6. DAFTAR PUSTAKArepository.unika.ac.id/9136/8/12.70.0096 shella Novia Wulandari... · 41 6. DAFTAR...

22
41 6. DAFTAR PUSTAKA Anderson, K. and Naujoks, B. (1994). The SSB Viscometer System: Starch Application, Cargill, Inc. Angka SL, Suhartono TS. 2000. Bioteknologi Hasil Laut. Bogor: Pusat Kajian Sumber Daya Pesisir dan Lautan. Institut Pertanian Bogor. hlm 49-56. Apriyantono, A., D. Fardiaz, N.L. Puspitasari, Sedarnawati , dan S. Budiyanto. (1989). Analisa Pangan. PAU Pangan dan Gizi. IPB. Bogor. Ashraf M. Sharoba. 2014. Nutritional value of spirulina and its use in the preparation of some complementary baby food formulas. Journal of Agroalimentary Processes and Technologies, 20 (4), 330-350. Carlsen, M. H., B. L. Halvorsen, K. Holte, S. K. Bohn, S. Dragland, L. Sampson, C. Willey, H. Senoo, Y. Umezono, C. Sanada, I. Barikmo, N. Berhe, W. C. Willet, K. M. Philips, D.R. Jacobs Jr, R. Blomhoff. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal, 9:3. Christianti, Yessy. (2013). Pemanfaatan Mikroalga Spirulina sp dalam Formulasi Butter Cookies: Studi Karateristik Fisikokimia dan sensori. Skripsi. Universitas Katolik Soegijapranata Semarang. Christwardana, M., dan Hadiyanto M.M.A. Nur. 2012. Spirulina platensis:potensinyasebagaibahanpanganfungsional.. Jurnal Aplikasi Teknologi Pangan. Vol 2. UNDIP: Semarang. Chueamchaitrakun, P., P. Chompreeda, V. Haruthaithanasan, T. Suwonsichon & S. Kasemsamran. (2011). Physical Properties of Butter Cake Made from Mixed Hom-Mali and Glutinous Rice Flours. Kasetsart J. (Nat. Sci.) 45 : 295 304. Codex Alimentarius Commission. (1995). Codex Standard For Rice. CODEX STAN 198-1995. Damodaran, S and A. Paraf. (1997). Food Proteins and Their Application New York. Marcel Dekker, Inc. Frei.M. and K. Becker. (2004). On Rice, Biodiversity & Nutrients. University of Hohenheim, Germany.

Transcript of 6. DAFTAR PUSTAKArepository.unika.ac.id/9136/8/12.70.0096 shella Novia Wulandari... · 41 6. DAFTAR...

41

6. DAFTAR PUSTAKA

Anderson, K. and Naujoks, B. (1994). The SSB Viscometer System: Starch Application,

Cargill, Inc.

Angka SL, Suhartono TS. 2000. Bioteknologi Hasil Laut. Bogor: Pusat Kajian Sumber

Daya Pesisir dan Lautan. Institut Pertanian Bogor. hlm 49-56.

Apriyantono, A., D. Fardiaz, N.L. Puspitasari, Sedarnawati , dan S. Budiyanto. (1989).

Analisa Pangan. PAU Pangan dan Gizi. IPB. Bogor.

Ashraf M. Sharoba. 2014. Nutritional value of spirulina and its use in the preparation of

some complementary baby food formulas. Journal of Agroalimentary Processes

and Technologies, 20 (4), 330-350.

Carlsen, M. H., B. L. Halvorsen, K. Holte, S. K. Bohn, S. Dragland, L. Sampson, C.

Willey, H. Senoo, Y. Umezono, C. Sanada, I. Barikmo, N. Berhe, W. C. Willet,

K. M. Philips, D.R. Jacobs Jr, R. Blomhoff. (2010). The total antioxidant content

of more than 3100 foods, beverages, spices, herbs and supplements used

worldwide. Nutrition Journal, 9:3.

Christianti, Yessy. (2013). Pemanfaatan Mikroalga Spirulina sp dalam Formulasi Butter

Cookies: Studi Karateristik Fisikokimia dan sensori. Skripsi. Universitas Katolik

Soegijapranata Semarang.

Christwardana, M., dan Hadiyanto M.M.A. Nur. 2012. Spirulina

platensis:potensinyasebagaibahanpanganfungsional.. Jurnal Aplikasi Teknologi

Pangan. Vol 2. UNDIP: Semarang.

Chueamchaitrakun, P., P. Chompreeda, V. Haruthaithanasan, T. Suwonsichon & S.

Kasemsamran. (2011). Physical Properties of Butter Cake Made from Mixed

Hom-Mali and Glutinous Rice Flours. Kasetsart J. (Nat. Sci.) 45 : 295 – 304.

Codex Alimentarius Commission. (1995). Codex Standard For Rice. CODEX STAN

198-1995.

Damodaran, S and A. Paraf. (1997). Food Proteins and Their Application New York.

Marcel Dekker, Inc.

Frei.M. and K. Becker. (2004). On Rice, Biodiversity & Nutrients. University of

Hohenheim, Germany.

42

Haryadi. 2006. Teknologi Pengolahan Beras. Gadjah Mada University Press.

Yogyakarta.

Haryati R. 2008. Pertumbuhan dan biomassa Spirulina sp. dalam skala laboratoris.

Laboratorium Ekologi dan Biosistematik, Jurnal Jurusan Biologi FMIPA.

UndipBIOMA, ISSN: 1410-8801 Vol. 10, No. 1, Hal. 19-22.

Henrikson, R. (2009). Earth food Spirulina. How this remarkable blue-greenalgae can

transform your health and our planet. Ronore Enterprises, Inc. Hawaii USA. 175

p.

Henrikson, R. (2010). Sprulina Wold Food Updated and Revisied. Ronore Enterprises.

American.

Hoseney, R.C. 1994. Principles of Cereal Science and Technology, 2nd

edition. The

American Association of Cereal Chemistry, Inc. USA.

Hug C,von der Weid D. Spirulina in the Fight Against Malnutrition. Fondation Antenna

Technologies. 2011.

Kabinawa. 2006. Spirulina: Ganggang Penggempur Aneka Penyakit. PT AgroMedia

Pustaka. Jakarta.

Kusnandar, Ferri. (2010). Mengenal Sifat Fungsional Protein. Departemen Ilmu

Teknologi Pangan – IPB.

Liang, S. ; X. Liu ; F. Chen & Z. Chen. (2004). Current Microalgal Helath Food R & D

Activities in China. Hydrobiologia. Vol. 512:45-48.

Lebesi, Dimitra M. and Constantina Tzia. (2009). Effect of the Addition of Different

Dietary Fiber and Edible Cereal Bran Source on the Baking and Sensory

Characteristic of Cupcakes. Journal Food Bioprocess Technology.

Matz, S.A. (1992). Bakery Technology and Eginering. 3th edition. Van Nostrand

Reinhold. Texas.

Prasanna, R., A. Sood, A. Suresh, S. Nayak, & B.D. Kaushik. 2007. Potential and

aplications of algal pigment in biology. .Acta Botan. Hungaria 49 (1- 2): 131-

156.

Prasetyo, Budi dan Elizabeth Novi Kusumaningrum. 2010. Penentuan Jenis Spirulina

sp. di Situ Babakan, Jagakarsa, Jakarta Selatan. Laporan Penelitian. Tangerang

43

Selatan; Fakultas Matematika dan Ilmu Pengetahuan Alam. Lembaga Penelitian

Universitas Terbuka.

Rahman, R.S.; W.D.R. Putri, dan I. Purwantiningrum. (2015). Karakterisasi Beras

Tiruan Berbasis Tepung Ubi Jalar Oranye Termodifikasi Heat Moisture

Treatment (HMT). Jurnal Pangan dan Agroindustri Vol 3 No 2p. 713-722.

Ravi, M., S. Lata De, S. Azharudin and S. F. D. Paul. (2010). The Beneficial Effects of

Spirulina Focusing on its Immunomodulatory and antioxidant Properties

Nutrition and Dietary Supplements.

Ravichandran, K.; N. M. M. T. Saw; A. A.A. Mohdaly; A. M.M. Gabr; A. Kastell; H.

Riedel; Z. Cai; D. Knorr; & I. Smetanska. (2013). Impact of Processing of Red

Beet on Betalain Content and Antioxidant Activity. Food Research

International 50: 670–675.

Rimbawan dan A. Siagian. (2004). Indeks Glikemik Pangan. Jakarta: Penebar Swadaya.

Roy, P., Daisuke, N., Takahiro, O., Hiroshi, O., Mmanasikan, T., Nobutaka, N., and

Takeo, S. (2010). Cooking Properties of Different From of Rice Cooked With

an Automatic Induction Heating System Rice Cooker. As. Food Ag-Ind 3(04).

373-388.

Sanchez M, et al. Spirulina (Arthrospira): An Edible Microorganism. Universidad

Javeriana Bogota;2003.

Selmo, M. S. and Salas-Mellado, M. M. (2014). Technological quality of bread from

rice flour with Spirulina. International Food Research Journal 21(4): 1523-1528.

Setiari, N dan Y. Nurchayanti. (2009). Ekplorasi Kandungan Klorofil beberapa Sayuran

Hijau sebagai Alternatif Bahan Dasar Food Supplement. Bioma, 11 (1) : 6-10.

Sudarmadji, S.; B. Haryono & E. Suhardi. (1989). Analisa Bahan Makanan. Liberty.

Yogyakarta.

Swinkels, J.J.M. (1985). Source of Starch, its chemistry and physics. Di

dalam:G.M.A.V. Beynum dan J.A. Roels (eds). Starch Conversion Technology.

Marcel Dekker, Inc., New York.

Tabita A., (2012). Karakteristik Fungsional Protein Spirulina Platensis. (Skripsi).

Jurusan Teknologi Pangan. Fakultas Teknologi Pertanian. Unika Soegijapranata.

Semarang.

Tietze, H. W. (2004). Spirulina ed. 4th

. B. Jain Publisher. New Delhi.

44

Tongsiri, S. Mang-Amphan, K and Y. Peerapornpisal. (2010). Effect of Replacing

Fishmeal with Spirulina on Growth, Carcass, Composition and Pigment of the

Mekong Giant Catfish. Asian Journal of Agricultural Science 2(3):106-110.

Wang, L., B. Pan, J. Sheng, J. Xu, and Q. Hu. 2007. Antioxidant activity of Spirulina

platensis extract by supercritical carbon dioxide ex-traction. Food Chemistry,

105:36-41.

Winarno, F.G., 2002. Kimia Pangan dan Gizi. Gramedia Pustaka Utama, Jakarta.

45

7. LAMPIRAN

Lampiran 1. Diagram Warna

Konsentrasi Sel Kering Spirulina 0% Konsentrasi Sel Kering Spirulina 1%

Konsentrasi Sel Kering Spirulina 5% Konsentrasi Sel Kering Spirulina 10%

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

Adonan Tepung Ketan + 0% Spirulina

menit 0 menit 3 menit 6 menit 9 menit 12 menit 15

a*

b *

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

Adonan Tepung Ketan + 1 % Spirulina

menit 0 menit 3 menit 6 menit 9 menit 12 menit 15

a*

b *

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

Adonan Tepung Ketan + 5% Spirulina

menit 0 menit 3 menit 6 menit 9 menit 12 menit 15

a

b *

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

Adonan Tepung Ketan +10%Spirulina

menit 0 menit 3 menit 6 menit 9 menit 12 menit 15

a

b *

46

Lampiran 2. Kurva Standar Amilosa

y = 0.0185x - 0.0055 R² = 0.9987

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 4 8 12 16 20 24

Ab

sorb

ansi

ppm

Kurva Standar Amilosa

absorbansi

Linear (absorbansi)

47

Lampiran 3. Hasil Olah Data dengan SPSS versi 16.0

Uji Viskositas

Uji Normalitas

Post Hoc One Way Anova

48

Uji Warna (L)

Uji Normalitas

Tests of Normality

Pengukusan Kolmogorov-Smirnov

a Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

L_0

menit ke 0 .215 6 .200* .961 6 .827

menit ke 3 .233 6 .200* .934 6 .611

menit ke 6 .200 6 .200* .878 6 .261

menit ke 9 .209 6 .200* .932 6 .596

menit ke 12 .229 6 .200* .914 6 .461

menit ke 15 .315 6 .063 .849 6 .156

L_1

menit ke 0 .250 6 .200* .894 6 .338

menit ke 3 .300 6 .097 .755 6 .022

menit ke 6 .315 6 .064 .874 6 .243

menit ke 9 .254 6 .200* .859 6 .187

menit ke 12 .272 6 .187 .850 6 .157

menit ke 15 .293 6 .118 .799 6 .058

L_5

menit ke 0 .242 6 .200* .931 6 .590

menit ke 3 .197 6 .200* .946 6 .705

menit ke 6 .229 6 .200* .901 6 .379

menit ke 9 .268 6 .200* .833 6 .113

menit ke 12 .290 6 .124 .810 6 .072

menit ke 15 .276 6 .171 .873 6 .238

L_10

menit ke 0 .197 6 .200* .970 6 .893

menit ke 3 .358 6 .015 .758 6 .024

menit ke 6 .279 6 .159 .830 6 .107

menit ke 9 .265 6 .200* .846 6 .146

menit ke 12 .277 6 .165 .830 6 .108

menit ke 15 .306 6 .083 .726 6 .012

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

49

Post Hoc One Way Anova

Lightness Konsentrasi Spirulina 0%

Duncana

Pengukusan N Subset for alpha = 0.05

1 2 3 4 5

menit ke 15 6 63.1683 menit ke 12 6 63.8300 menit ke 9 6 64.0300 64.0300 menit ke 6 6 64.4700 menit ke 3 6 65.2067 menit ke 0 6 89.6717

Sig. 1.000 .489 .134 1.000 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

Lighness Konsentrasi Spirulina 1%

Duncana

Pengukusan N Subset for alpha = 0.05

1 2

menit ke 15 6 44.8717

menit ke 12 6 45.5150

menit ke 9 6 45.7200

menit ke 6 6 46.2592

menit ke 3 6 47.5833

menit ke 0 6 72.5050

Sig. .070 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

Lightness Konsentrasi Spirulina 5%

Duncana

Pengukusan N Subset for alpha = 0.05

1 2 3 4

menit ke 15 6 30.5383

menit ke 12 6 30.6783

menit ke 9 6 31.3717 31.3717

menit ke 6 6 31.7283 31.7283

menit ke 3 6 32.4950

menit ke 0 6 53.2433

Sig. .092 .439 .102 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

50

Lightness Konsentrasi Spirulina 10%

Duncana

Pengukusan N Subset for alpha = 0.05

1 2 3

menit ke 15 6 27.3600

menit ke 12 6 27.5683

menit ke 9 6 28.0967

menit ke 6 6 28.8700 28.8700

menit ke 3 6 30.0050

menit ke 0 6 44.4317

Sig. .112 .190 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

Uji Warna (a*)

Uji Normalitas

Tests of Normality

Pengukusan Kolmogorov-Smirnov

a Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

a_0

menit ke 0 .262 6 .200* .895 6 .344

menit ke 3 .291 6 .122 .780 6 .038

menit ke 6 .181 6 .200* .936 6 .630

menit ke 9 .189 6 .200* .895 6 .346

menit ke 12 .352 6 .020 .829 6 .105

menit ke 15 .291 6 .121 .890 6 .318

a_1

menit ke 0 .214 6 .200* .936 6 .631

menit ke 3 .164 6 .200* .929 6 .570

menit ke 6 .252 6 .200* .920 6 .507

menit ke 9 .192 6 .200* .974 6 .919

menit ke 12 .376 6 .008 .666 6 .003

menit ke 15 .393 6 .004 .635 6 .001

a_5

menit ke 0 .301 6 .094 .830 6 .107

menit ke 3 .232 6 .200* .845 6 .143

menit ke 6 .223 6 .200* .943 6 .685

menit ke 9 .207 6 .200* .911 6 .444

menit ke 12 .177 6 .200* .946 6 .707

menit ke 15 .191 6 .200* .939 6 .654

a_10

menit ke 0 .236 6 .200* .950 6 .737

menit ke 3 .259 6 .200* .930 6 .578

menit ke 6 .252 6 .200* .931 6 .589

menit ke 9 .121 6 .200* .986 6 .976

menit ke 12 .180 6 .200* .942 6 .678

menit ke 15 .167 6 .200* .954 6 .773

51

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Post Hoc One Way Anova

a* Konsentrasi Spirulina 0%

Duncana

Pengukusan N Subset for alpha = 0.05

1 2 3 4

menit ke 15 6 -1.4867

menit ke 12 6 -1.4283

menit ke 9 6 -1.2733

menit ke 6 6 -1.2250

menit ke 3 6 -1.0850

menit ke 0 6 -.3133

Sig. .248 .337 1.000 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

a* Konsentrasi Spirulina 1%

Duncana

Pengukusan N Subset for alpha = 0.05

1 2

menit ke 0 6 -5.8700

menit ke 3 6 -3.7050

menit ke 9 6 -3.4817

menit ke 6 6 -3.4733

menit ke 15 6 -3.3817

menit ke 12 6 -3.3233

Sig. 1.000 .093

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

a* Konsentrasi Spirulina 5%

Duncana

Pengukusan N Subset for alpha = 0.05

1 2 3

menit ke 0 6 -8.1067

menit ke 3 6 -1.6183

menit ke 6 6 -1.3717 -1.3717

menit ke 9 6 -1.2900

menit ke 12 6 -1.2550

menit ke 15 6 -1.1633

Sig. 1.000 .094 .192

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

52

a* Konsentrasi Spirulina 10%

Duncana

Pengukusan N Subset for alpha = 0.05

1 2 3

menit ke 0 6 -8.1883

menit ke 6 6 -1.1033

menit ke 3 6 -1.0767

menit ke 15 6 -1.0000

menit ke 12 6 -.7883

menit ke 9 6 -.7583

Sig. 1.000 .284 .739

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

Uji Warna (b*)

Uji Normalitas

Tests of Normality

Pengukusan Kolmogorov-Smirnov

a Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

b_0

menit ke 0 .202 6 .200* .938 6 .642

menit ke 3 .265 6 .200* .801 6 .060

menit ke 6 .166 6 .200* .967 6 .871

menit ke 9 .294 6 .115 .883 6 .283

menit ke 12 .184 6 .200* .926 6 .551

menit ke 15 .307 6 .081 .868 6 .219

b_1

menit ke 0 .249 6 .200* .897 6 .355

menit ke 3 .236 6 .200* .913 6 .456

menit ke 6 .215 6 .200* .910 6 .435

menit ke 9 .251 6 .200* .895 6 .345

menit ke 12 .211 6 .200* .903 6 .390

menit ke 15 .182 6 .200* .913 6 .456

b_5

menit ke 0 .204 6 .200* .913 6 .457

menit ke 3 .256 6 .200* .875 6 .245

menit ke 6 .263 6 .200* .886 6 .297

menit ke 9 .192 6 .200* .968 6 .882

menit ke 12 .187 6 .200* .902 6 .387

menit ke 15 .197 6 .200* .914 6 .466

b_10

menit ke 0 .279 6 .157 .843 6 .139

menit ke 3 .253 6 .200* .875 6 .247

menit ke 6 .172 6 .200* .939 6 .653

menit ke 9 .213 6 .200* .971 6 .901

menit ke 12 .189 6 .200* .943 6 .681

menit ke 15 .296 6 .109 .883 6 .283 *. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

53

Post Hoc One Way Anova

b* Konsentrasi Spirulina 0%

Duncana

Pengukusan N Subset for alpha = 0.05

1 2 3

menit ke 3 6 3.5150

menit ke 9 6 3.6133

menit ke 6 6 3.6683

menit ke 12 6 4.7550

menit ke 15 6 4.9900

menit ke 0 6 5.5700

Sig. .287 .088 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

b* Konsentrasi Spirulina 1%

Duncana

Pengukusan N Subset for alpha = 0.05

1 2 3

menit ke 0 6 .3700

menit ke 6 6 3.4600

menit ke 3 6 3.4717

menit ke 12 6 3.5267

menit ke 9 6 3.6183

menit ke 15 6 4.3933

Sig. 1.000 .215 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

b* Konsentrasi Spirulina 5%

Duncana

Pengukusan N Subset for alpha = 0.05

1 2 3 4

menit ke 0 6 -1.3300

menit ke 3 6 .5517

menit ke 9 6 .8617 .8617

menit ke 6 6 .8800 .8800

menit ke 15 6 .9683

menit ke 12 6 1.4000

Sig. 1.000 .068 .547 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

54

b* Konsentrasi Spirulina 10%

Duncana

Pengukusan N Subset for alpha = 0.05

1 2

menit ke 0 6 -1.4783

menit ke 9 6 .3033

menit ke 3 6 .3283

menit ke 12 6 .3483

menit ke 6 6 .4467

menit ke 15 6 .4950

Sig. 1.000 .084

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

Uji Tekstur

Uji Normalitas

55

Post Hoc One Way Anova

Kadar Air

Uji Normalitas

56

Post Hoc One Way Anova

57

Uji Amilosa

Uji Normalitas

Post Hoc One Way Anova

Amilosa_non_kukus Duncan

a

Perlakuan N Subset for alpha = 0.05

1

Spirulina 10% 6 2.4740

Spirulina 5% 6 2.4810

Spirulina 1% 6 2.5227

Spirulina 0% 6 2.6910

Sig. .082

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

Amilosa_kukus Duncan

a

Perlakuan N Subset for alpha = 0.05

1 2 3

Spirulina 10% 6 1.3803

Spirulina 5% 6 1.4857 1.4857

Spirulina 1% 6 1.6170

Spirulina 0% 6 1.8622

Sig. .121 .057 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

58

Uji Amilopektin

Uji Normalitas

Post Hoc One Way Anova

Amilopektin_non_kukus

Duncana

Perlakuan N Subset for alpha

= 0.05

1

Spirulina 0% 6 97.3090

Spirulina 1% 6 97.4773

Spirulina 5% 6 97.5190

Spirulina 10% 6 97.5260

Sig. .082

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

Amilopektin_kukus Duncan

a

Perlakuan N Subset for alpha = 0.05

1 2 3

Spirulina 0% 6 98.1378

Spirulina 1% 6 98.3830

Spirulina 5% 6 98.5143 98.5143

Spirulina 10% 6 98.6195

Sig. 1.000 .057 .122

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

59

Uji Aktifitas Antioksidan

Uji Normalitas

Post Hoc One Way Anova

Antioksidan_non_kukus Duncan

a

Perlakuan N Subset for alpha = 0.05

1 2 3 4

Spirulina 0% 6 2.4811

Spirulina 1% 6 3.6601

Spirulina 5% 6 5.3821

Spirulina 10% 6 6.9683

Sig. 1.000 1.000 1.000 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

Antioksidan_kukus Duncan

a

Perlakuan N Subset for alpha = 0.05

1 2 3 4

Spirulina 0% 6 .9932

Spirulina 1% 6 2.4900

Spirulina 5% 6 4.1633

Spirulina 10% 6 5.8700

Sig. 1.000 1.000 1.000 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

60

Uji Protein

Uji Normalitas

Post Hoc One Way Anova

Korelasi Kandungan Amilosa dan Amilopektin terhadap Viskositas Adonan

Sebelum Pengukusan

61

Korelasi Kandungan Amilosa dan Amilopektin dengan Tekstur Setelah

Pengukusan

Korelasi Kandungan Antioksidan dengan Warna L, a*, b* Adonan Sebelum

Pengukusan

62

Korelasi Kandungan Antioksidan dengan Warna L, a*, b* Adonan Setelah

Pengukusan

Korelasi Tekstur dengan Kandungan Protein