7 '5 [ b ã 4 #Ý b #' + ö b1* >/>, ` º! Ç µ @8Õ/ M '5 æ > …8] _%$/ , w w 6 ...

8
⯟✵㏻⟶⌮㡿ᇦ 1 RNP ARRequired Navigation Performance Authorization Required 㸸≉チせ⯟ἲᛶ ⬟せ௳㸧㐍ධ᪉ᘧ [1] ㏆ᖺ⯟✵ᶵᛶ⬟ ༑ศ⏕ィჾ㐍ධ᪉ᘧࡇࠋ ᆅ⌫⯟ἲ⾨ࢸࢫࢩGlobal Navigation Satellite SystemGNSS㧗⢭ᗘ ሗẼᅽ㧗ᗘ ࠸⏝㸪ᶓ᪉⤒㊰ㄗᕪ㸦95㸣㸧 0.3 NM Nautical Mile1 NM1,852 m㸧௨ୗ [2] ⯟ἲ⢭ᗘᐇ⌧ ᭦グ⢭ᗘಖࡀ࡞ࡕᘼ᪕ᅇ RF Radius to FIX 㸦㣕⾜⤒㊰ᵓᡂ ᆅ⌮ᆅⅬ㸧㸧 Leg ࡓࡢࡇࠋ RNP AR 㸦௨㝆㸪AR㸧㐍ධ᪉ᘧ⏤⮬ࡣ⤒㊰タᐃ㸪⤒㊰▷⦰⇞ᩱ๐ῶ 㣕⾜㛫⦰▷ࡢ㸪㦁㡢⪃៖⤒ࡓࡋ㊰タᐃ➼ᮇᚅࡋࠋAR 㐠⯟⯟✵ᶵせ௳㸪 㐠⏝ᡭ㡰㸪ဨカ⦎➼せ௳࠸ࡘ⯟⾜ チせࡢࢺカ⦎㸪ᶵయഛ➼ ࡀࢺࢫࢥ㸪㐠⯟ᑐ౯ᮇᚅ࠸࡞AR 㐠⯟ᑟධぢ㏦AR 㐍ධ᪉ᘧ᪥ᮏࡢ ✵࠸࡞㸪ຠᯝぢ㎸✵ ᑟධ㸪⌧ᅾᅜ 26 ✵ ௨タᐃILS Instrument Landing System 㸸ィჾ╔㝣⨨㸧 㐍ධ᪉ᘧ㸪⨨ ✵ࡀタ⨨ཎ⌮ 㸪㉮㊰ᡭ๓ᑡࡃ࡞ 5 NM ⥺┤ࡢ⛬㣕⾜ ᚲせAR 㐍ධ᪉ᘧGNSS ά⏝ ࡓࡢ┤⥺㣕⾜ไ⣙ࡃ࡞ࡣRF Leg ά⏝㉮㊰㏆ഐ᭤⥺㐍ධᐇ⌧⯟✵⟶ไᐁ㸦௨ୗ㸪⟶ไᐁ㸧 ⏬ࢲ㠃⯟✵ᶵᢕᥱ㸪㛫ⓗవ⿱ ࠶ࡢẁ㝵ㄏᑟ㸪㏿ᗘㄪ➼㡰ᗎ㛫㝸タᐃ⾜㸪㉮㊰㏆ഐ⯟✵ᶵኈ๓ᚋ㛫㝸ὀព⯟✵ᶵ ≀⌮ⓗ๓ᚋ୪⟶ไ⾜㸦ᅗ 1 ILS 㐍ධ᪉ᘧ AR 㐍ධ᪉ᘧ㉮㊰㏆ഐ ᭤⥺㐍ධ㉮㊰ᐇ ࡞࠺㐠⏝ᮏ✏ΰ㐠⏝ [3] ࡢࡇࠋࡪ㐠⏝㸪ᅗ 1 ୗ♧ࡓࡋ≀⌮ⓗ⥺ ฟ᮶㸪ᖹ㠃ⓗᛮ⪃ᚲせ ⥺ࡋ୪ሙ⟶ไᅔ㞴ࡋࡑࠋࡢࡇ≧ἣᑐᛂ࡞ࡓ᪉ไ㝈ຍ➼ᚲせ⬟ᛶ࠶ࡀ1 ΰ㐠⏝ࡅ࠾⟶ไᅔ㞴ᗘ ඛ⾜◊✲ᖹ⾜㉮㊰ࡅ࠾ ILS 㐍ධ᪉ AR 㐍ධ᪉ᘧ㐠⏝ [4] ◊✲⡿ Phoenix ✵ ᶍᨃࡓࡋ㐠⏝ࢩࡢ [5] ሗ࿌➼࠶ࡀ㉮㊰ ࠸࡞≧ἣ㆟ㄽࡓࡢࡇࠋ࠸࡞ࡣࡣࠎ༢㉮㊰㐍ධ᪉ᘧ㸦ලయⓗ ILS AR㸧ᑐΰ㐠⏝Ᏻᛶᐇ⌧ ᪉ἲ◊✲ [6]-[12] ࡕ࠸ࡣAR 㐍ධ᪉ᘧ㸪ᖹ⾜㉮㊰㐍ධ [13] ࢽࠋ ࡢࢡ3 ✵ どㄆ 㐍ධ㸦Visual Approach௦᪉ᘧAR 㐍ධ᪉ᘧᑟධ [14] 㟁Ꮚ⯟ἲ◊✲ᡤΰ㐠⏝ᐇ⌧⬟ᛶ -21- 平成30年度(18回)電子航法研究所研究発表会

Transcript of 7 '5 [ b ã 4 #Ý b #' + ö b1* >/>, ` º! Ç µ @8Õ/ M '5 æ > …8] _%$/ , w w 6 ...

Page 1: 7 '5 [ b ã 4 #Ý b #' + ö b1* >/>, ` º! Ç µ @8Õ/ M '5 æ > …8] _%$/ , w w 6 ...

Altitude windowAltitude window

CDO

Partial CDO CDO

Altitude windowAltitude

window CDO

4CDO

Altitude window

[1] International Civil Aviation Organization (ICAO), “Continuous Descent Operations (CDO) Manual,” Doc 9931, 2010.

[2] I. Wilson and F. Hafner, “Benefit Assessment of using Continuous Descent Approaches at Atlanta,” Digital Avionics Systems Conference, 2005.

[3] F. J. M. Wubben and J. J. Busink,

“Environmental Benefits of Continuous Descent Approaches at Schiphol Airport Compared with Conventional Approach Procedures,” NLR-TP-2000-275, 2000.

[4] eAIP Japan, RJBB AD 2.20 LOCAL TRAFFIC REGULATIONShttps://aisjapan.mlit.go.jp/html/AIP/html/20180329/eAIP/20180401/JP-AD-2-RJBB-en-JP.html#AD-2.RJBB Apr. 2018

[5]

(CDO) 16

, 2016 6 .[6] J.-P. Clarke, J. Brooks, G. Nagle, A. Scacchioli,

W. White and S. R. Liu, “Optimized Profile Descent Arrivals at Los Angeles International Airport,” Journal of Aircraft, vol.50, no.2, pp.360-369, Jan.2013.

[7] J. Bronsvoort, “Contributions to Trajectory Prediction Theory and its Application to Arrival Management for Air Traffic Control,” Ph. D. dissertation, Technical University of Madrid, 2014.

[8] EUROCONTROL Experimental Center, “User Manual for the Base of Aircraft Data (BADA) Family 4,” EEC Technical/Scientific Report No. 12/11/22-58, 2014.

[9]http://www.jma.go.jp/jma/kishou/know/whitep/1-3-6.html Apr. 2018

[10] D. Toratani, N. K. Wickramasinghe, S. Fukushima and H. Hirabayashi, “Design Methodology to Simulate Continuous Descent Operations at Kansai International Airport,” Winter Simulation Conference, 2017.

[11] M. Xue and H. Erzberger, “Improvement of Trajectory Synthesizer for Efficient Descent Advisor,” 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, 2011.

平成30年度(第18回)電子航法研究所研究発表会

-20-

1 RNP AR Required Navigation Performance

Authorization Required[1]

Global Navigation Satellite

System GNSS

95 0.3 NM Nautical

Mile 1 NM 1,852 m [2]

RF Radius to FIX

Leg

RNP AR AR

AR

AR AR

26

ILS Instrument Landing System

5 NM

AR GNSS

RF Leg

1

ILS AR

[3]

1

1

ILS

AR [4]

Phoenix[5]

ILS AR[6]-[12]

AR[13]

3

Visual Approach AR[14]

平成30年度(第18回)電子航法研究所研究発表会

-21-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

2118-05-087_本文.indd 21 2018/05/21 15:04:59

Page 2: 7 '5 [ b ã 4 #Ý b #' + ö b1* >/>, ` º! Ç µ @8Õ/ M '5 æ > …8] _%$/ , w w 6 ...

2 ARAR AR

ILS ILS

AR

AR

AR AR

[10] AR

Best-Equipped,

Best-Served BEBS[15]-[17] NextGen Next

Generation Air Transportation System

SESAR Single European Sky ATM Research[18],[19] ILS AR

AR [4], [5]

First come, first served. FCFS

BEBS FCFS

3 3.1

5

2

2

2

3

[8]

4 4

TTT672 10,000 ft

1 ft=0.3048 m

240 kts AWAJI

da Direct AWAJI

平成30年度(第18回)電子航法研究所研究発表会

-22-

3

4

4

FIX

105 NM KARIN

15 NM

10 NM

3.2

[10]

Ground Speed GS

IAS Indicated

Air Speed

FIX Final Approach FIX FAF[10]

IAS

280 kts

13,000 ft 250 kts

10,000 ft 8,000 ft 250 kts

8,000 ft 240 kts

4,000 ft 220 kts

IAS

IAS TAS True Air Speed

VTAS=VIAS*(1+0.02*h/1000) (1)

h

5

TAS

5

Vg GS VTAS

TAS Vw w g

TAS

2

平成30年度(第18回)電子航法研究所研究発表会

-23-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

2218-05-087_本文.indd 22 2018/05/21 15:04:59

Page 3: 7 '5 [ b ã 4 #Ý b #' + ö b1* >/>, ` º! Ç µ @8Õ/ M '5 æ > …8] _%$/ , w w 6 ...

2 ARAR AR

ILS ILS

AR

AR

AR AR

[10] AR

Best-Equipped,

Best-Served BEBS[15]-[17] NextGen Next

Generation Air Transportation System

SESAR Single European Sky ATM Research[18],[19] ILS AR

AR [4], [5]

First come, first served. FCFS

BEBS FCFS

3 3.1

5

2

2

2

3

[8]

4 4

TTT672 10,000 ft

1 ft=0.3048 m

240 kts AWAJI

da Direct AWAJI

平成30年度(第18回)電子航法研究所研究発表会

-22-

3

4

4

FIX

105 NM KARIN

15 NM

10 NM

3.2

[10]

Ground Speed GS

IAS Indicated

Air Speed

FIX Final Approach FIX FAF[10]

IAS

280 kts

13,000 ft 250 kts

10,000 ft 8,000 ft 250 kts

8,000 ft 240 kts

4,000 ft 220 kts

IAS

IAS TAS True Air Speed

VTAS=VIAS*(1+0.02*h/1000) (1)

h

5

TAS

5

Vg GS VTAS

TAS Vw w g

TAS

2

平成30年度(第18回)電子航法研究所研究発表会

-23-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

2318-05-087_本文.indd 23 2018/05/21 15:05:00

Page 4: 7 '5 [ b ã 4 #Ý b #' + ö b1* >/>, ` º! Ç µ @8Õ/ M '5 æ > …8] _%$/ , w w 6 ...

Vg g

1) g

=sin-1{Vw/VTAS*sin(| g w+ |)} (2)

= | g w | (3)

Vg=Sqrt{Vw2 2*Vw*VTAS*cos VTAS

2} (4)

2)

= | TAS_ATC w| (5)

Vg=Sqrt{Vw2 2*Vw*VTAS*cos VTAS

2} (6)

g= w sin-1{(VTAS/Vg)*sin } (7)

TAS_ATC

IAS TAS (1)

TAS=IAS

3

1

1

3 35 70 kts 58 kts3 270 270

3 2 13,000 14,000 ft 13,930 ft2 20 40 kts 31 kts2 190 250 230

2 1 3,000 4,000 ft 3,359 ft1 12 18 kts 14 kts1 190 250 216

4 4.1 IFR

IFR

Instrument Flight Rules

21[11]

[12]

IFR 5 2017

3 7

6 JST

IFR

2 2

4 2

21

22

22 2 17

5 18

6

6 IFR

7 22

22 IFR

2015 7 3

7 R

0.3

18

平成30年度(第18回)電子航法研究所研究発表会

-24-

4.2 2323 23

8

23 CHARLIE

23 DELTA

ECHO ILS

ILS 23

22

23

23

8 23

4.3 ARAR

AR AR

AR 9

10 AR

ILS

AR

9 23 AR

LILAC ARARA FAF

RF

1

10 23 DELTA

LILAC-ARARA ANIKI ECHO

MAYAH ARALE

FAF RF 23

AR AR

2 ILS

9 23 CHARLIE

10 23 DELTA, ECHO

11

4.4 22

RWY 24R

AR RWY24L ILS

平成30年度(第18回)電子航法研究所研究発表会

-25-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

2418-05-087_本文.indd 24 2018/05/21 15:05:01

Page 5: 7 '5 [ b ã 4 #Ý b #' + ö b1* >/>, ` º! Ç µ @8Õ/ M '5 æ > …8] _%$/ , w w 6 ...

Vg g

1) g

=sin-1{Vw/VTAS*sin(| g w+ |)} (2)

= | g w | (3)

Vg=Sqrt{Vw2 2*Vw*VTAS*cos VTAS

2} (4)

2)

= | TAS_ATC w| (5)

Vg=Sqrt{Vw2 2*Vw*VTAS*cos VTAS

2} (6)

g= w sin-1{(VTAS/Vg)*sin } (7)

TAS_ATC

IAS TAS (1)

TAS=IAS

3

1

1

3 35 70 kts 58 kts3 270 270

3 2 13,000 14,000 ft 13,930 ft2 20 40 kts 31 kts2 190 250 230

2 1 3,000 4,000 ft 3,359 ft1 12 18 kts 14 kts1 190 250 216

4 4.1 IFR

IFR

Instrument Flight Rules

21[11]

[12]

IFR 5 2017

3 7

6 JST

IFR

2 2

4 2

21

22

22 2 17

5 18

6

6 IFR

7 22

22 IFR

2015 7 3

7 R

0.3

18

平成30年度(第18回)電子航法研究所研究発表会

-24-

4.2 2323 23

8

23 CHARLIE

23 DELTA

ECHO ILS

ILS 23

22

23

23

8 23

4.3 ARAR

AR AR

AR 9

10 AR

ILS

AR

9 23 AR

LILAC ARARA FAF

RF

1

10 23 DELTA

LILAC-ARARA ANIKI ECHO

MAYAH ARALE

FAF RF 23

AR AR

2 ILS

9 23 CHARLIE

10 23 DELTA, ECHO

11

4.4 22

RWY 24R

AR RWY24L ILS

平成30年度(第18回)電子航法研究所研究発表会

-25-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

2518-05-087_本文.indd 25 2018/05/21 15:05:01

Page 6: 7 '5 [ b ã 4 #Ý b #' + ö b1* >/>, ` º! Ç µ @8Õ/ M '5 æ > …8] _%$/ , w w 6 ...

RWY24R RWY24L

RWY24L ILS

AR

RWY24R RNP AR ILS

RWY24R

AWAJI-

LILAC-MAYAH

11

5 5.1

12

3 NM

3 NM

12

25 NM

AR

AR

ILS

ILS

5 NM

ILS

AR ILS

FAF[20] FAF

RF Leg IF

45 RF Leg

5.24 3 2

2

22 23

IFR185

15

2 12

2821

2

2821

2

15% 220% 3

15% 225%

3

15 45

15 45

ARCHARLIE DELTA,

ECHO CHARLIE CHARLIE

2AR 3

2 =12

1AR

32

=6

1AR

31

=3

1AR

31

=345

1 30(20 8 )

2 15(20 9 )

1415% 6 ,

25 86 6

6 3NM

22

2 AR

AR

3 15 AR 2

20 AR 3 2

22 12

1

平成30年度(第18回)電子航法研究所研究発表会

-26-

23 8

DELTA ECHO AR

10

6

ECHO

DELTA

3 NM

28 6

5.3NASA TLX[21]

13

5

10

13

5.417 2017 12

5 2018 1 6 2 6 3

2

3 1

1 40 50

3 6

2

3

2 3

21

3 NM

28

2016 21[11]

3 AR ILS

ILS AR ILS LILAC25 NM

ILS AR AR

LILAC10 NM

LILAC

5.5

DELTA ECHO AR

AR 5 NM

ILS

平成30年度(第18回)電子航法研究所研究発表会

-27-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

2618-05-087_本文.indd 26 2018/05/21 15:05:02

Page 7: 7 '5 [ b ã 4 #Ý b #' + ö b1* >/>, ` º! Ç µ @8Õ/ M '5 æ > …8] _%$/ , w w 6 ...

RWY24R RWY24L

RWY24L ILS

AR

RWY24R RNP AR ILS

RWY24R

AWAJI-

LILAC-MAYAH

11

5 5.1

12

3 NM

3 NM

12

25 NM

AR

AR

ILS

ILS

5 NM

ILS

AR ILS

FAF[20] FAF

RF Leg IF

45 RF Leg

5.24 3 2

2

22 23

IFR185

15

2 12

2821

2

2821

2

15% 220% 3

15% 225%

3

15 45

15 45

ARCHARLIE DELTA,

ECHO CHARLIE CHARLIE

2AR 3

2 =12

1AR

32

=6

1AR

31

=3

1AR

31

=345

1 30(20 8 )

2 15(20 9 )

1415% 6 ,

25 86 6

6 3NM

22

2 AR

AR

3 15 AR 2

20 AR 3 2

22 12

1

平成30年度(第18回)電子航法研究所研究発表会

-26-

23 8

DELTA ECHO AR

10

6

ECHO

DELTA

3 NM

28 6

5.3NASA TLX[21]

13

5

10

13

5.417 2017 12

5 2018 1 6 2 6 3

2

3 1

1 40 50

3 6

2

3

2 3

21

3 NM

28

2016 21[11]

3 AR ILS

ILS AR ILS LILAC25 NM

ILS AR AR

LILAC10 NM

LILAC

5.5

DELTA ECHO AR

AR 5 NM

ILS

平成30年度(第18回)電子航法研究所研究発表会

-27-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

2718-05-087_本文.indd 27 2018/05/21 15:05:03

Page 8: 7 '5 [ b ã 4 #Ý b #' + ö b1* >/>, ` º! Ç µ @8Õ/ M '5 æ > …8] _%$/ , w w 6 ...

6 RNP AR

RNP AR ILS

22 18 23 15

28 28

25 NM

3

NM

AR

AR

PR

[1] Required Navigation Performance Authorization Required (RNP AR) Procedure Design Manual, ICAO Doc 9905, First Edition, 2009.

[2] , “ RNP AR

2014 A-18-1 2014 9 .

[3] , “ RNP AR ILS

,” 2015 Vol.37, No. ,2015 9 .

[4] C.Devlin et al., “Applications and Benefits of RNP Approaches in the United States National Airspace System,” MITRE Corporation, McLean, VA 22102, USA.

[5] J.Thipphavong et al., “Evaluation of the Terminal Sequencing and Spacing System for Performance-based Navigation Arrivals,” 31st

Digital Avionics System Conference, Oct. 2012.

[6] , , “

SSS2013-1 2013 5 .

[7] , , “

SSS2015-2 2015 5 .

[8] “RNP AR”

27 152015 6 .

[9] O.Amai and T.Matsuoka, “Air Traffic Control Real-time Simulation Experiment Regarding the Mixed Operation between RNP AR and ILS Approach Procedures, ” 2015 IAIN World Congress, Prague, Czech Republic, Oct. 2015.

[10] “RNP AR

,” 3K09 2016 10

.

[11] “ RNP AR” 29 ( 17 )

2017 6.

[12] , “, ”

2F04 2017 10.

[13] D. Marek, “Collaboratively Innovating and Implementation PBN,” PBN Symposium and Workshops, Oct. 2012.

[14] R.Jehlen, “Best Equipped-Best Served (BEBS) ,” FAA, Mar. 2012.

[15] T. Nikoleris and M. Hansen, “EVALUATION OF PRIORITY QUEUE DISCIPLINES FOR AIRCRAFT OPERATIONS IN NEXTGEN,” 12th

WCTR, Lisbon, July 2010.[16] A. M. Churchill, et al., “Integrating best-equipped

best-served principles in ground delay programs,” ATM2011, Berlin, June 2011.

[17] H. S. Cho and R. J. Hansman, “Understanding the Impact of Potential Best-Equipped, Best-Served Policies on the En-route Air Traffic Controller Performance and Workload,” MIT, Report No.ICAT-2012-2, Feb. 2012.

[18] “PERFORMANCE OF AIR NAVIGATION SERVICES,” ICAO ATConf/6-WP/52, Montreal, Mar. 2013.

[19] M.Standar, “BEBS – What does it mean? ,” ICNS, Washington DC, May 2013.

[20][21] S. G. Hart, and L. E. Staveland, “Development of

the NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research,” Amsterdam, P. Hancock & N. Meshkati (Eds.), Human mental workload, pp.139-183, 1988.

平成30年度(第18回)電子航法研究所研究発表会

-28-

1. INTRODUCTION

The Fukuoka Flight Information Region (FIR),shown in Figure 1, is situated between Asia and North America and has significant cross-boundary air traffic that is expected to increase by around 80% between 2013 and 2030 [1]. It will therefore be necessary to increase en route airspace capacity while also offsetting the environmental impact of the increased traffic by improving flight efficiency. We have begun a research project looking at applying free routeing concepts to achieve this.

Figure 1: Major Fukuoka FIR cross-boundary air traffic flows

We consider the difference between a flight’splanned route and a corresponding ideal minimum flight time route as an indicator of its efficiency. Currently, most flight planned routes are based on a network of Air Traffic Service (ATS) routes which concentrate traffic along them (Figure 2). Enablingflights to operate closer to their ideal routes will increase individual flight efficiency, but on the other hand could increase route dispersion and consequently airspace complexity, which makes airspace harder to manage and can thereby reduce capacity. There is therefore a balance to be made between alleviating route constraints for efficiency and imposing structure on air traffic flows for air traffic management reasons.

Figure 2: ATS Routes around Fukuoka FIR. Routes are coloured according to their designators

A=Amber, G=Green, R=Red, M=Magenta. RNAV routes are in light blue.

Highlighted routes are discussed in this paper.

Even if route efficiency is improved within an FIR, however, cross-boundary traffic flow constraints can reduce end-to-end flight efficiency. Currently, many flights are constrained to cross FIR boundaries at fixed “co-ordination” points, causing bottlenecks. Reasonsdiffering(CNS)

for such constraints includecommunication / navigation / surveillancecapabilities and air traffic

management (ATM) procedures in adjacent FIRs, and lack of communication and integration between ATM systems that can allow automated coordination of flights and cross-boundary flow management. Europe has been introducing blocks of ‘Free Route Airspace’ [2] thatincrease route flexibility and eliminate the need to cross FIR boundaries at fixed points within theblocks by harmonising ATM procedures andincreasing system integration, and has a cross-border network flow management function. Similar initiatives are needed in the Asia-Pacificregion.

平成30年度(第18回)電子航法研究所研究発表会

-29-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

127 122

[1]

[2]

2

2.12 22

200 132

132 2132 3

2.1.1

(a)

150m

(b)

平成30年度(第18回)電子航法研究所研究発表会

-1-

2818-05-087_本文.indd 28 2018/05/21 15:05:03