6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010...

12
6.02 Fall 2010 Lecture #14 Frequency Domain Sharing Spectrum and the Fourier Series Fourier Series Examples Rise Time and Spectrum

Transcript of 6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010...

Page 1: 6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010 Lecture #14 •Frequency Domain Sharing •Spectrum and the Fourier Series •Fourier

6.02 Fall 2010

Lecture #14

• Frequency Domain Sharing

• Spectrum and the Fourier Series

• Fourier Series Examples

• Rise Time and Spectrum

Page 2: 6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010 Lecture #14 •Frequency Domain Sharing •Spectrum and the Fourier Series •Fourier

Frequency Domain Sharing – Big Picture

• Questions

– What is Modulation (Mod in figure)?

– What do typical X’s look like?

– What should the Demodulator be?

– What is the relation between and

Channel+X

Mod

Mod

Mod

x1[n]

x2[n]

xP [n]

...Y

DeMod

DeMod

DeMod

...

y1[n]

y2[n]

yP [n]

xi[n] yi[n]

Page 3: 6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010 Lecture #14 •Frequency Domain Sharing •Spectrum and the Fourier Series •Fourier

xP [n]

cos­1n

Cosine Modulation

x[n] =PP

i=1 xi[n] cos­in...

cos­Pn

x1[n]

Page 4: 6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010 Lecture #14 •Frequency Domain Sharing •Spectrum and the Fourier Series •Fourier

Ideal Channel Case

?

Page 5: 6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010 Lecture #14 •Frequency Domain Sharing •Spectrum and the Fourier Series •Fourier

Cosine in Time

x[n] = cos ¼3n = 1

2ej¼3n + 1

2e¡j

¼3n

Page 6: 6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010 Lecture #14 •Frequency Domain Sharing •Spectrum and the Fourier Series •Fourier

Sine in Time

x[n] = sin ¼3n = ¡j

2ej¼3n + j

2e¡j

¼3n

Page 7: 6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010 Lecture #14 •Frequency Domain Sharing •Spectrum and the Fourier Series •Fourier

Sine Fourier Series, 2 Imaginary values

x[n] =

N2¡1X

k=¡N2

X[k]ej2¼Nkn =

¡j2ej¼3n +

j

2e¡j

¼3n

X[k]

Nk

Note

horizontal

axis ranges

over

–pi to pi!

Page 8: 6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010 Lecture #14 •Frequency Domain Sharing •Spectrum and the Fourier Series •Fourier

Fast Rise Pulse

x[n]

n

Page 9: 6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010 Lecture #14 •Frequency Domain Sharing •Spectrum and the Fourier Series •Fourier

Spectrum of Fast Rise Pulse

x[n] =

N2¡1X

k=¡N2

X[k]ej2¼Nkn

X[k]

Nk

Page 10: 6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010 Lecture #14 •Frequency Domain Sharing •Spectrum and the Fourier Series •Fourier

Slow Rise Pulse

x[n]

n

Page 11: 6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010 Lecture #14 •Frequency Domain Sharing •Spectrum and the Fourier Series •Fourier

Spectrum Slow Rise Pulse

x[n] =

N2¡1X

k=¡N2

X[k]ej2¼Nkn

X[k]

Nk

Page 12: 6.02 Fall 2010 Lecture #14 - MITweb.mit.edu/6.02/www/f2010/handouts/lectures/L14.pdf6.02 Fall 2010 Lecture #14 •Frequency Domain Sharing •Spectrum and the Fourier Series •Fourier

Key Fourier Series Advantage

x[n] =

N2¡1X

k=¡N2

X[k]ej2¼Nkn

HX Y

y[n] =

N2¡1X

k=¡N2

H(ej2¼Nk)X[k]ej

2¼Nkn

y[n] =Pn

m=0 h[m]x[n¡m]

OR

H(ej­) =PL

m=0 h[m]e¡j­m