6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide...

37
6.02 Fall 2012 Lecture 15 Slide #1 6.02 Fall 2012 Lecture #15 Modulation – to match the transmitted signal to the physical medium Demodulation

Transcript of 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide...

Page 1: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #1

6.02 Fall 2012 Lecture #15

•  Modulation – to match the transmitted signal to the physical medium •  Demodulation

Page 2: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #3 6.02 Fall 2012 LLecture 15 Slide #3

Single Link Communication Model

Digitize (if needed)

Original source

Source coding

Source binary digits (“message bits”)

Bit stream

Render/display, etc.

Receiving app/user

Source decoding

Bit stream

Channel Coding

(bit error correction)

Recv samples

+ Demapper

Mapper +

Xmit samples

Bits Signals (Voltages)

over physical link

Signals (Voltages)

Channel Decoding

(reducing or removing bit errors)

Render/display, etc.

Receiving app/user g a

Source decoding

etc

de

BBiitt ssttream B

Digitize (if needed)

Original source

iti

Source coding

SSoouurrccee bbiinnaarryy ddiiggiittss SS(“message bits”)

BBiitt sttreamm BB

End-host computers

(Bits

Page 3: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

DT Fourier Tr ansform (DTFT) for Spectral Representation of Genera l x[n]

6.02 Fall 2012 Lecture 15 Slide #4

x[n] =1

2πX(Ω)e jΩn

<2π>

∫ dΩ X(Ω) = x[m]e− jΩm

m

∑where

This Fourier representation expresses x[n] as e jΩna weighted combination of for all Ω in [– , ].

X(Ωο)dΩ is the spectral content of x[n] in the frequency interval [Ωο, Ωο+ dΩ ]

Page 4: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

Input/Output Behav ior of LT I System in Frequency Domain

6.02 Fall 2012 Lecture 15 Slide #5

H(Ω)

x[n] =1

2πX(Ω)e jΩn

<2π>

∫ dΩ y[n] =1

2πH (Ω)X(Ω)e jΩn

<2π>

∫ dΩ

Y (Ω) = H (Ω)X(Ω)

y[n] =1

2πY (Ω)e jΩn

<2π>

∫ dΩ

Spectral content of output Spectral content

of input Frequency response of system

Page 5: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #6

© PC Magazine. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see http://ocw.mit.edu/fairuse.

Page 6: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

Phase of the frequency response is important too!

•  Maybe not if we are only interested in audio, because the ear is not so sensitive to phase distortions

•  But it’s certainly important if we are using an audio channel to transmit non-audio signals such as digital signals representing 1’s and 0’s, not intended for the ear

6.02 Fall 2012 Lecture 15 Slide #7

Page 7: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #8

To gauge how it will fare on lowpass and bandpass channels, let’s look at the spectral content of a rectangular pulse, x[n]=u[n]-u[n-256], of the kind we’ve been using in on-off signaling in our Audiocom lab. Any guesses as to spectral shape?

Page 8: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

Derivation of DTFT for rectangular pulse x[m]=u[m]-u[m-N]

6.02 Fall 2012 Lecture 15 Slide #9

X(Ω) = x[m]e− jΩm

m=0

N−1

=1+ e− jΩ + e− j2Ω +…+ e− jΩ(N−1)

= (1− e− jΩN ) / (1− e− jΩ)

= e− jΩ(N−1)/2 sin(ΩN / 2)

sin(Ω / 2)Height N at the origin, first zero-crossing at 2 /N

Shifting in time only changes the phase term in front. If the rectangular pulse is centered at 0, this term is 1.

Page 9: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #10

Simpler case: DTFT of x[n] = u[n+5] – u[n-6] (centered rectangular pulse of length 11)

A periodic sinc (or “Dirichlet kernel”) – not the sinc we’ve seen before!

https://ccrma.stanford.edu/~jos/sasp/Rectangular_Window.html

N

2 /N

Courtesy of Julius O. Smith. Used with permission.

Page 10: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #11

Magnitude of preceding DTFT

https://ccrma.stanford.edu/~jos/sasp/Rectangular_Window.html

Courtesy of Julius O. Smith. Used with permission.

Page 11: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #12

DTFT of x[n]= u[n] – u[n-10], rectangular pulse of length 10 starting at time 0

http://cnx.org/content/m0524/latest/

Courtesy of Don Johnson. Used with permission; available under a CC-BY license.

Page 12: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

Back to our Audiocom lab example

6.02 Fall 2012 Lecture 15 Slide #13

Page 13: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #14

x[n]=u[n]-u[n-256]

Page 14: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #15

|DTFT| of x[n]=u[n]-u[n-256], rectangular pulse of length 256:

48000 samples of |DTFT| spread evenly between [–π , π], computed using FFT (around 3000 times faster than direct computation in this case!)

– Ω  = f = fs /2

0 rads/sample 0 Hz

If sampling rate is 48 kHz, then this is 24,000 Hz

Page 15: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #16

Zooming in:

0

187.5 Hz (corresponds to 2 /N when fs = 48 kHz)

256 = N

Too much of the signal’s energy misses the loudspeaker’s passband!

Page 16: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #17

What if we sent this pulse through an ideal lowpass channel?

|DTFT| of lowpass filtered version of x[n]=u[n]-u[n-256], cutoff 400 Hz

– 0 Ω  = f = fs /2

Page 17: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #18

Zooming in:

0

400 Hz

256 = N

Page 18: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #19

No longer confined to its 256-sample slot, so causes “intersymbol interference” (ISI).

Corresponding pulse in time, i.e., lowpass filtered version of rectangular pulse

Page 19: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

Effect of Low-P ass Channel

6.02 Fall 2012 Lecture 15 Slide #20 6 02 Fall 2012

Page 20: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

How Low Can We Go?

6.02 Fall 2012 Lecture 15 Slide #21

Page 21: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

Complementary/dual behav ior in time and frequency domains

•  Wider in time, narrower in frequency; and vice versa. –  This is actually the basis of the uncertainty principle

in physics!

•  Smoother in time, sharper in frequency; and vice versa

•  Rectangular pulse in time is a (periodic) sinc in frequency, while rectangular pulse in frequency is a sinc in time; etc.

6.02 Fall 2012 Lecture 15 Slide #22

Page 22: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #23

Slightly round the transitions from 0 to 1, and from 1 to 0, by making them sinusoidal, just 30 samples on each end.

A shaped pulse versus a rectangular pulse:

Page 23: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #24

|DTFT| of rectangular pulse

Negative|DTFT| of shaped pulse

Frequency content of shaped pulse only extends to here, around 1500 Hz

In the spectral domain:

Page 24: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #25

The lowpass filtered shaped pulse conforms more tightly to the 256-sample slot, and settles a little quicker

After passing the two pulses through a 400 Hz cutoff lowpass filter:

Page 25: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

But loudspeakers are bandpass,

not lowpass

6.02 Fall 2012 Lecture 15 Slide #26

Page 26: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #27

© PC Magazine. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see http://ocw.mit.edu/fairuse.

Page 27: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #28

Spectrum of rectangular pulse after ideal bandpass filtering, 100 Hz to 10,000 Hz

10,000 Hz

0

Page 28: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #29

Zooming in:

100 Hz 0

10,000 Hz

Page 29: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #30

Corresponding pulse in time, i.e., bandpass Won’t do filtered version of at all!! rectangular pulse

Page 30: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

The Solution: Modulation

•  Shift the spectrum of the signal x[n] into the loudspeaker’s passband by modulation!

6.02 Fall 2012 Lecture 15 Slide #31

x[n]cos(Ωcn) = 0.5x[n](e jΩcn + e− jΩcn )

=0.5

2π[ X(Ω ')e j (Ω '+Ωc )n

<2π>

∫ dΩ '+ X(Ω")e j (Ω"−Ωc )n

<2π>

∫ dΩ"]

=0.5

2π[ X(Ω− Ωc )e

jΩn

<2π>

∫ dΩ+ X(Ω+ Ωc )ejΩn

<2π>

∫ dΩ]

Spectrum of modulated signal comprises half-height replications of X(Ω) centered as ±Ωc (i.e., plus and minus the carrier frequency). So choose carrier frequency comfortably in the passband, leaving room around it for the spectrum of x[n].

Page 31: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

Is Modulation Linear? Ti me-Invariant? …

6.02 Fall 2012 Lecture 15 Slide #32

×x[n]

cos(Ωcn)

t[n]

… as a system that takes input x[n] and produces output t[n] for transmission?

Yes, linear! No, not time-invariant!

Page 32: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #33

So for our rectangular pulse example:

Time domain: Pulse modulated onto 1000 Hz carrier

Page 33: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #34

Corresponding spectrum of signal modulated onto carrier

0

Page 34: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #35

0 Hz 100 Hz, lower cutoff of bandpass filter

Zooming in:

1000 Hz

128, i.e. half height of original

10,000 Hz, upper cutoff of bandpass filter

–1000 Hz

Page 35: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

6.02 Fall 2012 Lecture 15 Slide #36

Pulse modulated onto 1000 Hz carrier makes it through the bandpass channel with very little distortion

Page 36: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

At the Receiver: Demodulation•  In principle, this is (as easy as) modulation again:

If the received signal is r[n] = x[n]cos(Ωcn),

then simply compute

d[n] = r[n]cos(Ωcn) = x[n]cos2(Ωcn)

= 0.5 {x[n] + x[n]cos(2Ωcn)}

•  What does the spectrum of d[n] look like? •  What constraint on the bandwidth of x[n] is needed

for perfect recovery of x[n]?

6.02 Fall 2012 Lecture 15 Slide #38

Page 37: 6.02 Fall 2012 Lecture #15 - MIT OpenCourseWare · 2020-01-04 · 6.02 Fall 2012 Lecture 15 Slide #1 . 6.02 Fall 2012 Lecture #15 • Modulation – to match the transmitted signal

MIT OpenCourseWarehttp://ocw.mit.edu

6.02 Introduction to EECS II: Digital Communication SystemsFall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.