5.5 Distributions for Counts Binomial Distributions for Sample Counts Finding Binomial...

20
5.5 Distributions for Counts Binomial Distributions for Sample Counts Finding Binomial Probabilities Binomial Mean and Standard Deviation Binomial Formula Binomial in Statistical Sampling 1

Transcript of 5.5 Distributions for Counts Binomial Distributions for Sample Counts Finding Binomial...

Page 1: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

5.5 Distributions for Counts

Binomial Distributions for Sample Counts Finding Binomial Probabilities Binomial Mean and Standard Deviation Binomial Formula Binomial in Statistical Sampling

1

Page 2: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

Binomial distributions are models for some categorical variables, typically counting the number of successes in a series of n independent trials (think: # of Heads in 10 tosses of a fair coin) The trials in a binomial experiment must meet these requirements:

– The total number of trials n is fixed in advance. – The result of each trial can be put into just 1 of 2 categories:

“success” and “failure”. – The n trials are independent of each other.– Each trial has the same probability of “success,” that we call p.

Binomial distributions for sample counts

We let X = the count of successes; in a binomial setting, X is a r.v. and has a binomial distribution with parameters n and p, where n is the number of trials and p is the probability of a “success” on any one trial. The possible values of X are the whole numbers from 0 to n and for many n and p, their probabilities are given in Table C. We may also compute these probabilities using the TI-83 and JMP.

We let X = the count of successes; in a binomial setting, X is a r.v. and has a binomial distribution with parameters n and p, where n is the number of trials and p is the probability of a “success” on any one trial. The possible values of X are the whole numbers from 0 to n and for many n and p, their probabilities are given in Table C. We may also compute these probabilities using the TI-83 and JMP.

Page 3: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

3

Binomial Mean and Standard Deviation

If a count X has the binomial distribution based on n observations with probability p of success, what is its mean µ? In general, the mean of a binomial distribution should be µ = np. Here are the facts:

If a count X has the binomial distribution with number of trials n and probability of success p, the mean and standard deviation of X are:

If a count X has the binomial distribution with number of trials n and probability of success p, the mean and standard deviation of X are:

Mean and Standard Deviation of a Binomial Random VariableMean and Standard Deviation of a Binomial Random Variable

)1( pnp

np

X

X

μ

Note: These formulas work ONLY for binomial distributions. They can’t be used for other distributions!

Page 4: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

4

Binomial Formula

We can find the probability that a binomial random variable takes on any of its values by adding probabilities for the different ways of getting exactly that many successes in n trials – this involves counting with the binomial coefficient.

The number of ways of arranging k successes among n trials is given by the binomial coefficient

for k = 0, 1, 2, …, n.

Note: n! = n(n – 1)(n – 2)•…•(3)(2)(1) and 0! = 1.

The number of ways of arranging k successes among n trials is given by the binomial coefficient

for k = 0, 1, 2, …, n.

Note: n! = n(n – 1)(n – 2)•…•(3)(2)(1) and 0! = 1.

n

k

n!

k!(n k)!

Page 5: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

5

Binomial ProbabilityThe binomial coefficient counts the number of different ways in which k successes can be arranged among n trials. The binomial probability P(X = k) is this count multiplied by the probability of any one specific arrangement of the k successes (use the “AND” rule)

If X has the binomial distribution with n trials and probability p of success on each trial, the possible values of X are 0, 1, 2, …, n. If k is any one of these values,

If X has the binomial distribution with n trials and probability p of success on each trial, the possible values of X are 0, 1, 2, …, n. If k is any one of these values,

Binomial ProbabilityBinomial Probability

P(X k) n

k

pk (1 p)n k

Probability of n − k failures

Number of arrangements of k successes

Probability of k successes

Page 6: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

6

ExampleEach child of a particular pair of parents has probability 0.25 of having blood type O. Suppose the parents have five children.

(a) Find the probability that exactly three of the children have type O blood.

P(X 3) 5

3

(0.25)3(0.75)2 10(0.25)3(0.75)2 0.08789

(b) Should the parents be surprised if more than three of their children have type O blood?

Let X = the number of the 5 children with type O blood. We can argue that X has a binomial distribution with n = 5 and p = 0.25.

P(X 3) P(X 4)P(X 5)

5

4

(0.25)4 (0.75)1

5

5

(0.25)5(0.75)0

5(0.25)4 (0.75)1 1(0.25)5(0.75)0

0.014650.00098 0.01563

Since there is only a 1.5% chance that more than three children out of five would have type O blood, the parents should be surprised!

Page 7: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

Binomial distribution in statistical samplingSuppose a population of S’s and F’s contains a certain

proportion p of S’s. If the population is much larger than the sample, the count X of successes in an SRS of size n has approximately the binomial distribution B(n, p).

The n observations will be nearly independent when the size of the population is much larger than the size of the sample. As a rule of thumb, the binomial sampling distribution for counts can be used when the population is at least 20 times as large as the sample.

Page 8: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

Binomial mean and standard deviation

The center and spread of the binomial distribution for a count X are defined by the mean and standard deviation :

Effect of changing p when n is fixed.

a) n = 10, p = 0.25

b) n = 10, p = 0.5

c) n = 10, p = 0.75

For small samples, binomial distributions

are skewed when p is different from 0.5.

a)

b)

c)

We often write q as 1 – p.

Page 9: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

Color blindnessThe frequency of color blindness (dyschromatopsia) in the Caucasian American male population is estimated to be about 8%. We take a random sample of size 20 from this population.

The population is definitely larger than 20 times the sample size, thus we can approximate the sampling distribution of X = the number of the 20 who are colorblind by B(n = 20, p = 0.08).

• What is the probability that five individuals or fewer in the sample are color blind?

Use Table C: n=20, p=.08 P(x ≤ 5) = sum of the entries for X=0,1,2,3,4 and 5 under the p=.08 column,

n=20 page

= .1887 + .3282 + .2711 + .1414 + .0523 + .0145

= .9962

• What is the probability that more than five will be color blind?

P(x > 5) = 1 P(x ≤ 5) =1 0..9962 = 0.0038

• What is the probability that exactly five will be color blind?

P(x = 5) = 0.0145

Page 10: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

Calculations

In JMP,Highlight a column,

click the column triangle ( ), and click formula to open the box on the right.

Select Discrete Probability

• Choose “Binomial Probability” for the probability of a specific number x of successes P(X = x)• Or “Binomial Distribution” for the cumulative distribution function

P(X ≤ x)•Enter values for p, n and x as shown in the diagram.•Click “OK.”•P(X≤x) is illustrated.

The probabilities for a Binomial distribution can be calculated by using JMP.

Page 11: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

Color blindness

The frequency of color blindness (dyschromatopsia) in the

Caucasian American male population is estimated to be

about 8%. We take a random sample of size 20 from this population.

What is the probability that exactly five individuals in the sample are color blind?

Use JMP: Probability Binomial Probability (0.08, 20, 5) = .0145449122

P(x= 5) = Binomial Probability (0.08, 20, 5) = 0.0145 – or use Table C

Or use the TI-83: 2nd -> VARS -> binompdf( 20, .08, 5 ) = .0145449122

binomcdf( 20, .08, 5 ) = P( X ≤ 5 ) = .9962005132

Page 12: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

Probability distribution and histogram for the number

of color blind individuals among 20 Caucasian males.

B(n = 20, p = 0.08)

Page 13: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

What are the mean and standard deviation of the count

of color blind individuals in the SRS of 20 Caucasian

American males?

µ = np = 20*0.08 = 1.6

σ = sqrt(np(1 p)) = sqrt(20*0.08*0.92) = 1.213

p = .08n = 10

p = .08n = 75

µ = 10*0.08 = 0.8 µ = 75*0.08 = 6

σ = √(10*0.08*0.92) = 0.86 σ = √(75*0.08*0.92) = 2.35

What if we take an SRS of size 10? Of size 75?

Page 14: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

Sample proportionsThe proportion of “successes” can be more informative than the count. In statistical sampling the sample proportion of successes, , is used to estimate the proportion p of successes in a population.

For any SRS of size n, the sample proportion of successes is:

In an SRS of 50 students in an undergrad class, 10 are Hispanic:= (10)/(50) = 0.2 (proportion of Hispanics in sample)

The 30 subjects in an SRS are asked to taste an unmarked brand of coffee and rate it “would buy” or “would not buy.” Eighteen subjects rated the coffee “would buy.”

= (18)/(30) = 0.6 (sample proportion of “would buy”)

Page 15: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

If the sample size is much smaller than the size of a population with

proportion p of successes, then the mean and standard deviation of

are:

Because the mean is p, we say that the sample proportion in an SRS is an unbiased

estimator of the population proportion p.

The variability of p-hat decreases as the sample size increases. So larger samples

usually give closer estimates of the population proportion p.

Page 16: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

Normal approximationIf n is large, and p is not too close to 0 or 1, the binomial distribution can be

approximated by the normal distribution N(= np, = sqrt(np(1 p))).

Practically, the Normal approximation can be used when both np ≥10 and

n(1 p) ≥10.

If X is the count of successes in the sample and = X/n, the sample proportion

of successes, their sampling distributions for large n, are:

– X approximately N(µ = np, σ = sqrt(np(1 − p)))

– is approximately N (µ = p, σ = sqrt(p(1 − p)/n))

Page 17: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

Sampling distribution of the sample proportion

The sampling distribution of is never exactly normal. But as the sample size increases, the sampling distribution of becomes approximately normal.

The normal approximation is most accurate for any fixed n when p is close to 0.5, and least accurate when p is near 0 or near 1.

Page 18: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

Color blindness

The frequency of color blindness (dyschromatopsia) in the

Caucasian American male population is about 8%.

We take a random sample of size 125 from this population. What is the

probability that six individuals or fewer in the sample are color blind?

– Sampling distribution of the count X: B(n = 125, p = 0.08) np = 10P(X ≤ 6) = use JMP = 0.1198 or about 12%

– Normal approximation for the count X: N(np = 10, √np(1 p) = 3.033)P(X ≤ 6) = use JMP: Normal Distribution(6, mean=10, sd=3.033)

– Or z = (x µ)/σ = (6 10)/3.033 = 1.32 P(X ≤ 6) = 0.0934 from Table A or JMP

The normal approximation is reasonable, though not perfect. Here p = 0.08 is not

at all close to 0.5 when the normal approximation is at its best.

A sample size of 125 is the smallest sample size that can allow use of the normal

approximation (to get both np = 10 and n(1 p) = 115 greater than 10).

Page 19: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

The normal distribution is a better approximation of the binomial

distribution, if we perform a continuity correction where x’ = x + 0.5 is

substituted for x, and P(X ≤ x) is replaced by P(X ≤ x + 0.5).

Why? A binomial random variable is a discrete variable that can only

take whole numerical values. In contrast, a normal random variable is

a continuous variable that can take any numerical value.

P(X ≤ 10) for a binomial variable is P(X ≤ 10.5) using a normal approximation.

P(X < 10) for a binomial variable excludes the outcome X = 10, so we exclude

the entire interval from 9.5 to 10.5 and calculate P(X ≤ 9.5) when using a

normal approximation.

Normal approximation: continuity correction

Page 20: 5.5 Distributions for Counts  Binomial Distributions for Sample Counts  Finding Binomial Probabilities  Binomial Mean and Standard Deviation  Binomial.

HW: Read section 5.5; omit section 5.6Do Exercises #5.85, 5.87- 5.90, 5.93-5.95, 5.99, 5.100, 5.102, 5.144