7. IC Engine Exhaust Emissions

download 7. IC Engine Exhaust Emissions

of 38

Transcript of 7. IC Engine Exhaust Emissions

  • 7/27/2019 7. IC Engine Exhaust Emissions

    1/38

    1

    IC Engine Exhaust

    Emissions

    Section 7

  • 7/27/2019 7. IC Engine Exhaust Emissions

    2/38

    2

    Pollutant Formation and Control

    All IC engines produce undesirable emissions as a result of combustion

    including hydrogen fuelled engines.

    The emissions of concern are: unburned hydrocarbons (UHC),

    carbon monoxide (CO), nitric oxide and nitrogen dioxide (NOx),

    sulfur dioxide (SO2), and solid carbon particulates.

    These emissions pollute the environment and contribute to acid rain, smog,and respiratory and other health problems.

    HC emissions from gasoline-powered vehicles include a number of toxic

    substances such as benzene, polycyclic aromatic hydrocarbons (PAHs),

    1,3-butadiene and three aldehydes (formaldehyde, acetaldehyde, acrolein).

    Carbon dioxide (CO2) is an emission that is not regulated but is the primary

    greenhouse gas responsible for global warming.

  • 7/27/2019 7. IC Engine Exhaust Emissions

    3/38

    3

    During the 1940s air pollution as a problem was first recognized in the Los

    Angeles basin.

    Two causes of this were the large population density, geography the natural

    weather pattern. Smoke and other pollutants combined with fog to form smog.

    In 1966 HC and CO emission limits were introduced in California.

    All of North America usually follows Californias lead (all US in 1968).

    By making more fuel efficient engines and with the use of exhaust after

    treatment, emissions per vehicle of HC, CO, and NOx were reduced by

    about 95% during the 1970s and 1980s.

    Automobiles are more fuel efficient now (2x compared to 1970) but there are

    more of them and the trend has been towards larger SUVs (e.g. Hummer,

    Navigator, Escalade) as a result fuel usage is unchanged over this period.

    Historical Perspective

  • 7/27/2019 7. IC Engine Exhaust Emissions

    4/38

    4

    North American Emission Standards (g/mile)

    * Phased in, should be completed by 2009

  • 7/27/2019 7. IC Engine Exhaust Emissions

    5/38

    5

    EU Emission Standards for Passenger Cars (g/km)

  • 7/27/2019 7. IC Engine Exhaust Emissions

    6/38

    6

    Regulation on Sulphur Content of Diesel Fuels

    The average sulphur content in Canadian Diesel fuel in 2000 was 350parts per million (ppm)

    In 2006 ultra-low sulphur diesel (ULSD) with 15 ppm sulphur will be

    mandatory in North America for highway vehicles. This is a critical

    complement to the stringent new Tier II emission standards.

    Since 2005 EU standards require diesel fuel to have less than 50 ppm

    sulphur content. Sulphur-free 10 ppm sulphur diesel fuel must be

    available for highway vehicles.

    In 2009 all vehicles will run on 10 ppm sulphur diesel, including off-road.

    EU also requires that diesel fuel have a minimum Cetane number of 48

  • 7/27/2019 7. IC Engine Exhaust Emissions

    7/38

    7

    Ontario Drive Clean Program

    In Ontario every vehicle must undergo a tail pipe emission test every other

    year to check compliance with emission regulations:

    Nitrogen Oxide 984 ppm @ 3000 rpm

    Carbon Monoxide 0.48% @ 3000 rpm and 1.0% @ 800 rpm

    Unburned hydrocarbons 86 ppm @ 3000 rpm and 200 ppm @ 800 rpm

    Particulates (diesels only at present) 30% opacity

    Evaporative emissions from gas refuelling cap (SI only at present)

  • 7/27/2019 7. IC Engine Exhaust Emissions

    8/38

    8

    Test results between 1999 and March 2004

    Light-Duty Program*: 14.6% failed test

    Heavy-Duty Diesel**: 4% failed test

    Heavy-Duty Non-Diesel**: 27.3% failed test

    * 6 million vehicles (automobiles, vans, SUVs, pick-ups) in program

    ** 200,000 vehicles in program

    Ontario Drive Clean Program Stats

  • 7/27/2019 7. IC Engine Exhaust Emissions

    9/38

    9

    Nitrogen Oxides (NOx)

    NOx includes nitric oxide (NO) and nitrogen dioxide (NO2)

    In SI engines the dominant component of NOx isNO

    Forms as a result of dissociation of molecular nitrogen and oxygen.

    Since the activation energy of the critical elementary reaction is very high

    O+N2NO+N

    the reaction rate, w'' ~ exp (-E/RT), is very temperature dependent

    - NO is only formed at high temperatures and the reaction rate is

    relatively slow.

    - At temperatures below 2000K the reaction rate is extremely slow,

    soNO formation not important.

  • 7/27/2019 7. IC Engine Exhaust Emissions

    10/38

    10

    Since the cylinder temperature changes throughout the cycle theNO

    reaction rate also changes.

    Each fluid element burns to its AFT based on its initial temperature,

    elements that burn first near the spark plug achieve a higher temperature.

    Since the chemistry is not fast enough the actualNO concentration tends

    toward but never achieves the equilibrium value.

    IfNO concentration is lower than equilibrium valueNO formsIfNO concentration is higher than equilibrium valueNO decomposes

    Once the element temperature cools to 2000K the reaction rate becomes

    so slow that theNO concentration effectively freezes at a value greater than

    the equilibrium value.

    The total amount ofNO that appears in the exhaust is calculated by

    summing the frozen mass fractions for all the fluid elements:

    SI Engine In-cylinderNOFormation

    1

    0

    dxxxNONO

  • 7/27/2019 7. IC Engine Exhaust Emissions

    11/38

    11

    x = 0

    -15o (x = 0)x= 1

    25o (x = 1)

    x = 0

    x= 1

    Equilibrium concentration:

    based on the local temperature, pressure,

    equivalence ratio, residual fraction

    Actual NO concentration:

    based on kinetics

    (assuming no mixing of fluid elements)

  • 7/27/2019 7. IC Engine Exhaust Emissions

    12/38

    12

    One would expect the peakNO concentrations to coincide with highest AFT.

    Typically peakNO concentrations occur for slightly lean mixtures thatcorresponds to lower AFT but higher oxygen concentration.

    Effect of Equivalence Ratio on NOConcentration

  • 7/27/2019 7. IC Engine Exhaust Emissions

    13/38

    13

    Effect of Various Parameters on NOConcentration

    Increased spark advance and intake manifold pressure both result in higher

    cylinder temperatures and thus higher NO concentrations in the exhaust gas

    = 0.97

    = 1.31

    = 1.27

    = 0.96

    Pi= 354 mm HgPi= 658 mm Hg

  • 7/27/2019 7. IC Engine Exhaust Emissions

    14/38

    14

    Exhaust NOConcentration Reduction

    Since the formation of NO is highly dependent on cylinder gas temperature

    any measures taken to reduce the AFT are effective:

    increased residual gas fraction exhaust gas recirculation (EGR)

    moisture in the inlet air

    In CI engines the cylinder gas temperature is governed by the load and

    injection timing

    IDI/NA indirect injection

    naturally aspirated

    DI/NA direct injectionnaturally aspirated

  • 7/27/2019 7. IC Engine Exhaust Emissions

    15/38

    15

    Hydrocarbons

    Hydrocarbon emissions result from the presence of unburned fuel in the

    engine exhaust.

    However, some of the exhaust hydrocarbons are not found in the fuel, but are

    hydrocarbons derived from the fuel whose structure was altered due to

    chemical reaction that did not go to completion. For example: acetaldehyde,

    formaldehyde, 1,3 butadiene, and benzene all classified as toxic emissions.

    About 9% of the fuel supplied to the engine is not burned during the normalcombustion phase of the expansion stroke.

    Only 2% ends up in the exhaust the rest is consumed during the other

    three strokes.

    As a consequence hydrocarbon emissions cause a decrease in the thermal

    efficiency, as well as being an air pollutant.

  • 7/27/2019 7. IC Engine Exhaust Emissions

    16/38

    16

    Hydrocarbon Emission Sources for SI Engines

    There are six primary mechanisms believed to be responsible for

    hydrocarbon emissions:

    % fuel escaping

    Source normal combustion % HC emissions

    Crevices 5.2 38

    Oil layers 1.0 16Deposits 1.0 16

    Liquid fuel 1.2 20

    Flame quench 0.5 5

    Exhaust valve leakage 0.1 5

    Total 9.0 100

  • 7/27/2019 7. IC Engine Exhaust Emissions

    17/38

    17

    Hydrocarbon Emission Sources

    Crevices these are narrow regions in the combustion chamber into which

    the flame cannot propagate because it is smaller than the quenching distance.

    Crevices are located around the piston, head gasket, spark plug and valve

    seats and represent about 1 to 2% of the clearance volume.

    The crevice around the piston is by far the largest, during compression the fuel

    air mixture is forced into the crevice (density higher than cylinder gas since gasis cooler near walls) and released during expansion.

    CrevicePiston ring

  • 7/27/2019 7. IC Engine Exhaust Emissions

    18/38

    18

    Oil layers- Since the piston ring is not 100% effective in preventing oil

    migration into the cylinder above the piston, an oil layer exists within the

    combustion chamber that traps fuel.

    Deposits Carbon deposits build up on the valves, cylinder and piston

    crown. These deposits are porous with pore sizes smaller than the

    quenching distance so trapped fuel cannot burn.

    Liquid fuel For some fuel injection systems there is a possibility that liquidfuel is introduced into the cylinder past an open intake valve. The less volatile

    fuel constituents may not vaporize (especially during engine warm-up) and be

    absorbed by the crevices or carbon deposits.

    Flame quenching It has been shown that the flame does not burncompletely to the internal surfaces, the flame extinguishes at a small but

    finite distance from the wall.

    Hydrocarbon Emission Sources

  • 7/27/2019 7. IC Engine Exhaust Emissions

    19/38

    19

    Hydrocarbon Exhaust Process

    When the exhaust valve opens the large rush of gas escaping the cylinder

    drags with it some of the hydrocarbons released from the crevices, oil layer

    and deposits.

    During the exhaust stroke the piston rolls the hydrocarbons distributed along

    the walls into a large vortex that ultimately becomes large enough that a

    portion of it is exhausted.

    Blowdown

    (near BC)

    Exhaust

    Stroke

  • 7/27/2019 7. IC Engine Exhaust Emissions

    20/38

    20

    Hydrocarbon Exhaust Process

    Exhaust

    valve

    opens

    Exhaust

    valve

    closes

    The first peak is due to blowdown and the second peak is due to vortex roll

    up and exhaust (vortex reaches exhaust valve at roughly 290o)

    TCBC

  • 7/27/2019 7. IC Engine Exhaust Emissions

    21/38

    21

    Hydrocarbon Emission Sources for CI Engines

    Crevices- Fuel trapped along the wall by crevices, deposits, or oil due to

    impingement by the fuel spray (not as important as in SI engines).

    Underm ixing o f fuel and air- Fuel leaving the injector nozzle at low velocity,

    at the end of the injection process cannot completely mix with air and burn.

    Overmixin g of fu el and air- During the ignition delay period evaporated fuel

    mixes with the air, regions of fuel-air mixture are produced that are too lean to

    burn. Some of this fuel makes its way out the exhaust. Longer ignition delaymore fuel becomes overmixed.

    ExhaustHC,pp

    mC

    air

  • 7/27/2019 7. IC Engine Exhaust Emissions

    22/38

    22

    Note for the direct injection diesel the hydrocarbon emission are worse at

    light load (long ignition delay)

  • 7/27/2019 7. IC Engine Exhaust Emissions

    23/38

    23

    Particulates

    A high concentration ofparticulate matter(PM) is manifested as visible

    smoke in the exhaust gases.

    Particulates are any substance other than water that can be collected by

    filtering the exhaust, classified as:

    1) solid carbon material or soot

    2) condensed hydrocarbons and their partial oxidation products

    Diesel particulates consist of solid carbon (soot) at exhaust gas temperaturesbelow 500oC, HC compounds become absorbed on the surface.

    In properly adjusted SI engines soot is not usually a problem

    Particulate can arise if leaded fuel or overly rich fuel-air mixture are used.

    Burning crankcase oil will also produce smoke especially during engine warm

    up where the HC condense in the exhaust gas.

  • 7/27/2019 7. IC Engine Exhaust Emissions

    24/38

    24

    Most particulate material results from incomplete combustion of fuel HC for

    fuel rich mixtures.

    Based on equilibrium the composition of the fuel-oxidizer mixture soot

    formation occurs whenx2a (orx/2a 1) in the following reaction:

    Particulates (soot)

    )()2(2

    2 22 sCaxHy

    aCOaOHC yx

    i.e. when the (C/O) ratio exceeds 1. Experimentally it is found that the critical

    C/O ratio for onset of soot formation is between 0.5 and 0.8

    The CO, H2, and C(s) are subsequently oxidized in the diffusion flame to

    CO2 and H2O via the following second stage

    OHOHCOOsCCOOCO 22222222

    1)(

    2

    1

    Any carbon not oxidized in the cylinder ends up as soot in the exhaust!

  • 7/27/2019 7. IC Engine Exhaust Emissions

    25/38

    25

    Particulates are a major emissions problem for CI engines.

    Exhaust smoke limits the full load overall equivalence ratio to about 0.7

    Particulates and CI Engines

    In order to reduce NOx one wants to reduce the AFT but that has the

    adverse effect of decreasing the amount of soot oxidized and thus

    increases the amount of soot in the exhaust.

    = 0.7

    = 0.5

    = 0.3

    One technique for measuring particulate

    involves diluting the exhaust gas with

    cool air to freeze the chemistry before

    measurements

  • 7/27/2019 7. IC Engine Exhaust Emissions

    26/38

    26

    An example of this dilemma is changing the start of injection, e.g., increasing

    the advance increases the AFT

    Crank angle bTC for

    start of injection

    Particulates and CI Engines

  • 7/27/2019 7. IC Engine Exhaust Emissions

    27/38

    27

    Carbon Monoxide

    Carbon monoxide appears in the exhaust of fuel rich running engines.

    For fuel rich mixtures there is insufficient oxygen to convert all the carbon

    in the fuel to carbon dioxide.

    C8H18-air

  • 7/27/2019 7. IC Engine Exhaust Emissions

    28/38

    28

    Carbon Monoxide

    The C-O-H system is more or less at equilibrium during combustion and

    expansion.

    Late in the expansion stroke when the cylinder temperature gets down to

    around 1700K the chemistry in the C-O-H system becomes rate limited and

    starts to deviate from equilibrium.

    In practice it is often assumed that the C-O-H system is in equilibrium until

    the exhaust valve opens at which time it freezes instantaneously.

    The highest CO emission occurs during engine start up (warm up) when the

    engine is run fuel rich to compensate for poor fuel evaporation.

    Since CI engines run lean overall, emission of CO is generally low and notconsidered a problem.

    E i i C t l

  • 7/27/2019 7. IC Engine Exhaust Emissions

    29/38

    29

    Emission Control

    The current emission limits for HC, CO and NOx have been reduced to 4%,

    4% and 10% of the uncontrolled pre-1968 values, respectively.

    Three basic methods used to control engine emissions:

    1) Engineering of combustion process - advances in fuel injectors, oxygen

    sensors, and engine control unit (ECU).

    2) Optimizing the choice of operating parameters - two NOx control measures

    that have been used in automobile engines since 1970s are spark retard and

    EGR.

    3) After treatment devices in the exhaust system - catalytic converter

    C t l ti C t

  • 7/27/2019 7. IC Engine Exhaust Emissions

    30/38

    30

    Catalytic Converter

    All catalytic converters are built in a honeycomb or pellet geometry to expose

    the exhaust gases to a large surface made of one or more noble metals:

    platinum, palladium and rhodium.

    Rhodium used to remove NO and platinum used to remove HC and CO.

    Lead and sulfur in the exhaust gas severely inhibit the operation of a catalytic

    converter (poison).

    Th C t l ti C t

  • 7/27/2019 7. IC Engine Exhaust Emissions

    31/38

    31

    Three-way Catalytic Converter

    A catalyst forces a reaction at a temperature lower than normally occurs.

    As the exhaust gases flow through the catalyst, the NO reacts with the CO,

    HC and H2 via a reduction reaction on the catalyst surface.

    e.g., NO+CON2+CO2 , NO+H2 N2+H2O, and others

    The remaining CO and HC are removed through an oxidation reaction forming

    CO2 and H2O products (air added to exhaust after exhaust valve).

    A three-way catalysts will function correctly only if the exhaust gas composition

    corresponds to nearly (1%) stoichiometric combustion.

    If the exhaust is too lean NO is not destroyed

    If the exhaust is too rich CO and HC are not destroyed

    A closed-loop control system with an oxygen sensor in the exhaust is used to

    A/F ratio and used to adjust the fuel injector so that the A/F ratio is near

    stoichiometric.

    Effect of Mixture Composition

  • 7/27/2019 7. IC Engine Exhaust Emissions

    32/38

    32

    Since thermal efficiency is highest for slightly lean conditions it may seem that

    the use of a catalytic converter is a rather severe constraint.

    The same high efficiency can be achieved using a near stoichiometric mixture

    and diluting with EGR to reduce NOx

    Effect of Mixture Composition

    Effect of Temperature

  • 7/27/2019 7. IC Engine Exhaust Emissions

    33/38

    33

    Effect of Temperature

    The temperature at which the converter becomes 50% efficient is referred to

    as the light-off temperature.

    The converter is not very effective during the warm up period of the engine

    Catal tic Con erter for Diesels

  • 7/27/2019 7. IC Engine Exhaust Emissions

    34/38

    34

    Catalytic Converter for Diesels

    For Diesel engines catalytic converters are used to control HC and CO, but

    reduction of NO emissions is poor because the engine runs lean in order to

    avoid excess smoke.

    The NO is controlled by retarding the fuel injection from 20o to 5o before TC

    in order to reduce the peak combustion temperature.

    This has a slight negative impact on thermal efficiency since it reduces the

    combustion temperature increases fuel consumption by about 15%.

    IC E i F l

  • 7/27/2019 7. IC Engine Exhaust Emissions

    35/38

    35

    IC Engine Fuels

    Crude oil contains a large number of hydrocarbon compounds (25,000).

    The purpose ofrefining is to separate crude oil into various fractions via a

    distillation process, and then chemically process the fractions into fuels and

    other products.

    A still is used to heat a sample, preferentially boiling off lighter components

    which are then condensed and recovered.

    The group of compounds that boil off between two temperatures are referred

    to as fractions.

    The order of the fractions as they leave the still are naptha, distillate, gas oil,

    and residual oil. These are further subdivided using adjectives light, middle,and heavy.

    The adjectives virgin or straight run are often used to signify that no chemical

    processing has been performed to a fraction.

  • 7/27/2019 7. IC Engine Exhaust Emissions

    36/38

    36

    Distillation Process

    Refining Process

    G li

  • 7/27/2019 7. IC Engine Exhaust Emissions

    37/38

    37

    Gasoline

    Light virgin (or straight run) naptha can be used as gasoline.

    Gasoline fuel is a blend of hydrocarbon distillates with a range of boilingpoints between 25 and 225oC (for diesel fuel between 180 and 360oC)

    Chemical processing is used to:

    Produce gasoline from a fraction other than light virgin, or

    Upgrade a given fraction (e.g., Alkylation increases the MW and octane

    number of fuel: produce isooctane by reacting butene with isobutane in the

    presence of a catalyst.

    Reformulated Gasoline

  • 7/27/2019 7. IC Engine Exhaust Emissions

    38/38

    38

    Reformulated Gasoline

    In order to reduce CO and HC the oxygen content of gasoline is increased to

    about 3% by weight (U.S. oxygenated fuels program, winter only).

    The U.S. reformulated gasoline program is a year-round program used

    to reduce ozone by requiring a minimum oxygen content of 2% by weight and

    maximum benzene content of 1%.

    The primary oxygenates are MTBE (CH3)OC(CH3)3 and ethanol (C2H5OH)

    Also as part of the reformulated gasoline program sulfur is restricted to 31 ppm

    Note: gasoline with 10% ethanol by volume also marketed as gasohol