7 Jan - CMOS Devices - Navakant.pdf

download 7 Jan - CMOS Devices - Navakant.pdf

of 57

Transcript of 7 Jan - CMOS Devices - Navakant.pdf

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    1/57

    Navakanta Bhat

    CMOS Devices

    Process Integration

    Navakanta Bhat

    ProfessorCentre for Nano Science and Engineering (CeNSE)

    Dept. of Electrical Communication Engineering,

    Indian Institute of Science, Bangalore

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    2/57

    Navakanta Bhat

    Outline

    CMOS Technology and Design Objectives

    Isolation

    Wells

    Gate Stack

    Junctions

    Interconnects

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    3/57

    Navakanta Bhat

    The Integrated Circuit Food Chain

    Optimization across all the domains is necessary

    Process Technology

    Device Physics

    Circuit Design

    System Architecture

    Application

    Domain

    Technology

    Domain

    CAD and Modeling

    Computational State Variable

    Digital Architecture

    Boolean Logic

    CMOS

    Charge

    Silicon

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    4/57

    Navakanta Bhat

    What is in a IC Chip ?A large ensemble of transistors connected appropriately

    through multilevel metal interconnection lines

    Every thing should be made as simple as possible,but no simpler! Albert Einstein

    INTEL IBM

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    5/57

    Navakanta Bhat

    CMOS : NMOS + PMOS

    switch modellay outschematic

    Gate

    Drain

    Source

    CMOS

    IDcross section

    NMOSFET

    n n

    Silicon

    G

    p-well

    oxide

    VG

    Vth

    p p

    Silicon

    G

    n-well

    oxide

    PMOSFET

    Vth

    CMOS

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    6/57 Navakanta Bhat

    Performance Metrics in CMOS

    P=CL*Vdd2*fD= CL*Vdd/Ids

    CL

    IN OUT

    Vdd

    Ids

    Ids

    CL , total capacitance at the switching node

    Vdd , supply voltage

    f , switching frequency

    Ids , charging or discharging current

    INVERTER Gate CapacitanceJunction Capacitance

    Interconnect Capacitance

    CAPACITANCE IS INERTIA

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    7/57 Navakanta Bhat

    Vt-Vdd design planeNormalized delay

    Vt/Vdd0.4

    Delay increases significantly for Vt/Vdd > 0.4

    Pactive (Pac) = CVdd2

    fPstandby (Psb) = WVddIoff

    Vt

    Vdd

    Psb

    Pac

    Delay

    Delay and Power are the only trade-off points for digital design

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    8/57 Navakanta Bhat

    Transistor Design Metrics

    Ioff

    Ion Ion

    CDC Metric AC Metric

    BETTERDESIGN

    BETTERDESIGN

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    9/57 Navakanta Bhat

    Transistor design methodology for Digital CMOS

    Design parameters: L, Vdd, Tox, N, Xj

    S/D engineering

    Channel engineering

    Choice of materials and processes

    Circuit characteristics:

    Delay (Vt/Vdd)Active power (Vdd)

    Standby power (Vt)

    Hot carrier reliability

    Vdd, L, N

    Gate oxide reliability

    Vdd, Tox

    System compatibility

    Vdd

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    10/57 Navakanta Bhat

    Constant Electric Field Scaling

    Primary scaling factors:

    Tox, L, W, Xj (all linear dimensions) 1/K

    Na, Nd (doping concentration) K

    Vdd (supply voltage) 1/K

    Derived scaling behavior of transistor:Electric field 1

    Ids 1/K

    Capacitance 1/K

    Derived scaling behavior of circuit:Delay (CV/I) 1/K

    Power (VI) 1/K2

    Power-delay product 1/K3

    Circuit density (

    1/A) K2

    Technology scaling

    Scaling factor K > 1

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    11/57 Navakanta Bhat

    Technology Life cycle

    Source : ITRS 2007

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    12/57 Navakanta Bhat

    Worldwide Wafer Production across Technologies

    Source : ITRS 2007

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    13/57 Navakanta Bhat

    Microelectronics to Nanoelectronics

    1960 2020

    New Materials and

    Device structuresSilicon CMOS

    2010

    45nm 15nm

    Nano-scale building blocks and Giga-scale Integration!

    Channel quantization

    Quasi ballistic transport

    SCALiNG

    Gate tunneling

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    14/57 Navakanta Bhat

    ITRS Projections

    Year of Production

    2007 2010 2013 2016 2019 2022

    Technology Node (nm) 65 45 32 22 16 11

    Printed Gate Length (nm)

    Physical Gate Length (nm)

    42

    25

    30

    18

    21

    13

    15

    9

    11

    6.3

    7.5

    4.5

    Wafer diameter (inch) 12 12 18 18 18 18

    Number of masks required for

    fabrication of Microprocessor

    33 35 37 37 39 39

    Number of Transistors inMicroprocessor (billion)

    1.1 2.2 4.4 8.8 17.7 17.7

    Number of interconnect wiring

    levels in the Microprocessor

    15 16 17 17 18 18

    Number pins for packagedMicroprocessor chip

    1088 1450 1930 2568 3418 3760

    Operating voltage (V) 1.1 1.0 0.9 0.8 0.7 0.7

    Microprocessor frequency, GHz 9.3 15.1 23 39.7 62.4 73.1

    Chip power dissipation (Watts) 189 198 198 198 198 198

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    15/57 Navakanta Bhat

    ISOLATION MODULE

    LOCal Oxidation of Silicon (LOCOS)

    Shallow Trench Isolation

    SiO2 is used isolate two transistors

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    16/57 Navakanta Bhat

    LOCOS Isolation

    ~10nm Pad SiO2Dry oxide

    Si

    ~15nm Si3N4LPCVD

    Si

    Active Litho,

    Dry etch

    Si

    ~500nm Field SiO2Wet oxide

    Si

    Strip nitride, oxideWet etch

    Si Si

    Scalability is an issuedue to Birds beak

    Not suitable for < 250nmComment on Wafer Type

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    17/57 Navakanta Bhat

    Shallow Trench Isolation

    ~10nm Pad SiO2Dry oxide

    Si

    ~15nm Si3N4LPCVD

    Si

    Active Litho,Dry etch

    ~350nm depth

    Si

    Si

    Liner oxide (~10nm)HDPECVD trench fill

    TEOS chemistry

    Si

    Chemical MechanicalPolishing, HF dip,

    Nitride strip

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    18/57 Navakanta Bhat

    Well Module

    What are the requirements forNano MOSFET Design ?

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    19/57 Navakanta Bhat

    SHORT

    CHANNEL

    EFFECTS

    Nano MOSFET : Design Issues

    S D

    GS D

    G

    Leakage current

    L (m)

    Vt

    ~1m

    Drain Induced

    Barrier Lowering (DIBL)

    Vt roll-off

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    20/57 Navakanta Bhat

    How do you minimize SCE?

    Screen the electric field

    Increase Substrate Doping Concentration

    Increased impurity scattering

    Degradation of sub-threshold slope

    Increased junction capacitance

    Minimize coupling volumeDecrease source/drain depth

    Increased source/drain resistance

    Junction spiking

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    21/57

    Navakanta Bhat

    Transistor Structure Requirement

    Y

    X

    Pocket halo

    Super steep retrograde

    channel

    spacer

    n+n+

    p-well

    gate

    oxide

    source drain

    Short channel effects are controlled by shallow extensions,

    pocket halos and super steep retrograde channel

    Na

    L0 Y

    Na

    0 X

    Deep S/D and

    Shallow Extension

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    22/57

    Navakanta Bhat

    Other Requirements

    Si

    Prevent DeepPunch Through

    Account for highfields at trenchcorner

    Adjust Vt

    USE CHAIN OF IMPLANTS

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    23/57

    Navakanta Bhat

    Well Implant Chain

    Boron ~ 200 KeV, 1012 1013 /cm2

    Boron ~100 KeV, 1012 1013 /cm2

    Boron ~50 KeV, 1012 1013 /cm2

    Boron ~ 15 KeV, 1012 1013 /cm2

    Indium ~ 120 KeV, 1012 1013 /cm2

    Phosphorus ~ 600 KeV, 1012 1013 /cm2

    Phosphorus ~300 KeV, 1012 1013 /cm2

    Phosphorus ~ 50 KeV, 1012 1013 /cm2

    Phosphorus ~ 15 KeV, 1012 1013 /cm2

    Antimony ~ 150 KeV, 1012 1013 /cm2

    P-Well N-Well

    Multiple Vt Technology

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    24/57

    Navakanta Bhat

    Gate Stack Module

    SiO2, Dual Polysilicon Gate

    High-K, Metal Gate

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    25/57

    Navakanta Bhat

    Polysilicon Gate stack

    Si

    Phase Shift Litho

    Resist Trim

    Si

    Poly Etch

    Si

    i-PolySiliconLPCVD

    Si

    Dry, 800C, O2+N2Nitridation

    Si

    RCA Clean

    NBTI Reappears!

    Comment on Dual

    Gate technology

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    26/57

    Navakanta Bhat

    Why High-K and Metal Gate

    Increasing gate resistance

    for short channel device

    Activation of poly-Si

    Direct Tunneling current

    High K Metal Gate Gate stack

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    27/57

    Navakanta Bhat

    High-K Metal Gate Gate stack

    Si

    RCA Clean

    Si

    PVD HfO2

    Si

    i-PolySiliconLPCVD

    Si

    Phase Shift Litho

    Resist Trim

    Si

    Poly Etch

    DISPOSABLE GATE PROCESS

    Dispose -off polySi after

    ILD0 and fill the gate

    trench with dual metalgate materials

    Ensures Self Aligned

    transistor

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    28/57

    Navakanta Bhat

    Junction Module

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    29/57

    Navakanta Bhat

    NMOS Halo and Extension

    Si

    Si

    Arsenic, 0o tilt, ~1014, 5KeV

    Si

    Boron, 45o

    tilt, ~1012

    , 15KeVNMOS S/D Litho

    STORY #1:

    Shadow

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    30/57

    Navakanta Bhat

    PMOS Halo and Extension

    Si

    Phosphorus, 45o

    tilt, ~1012

    , 35KeV

    Si

    BF2, 0o tilt, ~1014, 3 KeV

    Si

    PMOS S/D Litho

    STORY #2

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    31/57

    Navakanta Bhat

    Spacer Formation

    Deposit 10nm Oxide, 40nm nitride

    What about Oxide spacers ??

    Boron segregation degrades PMOS

    Si

    Anisotropic nitride etchSi

    STORY #2: Cgd

    Comment on offset spacers for extension

    Deep S/D Implant and Anneal

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    32/57

    Navakanta Bhat

    Deep S/D Implant and AnnealNMOS S/D Litho

    Arsenic, 15 KeV, ~1015

    Si

    PMOS S/D Litho

    Boron, 5 KeV, ~1015

    Si

    Si

    RTA

    Trade off between poly depletion,versusJunction depth & Boron Penetration

    Sili id F ti

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    33/57

    Navakanta Bhat

    Silicide Formation

    PVD Metal

    RTA

    ETCH METAL

    S D

    G

    Parasitic Channel Resistance

    Si

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    34/57

    Navakanta Bhat

    Interconnect Module

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    35/57

    Navakanta Bhat

    ILD0 , Contact and Metal1

    Si

    ILD0 CVDContact Litho & Etch

    W CVD and CMP

    Aluminum PVDMetal Litho & Etch

    Forming gas anneal

    Same process continues for Via1, Metal2, Via2, Metal3

    STORY #3: Yield

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    36/57

    Navakanta Bhat

    Interconnect delay in Nano CMOS

    Delay

    0.50.350.250.18

    Technology node (m)

    Intrinsic gate delay

    Interconnect delay

    Gate delay decreases due to decrease in gate capacitanceInterconnect delay increases due to decreasing metal line width

    and increasing intra-metal coupling capacitance

    Interconnects are no longer afterthought in Nano CMOS

    Copper Interconnects

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    37/57

    Navakanta Bhat

    Copper Interconnects

    ILD CVD (thickness for via and metal)

    Litho Via holes and etch via hole

    Litho Metal trenches and etch metal trenchCopper Electroplating and CMP

    Si

    Dual Damascene Process

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    38/57

    Navakanta Bhat

    Beyond Bulk Silicon CMOS

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    39/57

    Navakanta Bhat

    SOI CMOS ?

    500mInsulator

    SOI Bulk

    Si wafer

    Si film

    (10-100nm)

    Devices are built on thin Si film (~100nm) on insulatorHandle Si wafer may be underneath the insulator (VLSI)

    Insulator itself may form the rest of the substrate (Displays)

    Si wafer

    Partially Depleted SOI (PDSOI) versus Fully Depleted SOI (FDSOI)

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    40/57

    Navakanta Bhat

    Components of node capacitance

    CL=Cg + Cj + Ci

    Cg = gate oxide capacitance

    Cj = junction capacitance

    Ci = interconnect capacitance

    Cj= s A/Wd

    s, permittivity of Si

    Wd, depletion width

    A , cross section area

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    41/57

    Navakanta Bhat

    Other SOI specific effects

    Fewer processing steps

    Better isolation resulting in dense circuits

    Drain current overshoot

    Lower body effect

    Absence of latch-up problem

    Better sub-threshold slope

    Threshold voltage (Vt) instability due to DC floating body effect

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    42/57

    Navakanta Bhat

    SOI device delay

    SOI results in at least 30% lower delay compared to bulk

    The improvement is more pronounced at lower voltages

    IBM data

    SOI results in about 70% lower power for the same speed

    IBM data

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    43/57

    Navakanta Bhat

    SOI Power dissipation

    SOI results in about 70% lower power for the same speed

    IBM data

    N d f M lti t FET

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    44/57

    Navakanta Bhat

    Need for Multigate FETs

    Alternate structures required for better gate control over the chann

    - Double Gate, FinFET, Surround Gate

    SiO2

    n+ n+p

    Increase in P type doping

    with decreasing L results

    inn+-p+ tunnel junction

    Intels data

    Fin FET

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    45/57

    Navakanta Bhat

    Fin FET

    H.S.P Wong, IBM Technical Journal

    C OS ?

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    46/57

    Navakanta Bhat

    CMOS with new materials ?

    Germanium / GaAs / GaN ?

    Graphene ?

    Planar Technologies are Circuit designer friendlyas opposed CNT and other vertical transistors

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    47/57

    Navakanta Bhat

    Germanium Schottky Barrier MOSFETs

    Doped S/D

    RovR

    dp

    R

    extRscd

    GateSpacer

    Silicid

    e

    oxide

    Metal

    Advantages

    Reduced series resistanceReduced short channel effects

    Low thermal budget process Easy for Metal gate

    Reduced process variability

    *

    * S-D Kim et al., Advanced Model and analysis of series resistance for CMOS scaling , IEEE TED, Vol. 49, No. 3, Marc

    What about NMOS Schottky

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    48/57

    Navakanta Bhat

    What about NMOS Schottky

    Junction Transistors on Ge (or Si)

    Technologically hard problem

    Fermi level pinning in the bottomhalf of the band gap

    For Si : Eg/3 above valence band edge

    For Ge : Close to valance band edge

    Schottky junctions on n-type Ge/Si are possible Schottky junctions on p-type Ge/Si have never been

    very efficient

    Ec

    Ev

    Ei

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    49/57

    Navakanta Bhat

    Is it possible to passivate the interfaceand De-pin the Fermi level?

    Literature on Sulphur passivationof III-V semiconductors exists

    C S f

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    50/57

    Navakanta Bhat

    Current State-of-the-art

    Sulphur implantation: results in ohmiccontacts to both substrate types. Not

    possible to produce Schottky Source/Drain. Passivation studies for Ge High-k

    interface

    done only for p-channel devices. N-channel

    devices have proved very difficult to

    passivate.

    No studies exist on the effect of passivation

    on Schottky Interface.

    S l h P i i f G f

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    51/57

    Navakanta Bhat

    Sulphur Passivation of Ge surface

    Ge cleaned in HCl-HBr mixture to remove

    native oxide.

    Subsequently treated in Aqueous

    Ammonium Sulphide ((NH4)2S ) solution

    Passivation treatment carried out close toboiling point.

    Al, Zr, Ta (Low work function)W, Ni, Pt (High work function)

    XPS t di

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    52/57

    Navakanta Bhat

    XPS studies

    1210 1215 1220 1225 1230Binding Energy (eV)

    Intensity(ArbitraryUnits)

    Ge-SGe 2p3/2

    160 165 170Binding Energy (eV)

    Intensity

    (ArbitraryUnits)

    S 2p

    25 30 35Binding Energy (eV)

    Intensity

    (ArbitraryUnits)

    GeO2

    S-pass.

    HCl-HBr

    Ge 3d5/2

    Bare Ge

    Native oxide peak disappears after cleaningand sulphur passivation

    Sulphur peak is evident on Sulphur treatedWafers

    Ge-S peak also apperas indicating that sulphur

    Is chemically active on the surface

    S h ttk t t G

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    53/57

    Navakanta Bhat

    Schottky contact on p-Ge

    Modification of behavior on p-Ge

    -1 -0.5 0 0.5 1-60

    -40

    -20

    0

    20

    40

    60

    Voltage(V)

    J(A/cm

    2)

    Al pass.Zr pass.

    Zr Un-pass.

    Al Un-pass.

    EV

    EC

    Eg

    S h ttk t t G

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    54/57

    Navakanta Bhat

    Schottky contact on n-Ge

    Modification of behavior on n-Ge

    -1 -0.5 0 0.5 1-60

    -40

    -20

    0

    20

    40

    60

    Voltage(V)

    J(A/c

    m2)

    Al Un-pass.Zr Un-pass.

    Al pass.

    Zr pass.

    B i h i h d f i ti

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    55/57

    Navakanta Bhat

    Barrier height trend after passivation

    4.05 4.5 5 5.5 60

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.66

    Un - passivated.

    S - passivatedZr

    Al

    Ta

    Ta

    Zr

    AlW

    Ni

    Pt

    mvac

    Electron

    Barrie

    r(Bn

    )

    Sulphur

    passivation

    results in almost ideal Schottky

    behaviour

    Ideal Theory

    Arun

    & Bhat

    APL, 2010

    S

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    56/57

    Navakanta Bhat

    Summary

    CMOS Process Integration

    Isolation module

    Well module

    Gate stack module

    Junction module

    Interconnect module

    CMOS Process Complexity continues to

    increase with technology scaling

  • 8/14/2019 7 Jan - CMOS Devices - Navakant.pdf

    57/57

    Thank You