z z g z

1

0 0f z z z g z z z g z

2

C

f zid z

f z

2 f f

C

f zi N Pd z

f z

Nf = Sum of the orders of zeros of f enclosed by C.

Pf = Sum of the orders of poles of f enclosed by C.

zero 0order of the

pole 0

Page 13: 7.Calculus of Residues

Rouche’s Theorem

If f (z) & g(z) are analytic in the region R bounded by C and | f (z) | > | g(z) | on C,

then f (z) & f (z) + g(z) have the same number of zeros in R.

2 f

C

f zi Nd z

f z

f (z) & g(z) are analytic Proof :

2 f f

C

f zi N Pd z

f z

lnC f argCi f

C x = change of x going around C once.

arg

2C

f

fN

arg

2C

f g

f gN

1g

f g ff

arg arg arg 1

gf g f

f

f g Re 1g g

f f

Re 1 0

g

f

arg 1

2

g

f

arg 1C

g

f

arg arg

2 2C Cf g f

f g fN N

integer

integer

Page 14: 7.Calculus of Residues

To find NF for , let with F z f z g z

Let . Find NF for

Example 11.7.5. Counting Zeros

3 2 11F z z z 1 3z

1z

11f z 3 2g z z z so that on C : |z| = 1f g

i.e., 0F fN N

To find NF for , let with F z f z g z 3z

3f z z 2 11g z z so that on C : |z| = 3f g

1 3 3F FN z N z

3ln 13

C C

d zd z d z

d z z 3 2 i 3FN

Page 15: 7.Calculus of Residues

Product Expansion of Entire Functions

f (z) is an entire function if it is analytic for all finite z.

Let f (z) be an entire function. Then

f zF z

f z

is meromorphic (analytic except for poles for all finite z).

Poles of F are zeros of f.

If the M zeros, zj , of f are all simple (of order 1), then zj are simple poles of F with

1

1 10

M

j j j

F z Fz z z

1

1 10

M

jj j j

f z f bz z z

1jb so that

0

ln ln 0

zf z

d z f z ff z

10

0 ln

zM

j

j j j

z z zd z F z zF

z z

Page 16: 7.Calculus of Residues

1

ln ln 0 0 lnM

j

j j j

z z zf z f zF

z z

f zF z

f z

1

exp 0 exp ln 10

M

j j j

f z z zz F

f z z

/

1

00 exp 1

0j

Mz z

j j

f zf z f z e

f z

/

; 0

sin1 z j

j j

z ze

z j

2

1

1j

z

j

Ex.11.7.5

2

1

cos 11 / 2j

zz

j

LikewiseGamma function

Page 17: 7.Calculus of Residues

Set

8. Evaluation of Definite Integrals

Trigonometric Integrals, Range (0,2)

2

0

sin , cosI d f

f = rational function & finite everywhere

iz e id z ie d

d zd i

z

1

sin2

z z

i

1

cos2

z z

1 1

,2 2

C

d z z z z zI i f

z i

C = unit circle at z = 0.

12 Res ; j

j

I f zz

zj = poles inside C

Page 18: 7.Calculus of Residues

Example 11.8.1.Integral of cos in Denominator

12 Res ; j

j

I f zz

2

01 cos

dI

a

1a

1

1

1 / 2C

d zI i

z a z z

2

2 1

2 / 1C

i d za z a z

Poles at 2

1 2 44

2z

a a

211 1 a

a inside

outsideC

1 2 1

Res ;2 2 /

f zz a z a

2

1

1 a

2

2

1I

a

Page 19: 7.Calculus of Residues

Example 11.8.2.Another Trigonometric Integral

12 Res ; j

j

I f zz

2

0

cos2

5 4cos

dI

2 2

1

/ 2

5 4 / 2C

z zd zi

z z z

4

4 3 2

1 1

4 5 / 2C

zi d z

z z z

4

2

1 1

4 1 / 2 2C

zi d z

z z z

Only poles at 0 & ½ are inside C.

4

0

1 1 1Res ; 0

4 1 / 2 2z

d zf

z d z z z

3 4 4

2 2

0

1 4 1 1

4 1 / 2 2 1 / 2 2 1 / 2 2z

z z z

z z z z z z

1 1 1

4 1 / 4 2 1 / 2 4

1 5

4 2

5

8

Page 20: 7.Calculus of Residues

2

0

cos2

5 4cos

dI

1 5

Res ; 08

fz

4

2

1 1

4 1 / 2 2C

zi d z

z z z

4

21/2

1 1 1 1Res ; lim

2 4 2z

zf

z z z

1 /16 11

4 1 / 4 3 / 2

1 17

4 6

17

24

12 Res ; j

j

I f zz

5 17

28 24

I 6

Page 21: 7.Calculus of Residues

Integrals, Range (, )

I d x f x

f is meromorphic in upper half z-plane, where lim 0z

z f z

RC C

Id z f z d z f z C = Cx + CR R

2 Res ; jj

i f z z zj in upper plane

Since (see next page for proof )

lim 0

R

R

C

d z f z

lim 0z

z f z

on upper plane

2 Res ; jj

I i f z z zj in upper planeObviously, one can also close the contour in the lower half plane.

Page 22: 7.Calculus of Residues

lim 0

RC

RI d z f z

lim 0

zz f z

on arc from 1 2

R

1

2

CRProof :

2

1

lim i i

RI i d Re f R e

iz R e

2

1

lim i

RI d R f R e

2

1

limz

d z f z

0QED

Page 23: 7.Calculus of Residues

Example 11.8.3. Integral of Meromorphic Function

2

01

d xI

x

2

1

2 1

d x

x

2

1

2 1C

d z

z

1 1Res

2 2z

z i

Poles are at . But only z+ is inside C.z i

2

I

Alternatively 1

0tanI x

2

2 ResiII z

1 1Res

2 2z

z i

i

i

2 Res zII i

Page 24: 7.Calculus of Residues

Integral with Complex Exponentials

i a xI d x e f x

a > 0 & real.

f analytic in upper plane, where lim 0z

f z

R lim limi a z ia x a y

z ze f z e e f z

In upper plane, y > 0

0

2 Res ;i a zj

j

I i e f z z zj = poles of f in upper plane

lim a y

ze f z

lim 0

R

i a z

C

Rd z e f z

Jordan’s lemma

Page 25: 7.Calculus of Residues

Example 11.8.4. Oscillatory Integral

2

0

cos

1

xI d x

x

2

1 cos

2 1

xd x

x

2

1Re

2 1

i xed x

x

2

1Re

2 1

i z

C

ed z

z

Poles are at z i

Only z+ is in upper plane with

1Re 2 Res

2I i z

Res2

i zez

z

1

2ei

2

Ie

Page 26: 7.Calculus of Residues

Example 11.8.5. Singularity on Contour of Integration

0

sin xI d x

x

1 sin

2

xd x

x

P1

Im2

i xed x

x

P

i z i z

C

e ed z d z

z z

P 0

i zed z i

z

1Im

2I i

0i ze

d zz

2

I

i xe

d x ix

P

Page 27: 7.Calculus of Residues

Another Integration TechniqueExample 11.8.6. Evaluation on a Circular Sector

3

01

d

xI

x

3

0

31 1rCC CC

d z d z

z z

Poles are at exp 23j

iz j

/3 5 /3, ,i i ie e e

for j = 0,1,2

On C , iz r e 3 3 3 iz r e id z e d r

0

3 3 31 1

i

i

C

d z ed r

z r e

Set & 3 1ie 2

3

2 /3i Ie 2 /33 3

0

1

1 1C

id ze d r

z r

Branch cut

Page 28: 7.Calculus of Residues

2 /3

3 3 3

0

lim1 1

C

i

iR

d z R ei d

z R e

2 /301 2 Resi Ie i z

0 20

1Res

3z

z 2 /31

3ie

2 /3

2 /3

2

3 1

i

iI

i e

e

2 /33 1

C

id z

zIe

0

3 3 30

2 /3

lim1 1

r

i

ir

C

d z r ei d

z r e

On Cr , iz r e id z i r e d

0

On C , iz R e id z iR e d

0

/3 /3

2

3

i

i i

i e

e e

1

3 sin / 3

2

3 3I

3

01

d

xI

x

/30

iz e

Page 29: 7.Calculus of Residues

Avoidance of Branch PointsExample 11.8.7. Integral Containing Logarithm

3

0

ln

1

x

xI

d x

3

0

3

ln ln

1 1rCC C C

z d z z d z

z z

Poles are at exp 23j

iz j

/3 5 /3, ,i i ie e e

for j = 0,1,2

On C , iz r e 3 3 3 iz r e id z e d r

0

3 3 3

lnln

1 1i

C

ir i ez d zd r

z r e

Set 3 1ie 2

3

22 /3 2

33i I

ie

2 /33 3

0

ln ln 2 / 3

1 1C

iz d z r ie d r

z r

Branch cut

3

0

2

1 3 3

d x

x

Page 30: 7.Calculus of Residues

2 /3

3 3 3

0

lnlnlim

1 1C

i

iR

R e R iz d zi d

z R e

2

2 /3 2 /30

21 2 Res

33i i i

e e zI i

00 2

0

lnRes

3

zz

z 2 /3

9ii

e 2 2

2 /3 2 /32 /3

1 2 2

1 3 93i i

i

ie

eI e

22 /3

3

2

1 33i

C

d z ie

zI

0

3 3 30

2 /3

lnlnlim

1 1rC

i

ir

r e r iz d zi d

z r e

On Cr , iz r e id z i r e d

0

On C , iz R e id z iR e d

0

Branch cut

3

0

ln

1

x

xI

d x

0lim ln 0r

r r

lnlim 0R

R

R

/30

iz e

22

27I

Ex.11.8.6

Page 31: 7.Calculus of Residues

Exploiting Branch CutsExample 11.8.8. Using a Branch Cut

2

01

px d xI

x

0 1p

2 21 1r CCC C C

p pz d z z d z

z z

Branch cut

i

i

22 20

lim1 1

rp p

i

C

p

r

z d z x d xe

z x

On C , z x i d z d x 2p p i pz x e

2i pe I

On C+ , z x i d z d x p pz x

2 20lim

1 1

p

C

p

r

r

z d z x d x

z x

I

Page 32: 7.Calculus of Residues

2

01

px d xI

x

0 1p

2 21 1r CCC C C

p pz d z z d z

z z

Branch cut

i

i

0

2 2 20

2

lim1 1

r

p p i p

ir

C

z d z r e d

z r e

On Cr , iz re id z ire d p p i pz r e

22

11

p

C

i p

C

z d ze I

z

0

2

2 2 2

0

lim1 1

C

p p i p

iR

z d z R e d

z R e

On C , iz Re id z iRe d p p i pz R e

0 22

11

pi p

C

z d ze I

z

Page 33: 7.Calculus of Residues

2

01

px d xI

x

0 1p

Branch cut

i

i

22

11

pi p

C

z d ze I

z

21 2 Resi pj

j

e I i z

z iPoles are at

Res2

pzz

z

/2

3 /2

1

2

i p

i p

e

i e

1

2pz

i

/2 3 /22

2 1

1 2i p i p

i p

iI e e

e i

/2 3 /2

21

i p i p

i p

e e

e

/2 /2i p i p

i p i p

e e

e e

sin / 2

sin

p

p

2cos / 2I

p

/2

3 /2

i pp

i p

ez

e

Page 34: 7.Calculus of Residues

Example 11.8.9. Introducing a Branch Point

Ex.11.8.6-7 evaluated 1st ,

then use it to get with a contour that avoids the branch cut.

3

01

d x

x

3

0

ln

1

xd x

x

Here, we pretend to evaluate using a branch cut.

But ends up with .

3

0

ln

1

xd x

x

3

01

d x

x

Page 35: 7.Calculus of Residues

3 3

ln ln

1 1rC CC CC

z zd z d z

z z

3 30

ln ln 2lim

1 1

r

C

r

z x id z d x

z x

On C , z x i d z d x ln ln 2z x i

3

0

21

d xI i

x

On C+ , z x i d z d x

3 30

ln lnlim

1 1r

rC

z xd z d x I

z x

3

0

ln

1

xI d x

x

ln lnz x

3 3

0

ln2

1 1CC

z d xd z i

z x

Page 36: 7.Calculus of Residues

3 3

0

ln2

1 1CC

z d xd z i

z x

0

3 3 30

2

lnlnlim

1 1rC

iir

ir r izd z d e

z r e

On Cr , iz re id z ire d

0

2

3 3 3

0

lnlnlim

1 1i

iR

C

iR R izd z d e

z R e

On C , iz Re id z iRe d

0

3 3

0

ln2

1 1C

z d xd z i

z x

ln lnz r i

0lim ln 0r

r r

ln lnz R i

lnlim 0R

R

R

2 Res jj

i z

3

0

Res1 j

j

d xz

x

Page 37: 7.Calculus of Residues

Poles are at exp 23j

iz j

/3 5 /3, ,i i ie e e for j = 0,1,2

2

lnRes

3j

jj

zz

z 0 2 /3

/ 3Res

3 i

iz

e

3

0

Res1 j

j

d xz

x

2 /3

9ii e

3i

2 10 /3

5 / 3Res

3 i

iz

e

10 /35

9ii e 1 2

Res3 i

iz

e

2 /3 4 /33

0

3 51 9

i id xi e e

x

4 /35

9ii e

1 3 1 33 5

9 2 2 2 2i i i

3

0

2

1 3 3

d x

x

Page 38: 7.Calculus of Residues

Exploiting PeriodicityExample 11.8.10. Integrand Periodic on Imaginary Axis

0R R

i + R i R

0sinh

xI d x

x

1

2 sinh

xd x

x

sinh sinh cosh cosh sinhx i y x i y x i y sinh cos cosh sinx y i x y

sinh sinhn

x ni x n = integers

sinh i n = 0 but x = 0 is not a pole since

i

0lim 1

sinhx

x

x

since sinh x is odd sinh sinhiC

z x id z d x

z x i

Psinh

x id x

x

P 2I

10

sinhd x

x

P

On C / , & 0,y

limsinh sinhR

z R i y

z R i y

lim 2

RR

R

e 0

0sinh sinh

C C

z zd z d z

z z

Page 39: 7.Calculus of Residues

2sinh

iC

zd z I

z 0

sinh sinhC C

z zd z d z

z z

sinh sinhix C CC C C

z zd z

z z

Resi i Pole on path

counted as half.

2sinh

xC

zd z I

z

Rescosh

ii

i

i2

4I

Page 40: 7.Calculus of Residues

Consider

where f is meromorphic with poles at zj .

9. Evaluation of Sums

is meromorphic with simple poles atcos

cotsin

zz

z

0, 1,nz n

cos 1Res cot ;

cos

nz n

n

can be used to evaluate series.

cot

N

N

C

I d z f z z

inside

2 Res cot ;j N

N

N jn N z C

I i f n f z z z

lim 0NNI

Res cot ; j

n j

f n f z z z

Page 41: 7.Calculus of Residues

Example 11.9.1.Evaluating a Sum

2 21

1

n

Sn a

a integer

2 2

1

n n a

S 2

12S

a

1

2 2

1

n

Sn a

Res cot ; jn j

f n f z z z

coth a

a

S

Poles of at withz i a2 2

1

z a

2 2

cot cotRes ;

2

z zz

z a z

cot

2

i a

i a

coth

2

a

a

2

1 coth 1

2

aS

a a

Page 42: 7.Calculus of Residues

Other Sum Formulae

Res cot ; jn j

f n f z z z

cosRes cot ; 1

cos

nz n

n

Res csc ;n

jn j

f n f z z z

1Res csc ;

cosn

z nn

1Res tan ;

2 jn j

f n f z z z

sin 1 / 21Res tan ; 1

2 sin 1 / 2

nz n

n

1 1Res sec ;

2 sin 1 / 2n

z nn

1Res sec ;

2n

jn j

f n f z z z

Page 43: 7.Calculus of Residues

has 2nd order poles at z = 0, 1.

Example 11.9.2. Another Sum

1

1

1n

Sn n

1

1f z

z z

has poles at z = 0, 1.

cotf z z

,0, 1

12

1nn

Sn n

2

2

1 1

1 1n nn n n n

1

1

1m m m

S

0, 1

cotRes ;

1j

jz

zz

z z

0

cot cotRes ; 0

1 1z

z d z z

z z d z z

1

1

1 cotcotRes ; 1

1z

z zz d

z z d z z

1

1S 1

1 1

1n n n

Mathematica

Page 44: 7.Calculus of Residues

Schwarz reflection principle :

If f (z) is analytic over region R with R x-axis , and f (x) is real,

then

10. Miscellaneous Topics

* *f z f z

Proof :

For any 0,z x R 0

00 !

nn

n

f xf z z x

n

f (x) is real f (n) (x) is real .

0

00

* *!

nn

n

f xf z z x

n

*f z

Page 45: 7.Calculus of Residues

Mapping

w z u i v can be considered as a mapping : , ,w x y u v

Example 1

wz

Dotted circle = unit circle

iz re 1 iw er

Mathematica

Page 46: 7.Calculus of Residues

1w

z

2 iz r e

iz i r e Mathematica