6. Vasarevicius Air Treatment PlasTEP 2012

download 6. Vasarevicius Air Treatment PlasTEP 2012

of 99

Transcript of 6. Vasarevicius Air Treatment PlasTEP 2012

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    1/99

    ˇ 

    Part-financed by the European Union (European Regional Development Fund

    COMPARISON OF DIFFERENT AIR TREATMENT METHODS

    WITH PLASMA TREATMENT 

    PlasTEP 3rd Summer school and trainingscourse 2012 Vilnius / Kaunas

    Saulius Vasarevicius, VGTU

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    2/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    3/99

    3

    Stationary Source Control

    • Philosophy of pollution prevention (3P’s)  – Modify the process: use different raw materials

     – Modify the process: increase efficiency

     – Recover and reuse: less waste = less pollution

    • Philosophy of end-of-pipe treatment

     – Collection of waste streams

     –  Add-on equipment at emission points

    • Control of stationary sources – Particulates

     – Gases

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    4/99

    Three Types Of Control

    Mechanical

    Chemical

    Biological 

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    5/99

    Particulate Control

    (Mechanical)

    • Electrostatic precipitator

    •  Bag house fabric filter•  Wet scrubber

    •  High efficiency cyclones

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    6/99

    Particulate Control Technologies

    • Remember this order: – Settling chambers

     – Cyclones

     – ESPs (electrostatic

    precipitators)

     – Spray towers

     – Venturi scrubbers

     – Baghouses (fabric filtration)

    •  All physical processes

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    7/99

    7

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    8/99

    8

    Settling Chambers

    • “Knock-out pots” 

    • Simplest, cheapest, no moving parts

    • Least efficient

     – large particles only

    • Creates solid-waste stream

     – Can be reused

    • Picture on next slide

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    9/99

    9

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    10/99

    Gravity settler 

    Disadvantages

    • Large space requirement

    • Relatively low overall collection

    efficiencies (typical 20 - 60 %)

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    11/99

    Flue Gas Cleaning  – The state of the art

    Selection criteria

    ESP Bag house Scrubber Cyclones

    (normal)

    Spraycone

    Cyclones

    Emissionmg/Nm3  100  30 200 250 < 100

    Reliability ++ + ++ ++++ ++++

    Cost ++++ ++++ +++ + +

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    12/99

    Gas Cleaning  – The state of the art

    Evaluation of ESP for industrial boilers:

    • High cost (investment, maintenance & operation)• Complex large size plant with sub-systems

    • Requires constant gas conditions (sulphur, temp, moisture)

    Evaluation of bag filters for industrial boilers:

    • High cost (investment, maintenance & filter bags)• Difficult to handle sulphur and sparks

    • Not robust (one faulty bag destroys efficiency

    Evaluation of wet scrubbers for industrial boilers:• High cost (large water treatment plant)• Difficult to separate fine particulate

    • Sulphur control costly & difficult

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    13/99

    Flue Gas Cleaning  – The state of the art

    Evaluation of cyclone “grid arrestor” : 

    • Low collection efficiency due to:

    • Wrong design (see velocity analysis)

    •  Air ingress

    • Bad manufacturing quality

    • Lack of maintenance (blockage of cyclone cells)

    But cyclone system advantages are low cost and robust installation

    Can a cyclone reach efficiencies of ESP / Bag filter / Wet scrubber?

    This question triggered our cyclone development Programin 1994 to improve cyclone efficiency and to invent the

    “dry spray agglomeration principle”

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    14/99

    Cyclone

    •Most Common

    •Cheapest

    •Most Adaptable

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    15/99

    Mechanical ollectors

    yclones

    Advantages: Good for larger PM

    Disadvantages: Poor efficiency for finer PM

    Difficult removing sticky or wet PM

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    16/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    17/99

    17

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    18/99

    Cyclone Operating Principle

     “Dirty” Air Enters The Side. 

    The Air Swirls Around TheCylinder And Velocity IsReduced.

    Particulate Falls Out Of The AirTo The Bottom Cone And Out.

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    19/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    20/99

    Flue Gas Cleaning  – The state of the art

    Commercial applications of high efficiency cyclones:

    BurnerMax

    Fluidized bed furnace

    High efficiency cyclonesoperating at 400 C

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    21/99

    Multiple Cyclones

    (Multi clone)Smaller Particles Need Lower

    Air Flow Rate To Separate.Multiple Cyclones AllowLower Air Flow Rate, CaptureParticles to 2 microns

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    22/99

     Air Filtration

    Filt ti M h i

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    23/99

    Filtration Mechanisms• Diffusion 

    Q: How does efficiency change withrespect to d  p?

    a. Efficiency goes up as dp decreases

    b. Efficiency goes down as dp decreases

    Filt ti M h i

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    24/99

    Filtration Mechanisms• Impaction 

    Q: How does efficiency changewith respect to d  p?

    a. Efficiency goes up as dp decreases

    b. Efficiency goes down as dp decreases

    Filt ti M h i

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    25/99

    Filtration Mechanisms• Interception 

    Fat Man’s Misery,Mammoth Cave NP

    http://www.geocities.com/wrique2002/ParentsVisit/FatmansMisery2.jpg

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    26/99

    Filter efficiency for individual mechanismand combined mechanisms

    dp (m)

    0.01 0.1 1 10

          E      f      f      i     c 

          i     e      n     c      y  

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Interception

    ImpactionDiffusion

    Gravitation

    Total

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    27/99

    FILTRATION

    Fiber filter

    Q: Do filters function just as a strainer,

    collecting particles larger than the strainer

    spacing?a: yes

    b: no 

    Filt D M d l

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    28/99

    Filter Drag Model

     s p  f     P  P  P  P   

    V  LVt  K V  K  21  

    Areal Dust Density  LVt W  

    Filter drag

     P S     W  K  K S  21

     K  s 

     K e 

    K e & K s to be determined empirically

     P  f  : fabric pressure drop P  f  : particle layer pressure drop

     P  s: structure pressure drop

    Time(min)

    P, Pa

    0 150

    5 380

    10 505

    20 610

    30 690

    60 990Q: What is the pressure drop after 100 minutes of

    operation? L = 5 g/m3 and V = 0.9 m/min.

    se

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    29/99

    Case A: Pore blocking

    Case B: Pore plugging

    Case C1: Pore narrowing

    Case C2: Pore narrowing w/lost poreCase D: Pore bridging

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    30/99

     Air Filtration

    • Impaction

    • Diffusion

    • Straining (Interception)• Electrostatics

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    31/99

    Fabric Filter

    (Baghouse)

    •Same Principle As Home

    Vacuum Cleaner•Air Can Be Blown Through Or

    Pulled Through

    •Bag Material Varies AccordingTo Exhaust Character

    B

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    32/99

    Cleaned gas

    Dirty gas

    Baghouse Filter –

     only one to remove hazardous fine particles

    Dust discharge

    Bags

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    33/99

     Advantages/Disadvantages

    • Very high collection efficiencies

    • Pressure drop reasonably low (at beginning of operation,

    must be cleaned periodically to reduce)

    • Can’t handle high T flows or moist environments 

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    34/99

    34

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    35/99

    35

    Pulse-Air-Jet Type

    Baghouse

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    36/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    37/99

     About Baghouses

    Efficiency Up To 97+%

    (Cyclone Efficiency 70-90%)Can Capture Smaller ParticlesThan A Cyclone

    More Complex, Cost More ToMaintain Than Cyclones

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    38/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    39/99

    Electrostatic Precipitators

    Types include:

    •  Dry, negatively charged

    •  Wet-walled, negatively charged

    •  Two-stage, positively charged

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    40/99

    • ELECTROSTATIC PRECIPITATOR

    • Advantages of Electrostatic Precipitators 

    Electrostatic precipitators are capable very high efficiency, generally ofthe order of 99.5-99.9%.

    Since the electrostatic precipitators act on the particles and not on the air,they can handle higher loads with lower pressure drops.

    They can operate at higher temperatures.

    The operating costs are generally low. 

    • Disadvantages of Electrostatic Precipitators 

    The initial capital costs are high.

    Although they can be designed for a variety of operating conditions, theyare not very flexible to changes in the operating conditions, onceinstalled.

    Particulate with high resistivity may go uncollected.

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    41/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    42/99

    Electrostatic Precipitator Drawing

    H A ESP O t

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    43/99

    How An ESP Operates

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    44/99

    44

    ESPs

    • Electrostatic precipitator• More expensive to install,

    • Electricity is major operating cost

    • Higher particulate efficiency than

    cyclones

    • Can be dry or wet• Plates cleaned by rapping

    • Creates solid-waste stream

    • Picture on next slide

    El t t ti P i it t C t

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    45/99

    45

    Electrostatic Precipitator Concept

    El t t ti P i it t

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    46/99

    46

    Electrostatic Precipitator

    Cl d

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    47/99

    Electrostatic Precipitator –

     static plates collect particles

    Dirty gas

    Dust discharge

    Electrodes

    Cleaned gas

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    48/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    49/99

    Scrubbers

    •Gas Contacts A Liquid Stream

    •Particles Are Entrained In

    The Liquid•May Also Be A Chemical

    Reaction

    –Example: Limestone SlurryWith Coal Power Plant Flue Gas

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    50/99

    Wet Particle Scrubbers

    • Particulate control by impaction,

    interception with water droplets

    • Can clean both gas and particle

    phases

    • High operating costs, high

    corrosion potential

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    51/99

     

    • WET SCRUBBERS (CONTD.)

    •Advantages of Wet Scrubbers 

    • Wet Scrubbers can handle incoming streams at high temperature, thusremoving the need for temperature control equipment.

    Wet scrubbers can handle high particle loading.

    Loading fluctuations do not affect the removal efficiency.

    They can handle explosive gases with little risk.

    Gas adsorption and dust collection are handled in one unit.

    Corrosive gases and dusts are neutralized.

    • Disadvantages of Wet Scrubbers  High potential for corrosive problems

    Effluent scrubbing liquid poses a water pollution problem. 

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    52/99

    52

    Venturi Scrubber

    Detail illustrates cloud atomization from high-velocity gas stream shearing liquid atthroat

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    53/99

    53

    V ti l V t i S bb

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    54/99

    Vert ical Ventur i Scrubber

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    55/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    56/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    57/99

    Tower Scrubber

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    58/99

    58

    Spray Towers

    • Water or other liquid “washes out” PM 

    • Less expensive than ESP but more than

    cyclone, still low pressure drop

    • Variety of configurations

    • Higher efficiency than cyclones

    • Creates water pollution stream• Can also absorb some gaseous

    pollutants (SO2)

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    59/99

    59

    Spray Tower

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    60/99

    Gaseous Pollutant Control

    • Absorption

    • Adsorption

    •Combustion

    Control of Air Pollutants

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    61/99

    Control of Air Pollutants

    Gaseous pollutants - Combustion• 3 types of combustion systems commonlyutilised for pollution control

     – direct flame, – thermal, and

     – catalytic incineration systems

    Control of Air Pollutants

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    62/99

    Control of Air Pollutants

    Gaseous pollutants - Adsorption

    • physical adsorption to solid surfaces

    • Reversible - adsorbate removed from theadsorbent by increasing temp. or lowering

    pressure• widely used for solvent recovery in dry

    cleaning, metal degreasing operations,

    surface coating, and rayon, plastic, andrubber processing

    Control of Air Pollutants

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    63/99

    Control of Air Pollutants

    Gaseous pollutants - Adsorption• limited use in solving ambient air pollutionproblems – with its main use involved in the

    reduction of odour

    •  Adsorbents with large surface area to

    volume ratio (activated carbon) preferred

    agents for gaseous pollutant control

    • Efficiencies to 99%

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    64/99

    64

    Carbon Adsorption

    • Will do demonstration shortly

    • Good for organics (VOCs)

    • Both VOCs and carbon can berecovered when carbon is

    regenerated (steam stripping)

    • Physical capture

     – Adsorption

     – Absorption

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    65/99

    65

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    66/99

    Control of Air Pollutants

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    67/99

    Control of Air Pollutants

    Gaseous pollutants - Absorption

    • Scrubbers remove gases by chemical

    absorption in a medium that may be a liquid

    or a liquid-solid slurry

    • water is the most commonly used scrubbing

    medium

    •  Additives commonly employed to increasechemical reactivity and absorption capacity

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    68/99

    Pollutants Of Interest

    •Volatile Organic Compounds

    (VOC)•Nitrogen Oxides (NOx)

    •Sulfur Oxides (SOx)

    Controlling Gaseous Pollutants: SO2 &

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    69/99

    69

    Controlling Gaseous Pollutants: SO2 &NOx 

    • Modify Process (recall 3P’s) 

     – Switch to low-sulfur coals

     – Desulfurize coal (washing, gasification)

    • Increase efficiency – Low-NOx burners

    • Recover and Reuse (heat)

     – staged combustion – flue-gas recirculation

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    70/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    71/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    72/99

    Flue Gas SOx Control

    SOx Forms Sulfuric Acid WithMoisture In Air Producing

    Acid Rain.Remove From Flue Gas ByChemical Reaction With

    Limestone

    Control Technologies for Nitrogen

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    73/99

    Control Technologies for Nitrogen

    Oxides

    • Preventive – minimizing operating

    temperature

     – fuel switching

     – low excess air – flue gas recirculation

     – lean combustion

     – staged combustion

     – low Nox burners

     – secondary combustion – water/steam injection

    • Post combustion – selective catalytic reduction

     – selective non-catalyticreduction

     – non-selective catalyticreduction

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    74/99

    Thermal Oxidizers

    For VOC Control

    Also Called Afterburners

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    75/99

    75

    Thermal Oxidation

    • Chemical change = burn – CO2 and H2O ideal end products of all processes

    • Flares (for emergency purposes)

    • Incinerators

     – Direct

     – Catalytic = improve reaction efficiency

     – Recuperative: heat transfer between inlet /exit gas

     – Regenerative: switching ceramic beds that hold

    heat, release in air stream later to re-use heat

    T T Of O idi

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    76/99

    Two Types Of Oxidizer

    •Catalytic

    •Non-Catalytic 

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    77/99

    Thermal Oxidizer

    (Non-Catalytic)

    C l i Th l O idi

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    78/99

    Catalytic Thermal Oxidizer

    Biological Method

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    79/99

    Biological Method

    •Uses Naturally OccurringBacteria (Bugs) To BreakDown VOC

    • “Bugs” Grow On Moist MediaAnd Dirty Gas Is Passed

    Through. Bugs Digest TheVOC.

    •Result Is CO2 And H2O

    A Bi Filt F VOC R l

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    80/99

     A Bio Filter For VOC Removal

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    81/99

    E-beam flue gas treatment process

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    82/99

    E beam flue gas treatment process(Prof. A.Chmielewski) 

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    83/99

    Pollutants removed by EB method

    The method has been designed for simultaneous removal of:

    • SO2

    • NOx

    • Cl, HF etc.

    • Volatile Organic Hydrocarbons (VOC)• Dioxins

    • Mercury

    • Others… 

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    84/99

    Electron beam effect on gas, primary radiolysis products:

    • 4.43N2 -› 0.29N2* + 0.885N(2D) + 0.295N(2P) + 1.87N(4S) + 2.27N2+ +0.69N+ + 2.96e-

    • 5.377O2 -› 0.077O2* + 2.25O(1D) + 2.8O(3P) + 0.18O* + 2.07O2+ +

    1.23O+ + 3.3e-

    • 7.33H2O -› 0.51H2 + 0.46O(3P) + 4.25OH + 4.15H +1.99 H2O+ + 0.01H2+

    + 0.57OH+ + 0.67H+ + 0.06O+ + 3.3e-

    • 7.54CO2 -› 4.72CO + 5.16O(3P) + 2.24CO2+ + 0.51CO+ + 0.07C+ +

    0.21O+ + 3.03 e-

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    85/99

    Electron beam effect on gas, secondary reactions:

    • O(1D) + H2O ͢ ͢ ͢ ͢  -› 2OH*

    • N2+ + 2H2O -› H3O+ + OH*+ N2

    • O(3P) + O2+ M -› O3+ M

    • e-+ O2 + M -› O2-+ M

    • H3O+ + O2- -› HO2*+ H2O

     As a result of these primary and secondary reactions OH*,

    HO2 *, O*radicals, O3and other oxidizing species areformed, that can oxidize NO, SO2 and Hg.

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    86/99

    SO2 removal pathways 

    Radiothermal:

    • SO2 + OH* + M -› HSO3 + M

    • HSO3 + O2 -› SO3 + HO2*

    • SO3 + H2O -› H2SO4

    • H2SO4 + 2NH3 -› (NH4)2SO4

    Thermal:

    • SO2 + 2NH3 -› (NH3)2SO2• (NH3)2SO2 -› (NH4)2SO4 

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    87/99

    NOx removal pathways 

    NO oxidation

    • NO + O(3P) + M -› NO2+ M 

    • O(3P) + O2+ M -› O3+ M 

    • NO + O3+ M -› NO2+ O2+ M 

    • NO + HO2* + M -› NO2+ OH* +M 

    • NO + OH* + M -› HNO2+M 

    • HNO2+ OH* -› NO2+ H2O 

    NO2removal• NO2+ OH* + M -›HNO3+ M 

    • HNO3+ NH3-›NH4NO3 

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    88/99

    Reaction mechanisms and sequenceof E-beam process

    H. Namba: Materials of UNDP(IAEA)RCA Regional Training Course on

    Radiation Technology for Environmental Conservation TRCE-JAERI,

    Takasaki,

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    89/99

    VOC-decomposition and deodorization methods

    Thermal Processes: 1-TO, Thermal Oxidation; 2-RTO, Regenerative Thermal Oxidation; 3-

    Catalytic Oxidation with Recuperation. Filtering/Adsorption: 4-Biofilters; 5-Scrubber; 7-

     Adsorption Container; 8-Concentrator Unit with TO; 9-Filtering. Non-thermal Oxidation: 6a-

    Electrical Non-thermal oxidation; 6b-UVS Non-thermal Oxidation.

    VOC d iti

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    90/99

    VOC-decomposition

    Non-thermal plasmas:• Decomposition of contaminants without heating

    • Wide range of pollutants (Gases ... Particulate Matter PM)

    • Decomposition of organic PM

    • High efficiency for low contamination (e.g. deodorization), ([VOCs] < 1 g

    Corg/m3)

    Negative aspects:

    • High energy cost/molecule_ high energy for high concentrations

    • Uncompleted conversion and by-products _ low selectivity (CO2)

    • Deposition of polymer films in reactors _ unstable plasma source

    Possibilities - indirect treatment, hybrid methods = combination of plasma with:

    catalysts, scrubbing, adsorbents… 

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    91/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    92/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    93/99

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    94/99

    Non thermal plasma

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    95/99

    PDC for deodorization (commercial)

    1200 By-products

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    96/99

     Total weighed environmental impact of plasma and non-plasma end-of-pipe

    pollutant treatment technologies: the comparison of technologies for SOx/NOx

    removal. 1) Electron Beam Flue Gas Treatment (EBFGT) versus 2) Wet Flue Gas

    Desulphurization with Selective Catalytic Reduction (WFGD+SCR

    1099.7

    74.4

    0

    200

    400

    600

    800

    1000

    1200

    EBFGT WFGD + SCR

       C   M   L   2   0   0

       1 ,

       E  x  p  e  r   t  s   I   K   P   (   C  e  n   t  r  a   l   E  u  r  o  p  e

       )

    By products

    Material resources

    Electricity

    Material resources

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    97/99

     Total weighed environmental impact of plasma and non-plasma end-of-pipe

    pollutant treatment technologies: the comparison of technologies for VOCs

    removal. 1) Dielectric barrier discharge (DBD) versus 2) adsorption by zeolite (for

    LCA) and molecular sieves (for CBA), 3) biofiltration,

    4.2

    41.1

    26.1

    0

    10

    20

    30

    40

     

       C   M   L

       2   0   0   1 ,

       E  x  p  e  r   t  s   I   K   P   (   C  e  n   t  r  a   l   E  u  r  o  p  e   )

    Material resources

    Electricity

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    98/99

    Flue gas treatment method >300

    MW unit 

    Investment costs

    €/kW 

    Annual operation costs

    €/MW 

    EBFGT 

    32-45 

    1290-1577 

    Wet deSO2 + SCR  176-247  4786-5350 

    Wet deSO2 + SNCR  144-190  3870-4223 

    Emission control method 120 MW

    unit 

    Investment costs

    €/kW 

    Annual operation costs

    €/MW 

    EBFGT 

    113 

    5167 

    WFGT+SCR  162  5343 

    Investment and operation costs of EBFGT and combination of conventional deSO2 and deNOx

    Full “Report on Eco-Efficiency of Plasma-Based technologies for Environmental Protection” and

    “Report on cost-benefit analysis of plasma-based technologies“ are available at the PlasTEP

    project website (http://www.plastep.eu/fileadmin/dateien/Outputs/OP3-2.1_Eco-

    efficiency_report.pdf , http://www.plastep.eu/fileadmin/datein/Outputs/120208_CBA.pdf ).

    http://www.plastep.eu/fileadmin/dateien/Outputs/OP3-2.1_Eco-efficiency_report.pdfhttp://www.plastep.eu/fileadmin/dateien/Outputs/OP3-2.1_Eco-efficiency_report.pdfhttp://www.plastep.eu/fileadmin/datein/Outputs/120208_CBA.pdfhttp://www.plastep.eu/fileadmin/datein/Outputs/120208_CBA.pdfhttp://www.plastep.eu/fileadmin/dateien/Outputs/OP3-2.1_Eco-efficiency_report.pdfhttp://www.plastep.eu/fileadmin/dateien/Outputs/OP3-2.1_Eco-efficiency_report.pdfhttp://www.plastep.eu/fileadmin/dateien/Outputs/OP3-2.1_Eco-efficiency_report.pdfhttp://www.plastep.eu/fileadmin/dateien/Outputs/OP3-2.1_Eco-efficiency_report.pdfhttp://www.plastep.eu/fileadmin/dateien/Outputs/OP3-2.1_Eco-efficiency_report.pdf

  • 8/18/2019 6. Vasarevicius Air Treatment PlasTEP 2012

    99/99

     

    Thank You for Your attention!