47614118 Power Control Rohdeschwarz Sep2309

89
 1 3GPP UMTS Lo ng Term Evo lu ti on U li nk ower control in LT E  August 2009 Andreas Roessler  [email protected] Technology Manager North America Rohd e & Schwar z Ge rman   , sca mer  This presentation contains forward looking statements and milestones. Such statements are based on our current expectations and are subject to certain risks and uncertainties that could negatively affect our delivery roadmap.

Transcript of 47614118 Power Control Rohdeschwarz Sep2309

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 1/891

3GPP UMTS Long Term EvolutionU link ower control in LTE

 August 2009

Andreas Roessler 

 [email protected]

Technology Manager North America

Rohde & Schwarz German  ,

sca mer 

This presentation contains forward looking statements and milestones. Such statements are based on our current

expectations and are subject to certain risks and uncertainties that could negatively affect our delivery roadmap.

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 2/89

2

Uplink power controlWhat's behind? 

sufficient Ebit /N0 to

achieve required QoS

uplink interference,

maximize battery life

l Characteristic of radio channel with multipath propagation (path loss,

shadowing, fast fading) as well as the interference “provided” through other users – both within the same cell and from neighboring cells – needs to be

 August ‘09 | UL power control in LTE | 2

,

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 3/89

3

Some comments on UL power control in LTE…or in other words what is different to 3G (UTRA FDD = WCDMA)?

l SC-FDMA is the UL transmission scheme, so transmission of 

different UE’s in the same radio cell is (almost) orthogonal by

nature, means intra-cell interference is less critical than in WCDMA,  – n ata rate s ncrease y ower ng t e sprea ng actor ncreas ng t e

transmission power  increase of intra-cell interference,

 – In LTE data rate is increased by varying the allocated bandwidth and the

Modulation Coding Scheme (MCS), where the power can remain typically the same

, …,

l WCDMA uses periodic power control (0.667ms) normally with a

step size of ±1 dB (“fast power control”), where LTE allows larger 

power steps, ut not necessar y per o ca y,

 – LTE uses a combination of open-loop and close-loop for UL power control, as this

is more affordable and requires less feedback (signaling overhead) than WCDMA, – Open-loop is used to set a coarse operating point, where close-loop will be used for 

 August ‘09 | UL power control in LTE | 3

ne un ng o con ro n er erence an ma c c anne con ons,

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 4/89

4

What is power controlled in the uplink?Physical channels and signals in the uplink

Path loss

UL interference

Multipath propagation

Physical UplinkPhysical Uplink

Shared Channel (PUSCH)Control Channel (PUCCH)(Demodulation Reference Signal,over entire bandwidth in time slots #3 and #10)

(Demodulation Reference Signal,occupied time slot position depends

Sounding Reference Signals (SRS)

[optional]

 August ‘09 | UL power control in LTE | 4

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 5/89

5

Physical channels and signals in the uplinkPUSCH, PUCCH, DMRS, SRS in the time-frequency domain

Demodulation Reference

Signals (DMRS)for PUSCH and PUCCH

Physical Uplink Control Channel (PUCCH)issued by UE3 and UE4

Time1 subframe (1 ms) = 2 Time Slots

7 SC-FDMA symbols

(normal cyclic prefix)

Physical Uplink

Shared Channel

(PUSCH)used by UE1 and UE2

Sounding

Reference

Signals (SRS)issued by UE1 and UE2

Slot #0 Slot #1 Slot #2 Slot #3  

Frequency

e.g. 50 RB = 10 MHz

channel bandwidth

 August ‘09 | UL power control in LTE | 5

Screenshot taken from R&S® SMU200A Vector Signal Generator 

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 6/89

6

PUSCH power controlPhysical Uplink Shared Channel

l Power level [dBm] of PUSCH is calculated every subframe i based on the

following formula out of TS 36.213 V8.7.0 (June ’09 baseline),

 August ‘09 | UL power control in LTE | 6

1) +23 dBm is maximum allowed power in LTE according to TS 36.101, corresponding to power class 3bis in WCDMA

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 7/89

7

PUSCH power controlPhysical Uplink Shared Channel

l Power level [dBm] of PUSCH is calculated every subframe i based on the

following formula out of TS 36.213 V8.7.0 (June ’09 baseline),

Transmit power for PUSCH

in subframe i in dBm

 August ‘09 | UL power control in LTE | 7

1) +23 dBm is maximum allowed power in LTE according to TS 36.101, corresponding to power class 3bis in WCDMA

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 8/89

8

PUSCH power controlPhysical Uplink Shared Channel

l Power level [dBm] of PUSCH is calculated every subframe i based on the

following formula out of TS 36.213 V8.7.0 (June ’09 baseline),

ax mum a owe power 

in this particular cell,

but at maximum +23 dBm1)

Transmit power for PUSCH

in subframe i in dBm

 August ‘09 | UL power control in LTE | 8

1) +23 dBm is maximum allowed power in LTE according to TS 36.101, corresponding to power class 3bis in WCDMA

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 9/89

9

PUSCH power controlPhysical Uplink Shared Channel

l Power level [dBm] of PUSCH is calculated every subframe i based on the

following formula out of TS 36.213 V8.7.0 (June ’09 baseline),

ax mum a owe power 

in this particular cell,

but at maximum +23 dBm1)

Number of allocated

resource blocks (RB)

Transmit power for PUSCH

in subframe i in dBm

 August ‘09 | UL power control in LTE | 9

1) +23 dBm is maximum allowed power in LTE according to TS 36.101, corresponding to power class 3bis in WCDMA

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 10/89

10

PUSCH power controlPhysical Uplink Shared Channel

l Power level [dBm] of PUSCH is calculated every subframe i based on the

following formula out of TS 36.213 V8.7.0 (June ’09 baseline),

ax mum a owe power 

in this particular cell,

but at maximum +23 dBm1)

Combination of cell- and UE-specific

components configured by L3

Number of allocated

resource blocks (RB)

Transmit power for PUSCH

in subframe i in dBm

 August ‘09 | UL power control in LTE | 10

1) +23 dBm is maximum allowed power in LTE according to TS 36.101, corresponding to power class 3bis in WCDMA

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 11/89

11

PUSCH power controlPhysical Uplink Shared Channel

l Power level [dBm] of PUSCH is calculated every subframe i based on the

following formula out of TS 36.213 V8.7.0 (June ’09 baseline),

ax mum a owe power 

in this particular cell,

but at maximum +23 dBm1)

Combination of cell- and UE-specific

components configured by L3

Number of allocated

resource blocks (RB)Cell-specific

parameter 

confi ured b L3Transmit power for PUSCH

in subframe i in dBm

 August ‘09 | UL power control in LTE | 11

1) +23 dBm is maximum allowed power in LTE according to TS 36.101, corresponding to power class 3bis in WCDMA

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 12/89

12

PUSCH power controlPhysical Uplink Shared Channel

l Power level [dBm] of PUSCH is calculated every subframe i based on the

following formula out of TS 36.213 V8.7.0 (June ’09 baseline),

ax mum a owe power 

in this particular cell,

but at maximum +23 dBm1)

Combination of cell- and UE-specific

components configured by L3

Number of allocated

resource blocks (RB)Cell-specific

parameter 

confi ured b L3Transmit power for PUSCH

Downlink

path loss

estimate in subframe i in dBm

 August ‘09 | UL power control in LTE | 12

1) +23 dBm is maximum allowed power in LTE according to TS 36.101, corresponding to power class 3bis in WCDMA

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 13/89

13

PUSCH power controlPhysical Uplink Shared Channel

l Power level [dBm] of PUSCH is calculated every subframe i based on the

following formula out of TS 36.213 V8.7.0 (June ’09 baseline),

ax mum a owe power 

in this particular cell,

but at maximum +23 dBm1)

Combination of cell- and UE-specific

components configured by L3

PUSCH transport

format

Number of allocated

resource blocks (RB)Cell-specific

parameter 

confi ured b L3Transmit power for PUSCH

Downlink

path loss

estimate in subframe i in dBm

 August ‘09 | UL power control in LTE | 13

1) +23 dBm is maximum allowed power in LTE according to TS 36.101, corresponding to power class 3bis in WCDMA

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 14/89

14

PUSCH power controlPhysical Uplink Shared Channel

l Power level [dBm] of PUSCH is calculated every subframe i based on the

following formula out of TS 36.213 V8.7.0 (June ’09 baseline),

ax mum a owe power 

in this particular cell,

but at maximum +23 dBm1)

Combination of cell- and UE-specific

components configured by L3

PUSCH transport

format

Number of allocated

resource blocks (RB)Cell-specific

parameter 

confi ured b L3Transmit power for PUSCH

Power control

adjustment derived

from TPC command

Downlink

path loss

estimate in subframe i in dBm received in subframe (i-4)

 August ‘09 | UL power control in LTE | 14

1) +23 dBm is maximum allowed power in LTE according to TS 36.101, corresponding to power class 3bis in WCDMA

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 15/89

15

PUSCH power controlPhysical Uplink Shared Channel

l Power level [dBm] of PUSCH is calculated every subframe i based on the

following formula out of TS 36.213 V8.7.0 (June ’09 baseline),

ax mum a owe power 

in this particular cell,

but at maximum +23 dBm1)

Combination of cell- and UE-specific

components configured by L3

PUSCH transport

format

Number of allocated

resource blocks (RB)Cell-specific

parameter 

confi ured b L3Transmit power for PUSCH

Power control

adjustment derived

from TPC command

Downlink

path loss

estimate in subframe i in dBm received in subframe (i-4)

 August ‘09 | UL power control in LTE | 15

 

1) +23 dBm is maximum allowed power in LTE according to TS 36.101, corresponding to power class 3bis in WCDMA

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 16/89

16

PUSCH power controlPhysical Uplink Shared Channel

l Power level [dBm] of PUSCH is calculated every subframe i based on the

following formula out of TS 36.213 V8.7.0 (June ’09 baseline),

ax mum a owe power 

in this particular cell,

but at maximum +23 dBm1)

Combination of cell- and UE-specific

components configured by L3

PUSCH transport

format

Number of allocated

resource blocks (RB)Cell-specific

parameter 

confi ured b L3Transmit power for PUSCH

Power control

adjustment derived

from TPC command

Downlink

path loss

estimate

-

 in subframe i in dBm received in subframe (i-4)

 August ‘09 | UL power control in LTE | 16

 

1) +23 dBm is maximum allowed power in LTE according to TS 36.101, corresponding to power class 3bis in WCDMA

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 17/89

17

PUSCH power controlPhysical Uplink Shared Channel

l Power level [dBm] of PUSCH is calculated every subframe i based on the

following formula out of TS 36.213 V8.7.0 (June ’09 baseline),

ax mum a owe power 

in this particular cell,

but at maximum +23 dBm1)

Combination of cell- and UE-specific

components configured by L3

PUSCH transport

format

Number of allocated

resource blocks (RB)Cell-specific

parameter 

confi ured b L3Transmit power for PUSCH

Power control

adjustment derived

from TPC command

Downlink

path loss

estimate

-

 in subframe i in dBm received in subframe (i-4)

 August ‘09 | UL power control in LTE | 17

 

1) +23 dBm is maximum allowed power in LTE according to TS 36.101, corresponding to power class 3bis in WCDMA

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 18/89

18

PUSCH power controlPCMAX

l PCMAX=min{PEMAX; PUMAX}

l PEMAX is the maximum allowed

power for this particular radio cell

corresponds to P-MAX information

element (IE) provided in SIB Type 1,

l PUMAX is the maximum UE power, defined as +23 dBm ± 2dB corresponding

,

 – Based on higher order modulation schemes and used transmission bandwidth a

Maximum Power Reduction (MPR) is applied and the UE maximum transmission

power is further reduced (see TS 36.101, table 6.2.3-1),

 –

 August ‘09 | UL power control in LTE | 18

transmission power (= Additional MPR (A-MPR); see TS 36.101, Table 6.2.4-1)

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 19/89

19

PUSCH power controlMPUSCH

l Power calculation depends also on allocated resource blocks for 

uplink data transmission,

l Number of RB depends on configured bandwidth, but further not eachnum er o s a su a e a oca on,

l DCI format 0 and resource allocation type 2 is used to allocated resource

blocks to the UE

 – Resource allocation type 2 means in general allocation of contiguously RB,

 – Resource Indication Value (RIV) is signaled to the UE, calculated as follows:

⎣ ⎦)1(

2/)1(

UL

UL

RBCRBs

else RB L N  RIV 

then N  L

+−=

≤−

)1()1( START

UL

RBCRBs

UL

RB

UL

RB RB N  L N  N  RIV  −−++−=

ULRB

PUSCHRB

532 532 N  M  ≤⋅⋅= α α α 

 August ‘09 | UL power control in LTE | 19

 – where α2, α3 and α5 are any integer value,

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 20/89

20

PUSCH power controlMPUSCH

l Power calculation depends also on allocated resource blocks for 

uplink data transmission,

l Number of RB depends on configured bandwidth, but further not eachnum er o s a su a e a oca on,

l DCI format 0 and resource allocation type 2 is used to allocated resource

blocks to the UE

 – Resource allocation type 2 means in general allocation of contiguously RB,

 – Resource Indication Value (RIV) is signaled to the UE, calculated as follows:

⎣ ⎦)1(

2/)1(

UL

UL

RBCRBs

else RB L N  RIV 

then N  L

+−=

≤−

# of allocated RB

)1()1( START

UL

RBCRBs

UL

RB

UL

RB RB N  L N  N  RIV  −−++−=

ULRB

PUSCHRB

532 532 N  M  ≤⋅⋅= α α α 

 

e.g. 27 RB,…

 August ‘09 | UL power control in LTE | 20

 – where α2, α3 and α5 are any integer value,

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 21/89

21

PUSCH power controlMPUSCH

l Power calculation depends also on allocated resource blocks for 

uplink data transmission,

l Number of RB depends on configured bandwidth, but further not eachnum er o s a su a e a oca on,

l DCI format 0 and resource allocation type 2 is used to allocated resource

blocks to the UE

 – Resource allocation type 2 means in general allocation of contiguously RB,

 – Resource Indication Value (RIV) is signaled to the UE, calculated as follows:

⎣ ⎦)1(

2/)1(

UL

UL

RBCRBs

else RB L N  RIV 

then N  L

+−=

≤−

# of allocated RB

Bandwidth,

e.g. 10 MHz = 50 RB

Offset in # of RB, e.g. 15 RB

)1()1( START

UL

RBCRBs

UL

RB

UL

RB RB N  L N  N  RIV  −−++−=

ULRB

PUSCHRB

532 532 N  M  ≤⋅⋅= α α α 

 

e.g. 27 RB,…

 August ‘09 | UL power control in LTE | 21

 – where α2, α3 and α5 are any integer value,

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 22/89

22

PUSCH power controlMPUSCH

l Power calculation depends also on allocated resource blocks for 

uplink data transmission,

l

Number of RB depends on configured bandwidth, but further not eachnum er o s a su a e a oca on,

l DCI format 0 and resource allocation type 2 is used to allocated resource

blocks to the UE

 – Resource allocation type 2 means in general allocation of contiguously RB,

 – Resource Indication Value (RIV) is signaled to the UE, calculated as follows:

⎣ ⎦)1(

2/)1(

UL

UL

RBCRBs

else RB L N  RIV 

then N  L

+−=

≤−

# of allocated RB

Bandwidth,

e.g. 10 MHz = 50 RB

Offset in # of RB, e.g. 15 RB

)1()1( START

UL

RBCRBs

UL

RB

UL

RB RB N  L N  N  RIV  −−++−=

ULRB

PUSCHRB

532 532 N  M  ≤⋅⋅= α α α 

 

e.g. 27 RB,…

…must fulfill this requirement!

 August ‘09 | UL power control in LTE | 22

 – where α2, α3 and α5 are any integer value,

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 23/89

23

PUSCH power controlP0_PUSCH(j)

l P0_PUSCH(j) is a combination of cell- and UE-specific components,

configured by higher layers1):

l

P0_PUSCH(j) = P0_NOMINAL_PUSCH(j) + P0_UE_PUSCH(j),

 j = {0, 1},

 August ‘09 | UL power control in LTE | 23

1) see next slide(s) respectively TS 36.331 V8.6.0 Radio Resource Control specification

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 24/89

24

PUSCH power controlP0_PUSCH(j)

l P0_PUSCH(j) is a combination of cell- and UE-specific components,

configured by higher layers1):

l

P0_PUSCH(j) = P0_NOMINAL_PUSCH(j) + P0_UE_PUSCH(j),

 j = {0, 1}, – P0_NOMINAL_PUSCH(j) in the range of -126…+24 dBm is used to have different BLER

operating points to achieve lower probability of retransmissions,

 August ‘09 | UL power control in LTE | 24

1) see next slide(s) respectively TS 36.331 V8.6.0 Radio Resource Control specification

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 25/89

25

PUSCH power controlP0_PUSCH(j)

l P0_PUSCH(j) is a combination of cell- and UE-specific components,

configured by higher layers1):

l

P0_PUSCH(j) = P0_NOMINAL_PUSCH(j) + P0_UE_PUSCH(j),

 j = {0, 1},

Full path loss compensation is considered…

.

 – P0_NOMINAL_PUSCH(j) in the range of -126…+24 dBm is used to have different BLER

operating points to achieve lower probability of retransmissions,

 August ‘09 | UL power control in LTE | 25

1) see next slide(s) respectively TS 36.331 V8.6.0 Radio Resource Control specification

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 26/89

26

PUSCH power controlP0_PUSCH(j)

l P0_PUSCH(j) is a combination of cell- and UE-specific components,

configured by higher layers1):

l

P0_PUSCH(j) = P0_NOMINAL_PUSCH(j) + P0_UE_PUSCH(j),

 j = {0, 1},

Full path loss compensation is considered…

…no path loss compensation is used.

 – P0_NOMINAL_PUSCH(j) in the range of -126…+24 dBm is used to have different BLER

operating points to achieve lower probability of retransmissions,

 August ‘09 | UL power control in LTE | 26

1) see next slide(s) respectively TS 36.331 V8.6.0 Radio Resource Control specification

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 27/89

27

PUSCH power controlP0_PUSCH(j)

l P0_PUSCH(j) is a combination of cell- and UE-specific components,

configured by higher layers1):

l

P0_PUSCH(j) = P0_NOMINAL_PUSCH(j) + P0_UE_PUSCH(j),

 j = {0, 1},

Full path loss compensation is considered…

…no path loss compensation is used.

 – P0_NOMINAL_PUSCH(j) in the range of -126…+24 dBm is used to have different BLER

operating points to achieve lower probability of retransmissions,

 – P0_UE_PUSCH(j) in the range of -8…7 dB is used by the eNB to compensate

systematic offsets in the UE’s transmission power settings arising from a wrongly

,

 August ‘09 | UL power control in LTE | 27

1) see next slide(s) respectively TS 36.331 V8.6.0 Radio Resource Control specification

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 28/89

28

PUSCH power controlP0_PUSCH(j)

l P0_PUSCH(j) is a combination of cell- and UE-specific components,

configured by higher layers1):

l

P0_PUSCH(j) = P0_NOMINAL_PUSCH(j) + P0_UE_PUSCH(j),

 j = {0, 1},

Full path loss compensation is considered…

…no path loss compensation is used.

 – P0_NOMINAL_PUSCH(j) in the range of -126…+24 dBm is used to have different BLER

operating points to achieve lower probability of retransmissions,

 – P0_UE_PUSCH(j) in the range of -8…7 dB is used by the eNB to compensate

systematic offsets in the UE’s transmission power settings arising from a wrongly

,

l  j = 0 for semi-persistent scheduling (SPS), j = 1 for dynamic scheduling,

 August ‘09 | UL power control in LTE | 28

1) see next slide(s) respectively TS 36.331 V8.6.0 Radio Resource Control specification

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 29/89

29

PUSCH power controlP0_PUSCH(j)

l P0_PUSCH(j) is a combination of cell- and UE-specific components,

configured by higher layers1):

l

P0_PUSCH(j) = P0_NOMINAL_PUSCH(j) + P0_UE_PUSCH(j),

 j = {0, 1},

Full path loss compensation is considered…

…no path loss compensation is used.

 – P0_NOMINAL_PUSCH(j) in the range of -126…+24 dBm is used to have different BLER

operating points to achieve lower probability of retransmissions,

 – P0_UE_PUSCH(j) in the range of -8…7 dB is used by the eNB to compensate

systematic offsets in the UE’s transmission power settings arising from a wrongly

,

l  j = 0 for semi-persistent scheduling (SPS), j = 1 for dynamic scheduling,l  j = 2 for transmissions corresponding to the retransmission of the random

access response,

  – or = : 0_UE_PUSCH = an 0_NOMINAL_PUSCH = 0_PRE + PREAMBLE_Msg3,

where P0_PRE and ∆PREAMBLE_Msg3 are provided by higher layers,

 August ‘09 | UL power control in LTE | 29

1) see next slide(s) respectively TS 36.331 V8.6.0 Radio Resource Control specification

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 30/89

30

PUSCH power controlP0_PUSCH(j)

l P0_PUSCH(j) is a combination of cell- and UE-specific components,

configured by higher layers1):

l

P0_PUSCH(j) = P0_NOMINAL_PUSCH(j) + P0_UE_PUSCH(j),

 j = {0, 1},

Full path loss compensation is considered…

…no path loss compensation is used.

 – P0_NOMINAL_PUSCH(j) in the range of -126…+24 dBm is used to have different BLER

operating points to achieve lower probability of retransmissions,

 – P0_UE_PUSCH(j) in the range of -8…7 dB is used by the eNB to compensate

systematic offsets in the UE’s transmission power settings arising from a wrongly

,

l  j = 0 for semi-persistent scheduling (SPS), j = 1 for dynamic scheduling,l  j = 2 for transmissions corresponding to the retransmission of the random

access response,

  – or = : 0_UE_PUSCH = an 0_NOMINAL_PUSCH = 0_PRE + PREAMBLE_Msg3,

where P0_PRE and ∆PREAMBLE_Msg3 are provided by higher layers,

 – P0_PRE is understood as Preamble Initial Received Target Power provided by higher layers

and is in the range of -120…-90 dBm, – ∆PREAMBLE Ms 3 is in the range of -1…6, where the signaled integer value is multiplied by 2 and

 August ‘09 | UL power control in LTE | 30

 _ 

is than the actual power value in dB,1) see next slide(s) respectively TS 36.331 V8.6.0 Radio Resource Control specification

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 31/89

31

PUSCH power controlP0_PUSCH(j)

l UplinkPowerControl IE contains the required information about

P0_Nominal_PUSCH, P0_UE_PUSCH, ∆PREAMBLE_Msg3 are part of 

RadioResourceConfigCommon,

l Via RadioResourceConfigCommon the terminal gets also access to RACH-

ConfigCommon to extract from there information like Preamble Initial 

Received Target Power (P0_PRE),

l RadioResourceConfigCommon IE is part of System Information Block Type 2 (SIB Type 2),

 – System information (SI) in LTE are organized in System Information Blocks and are

grouped in SI Messages when they do have same periodicity,

 – In contrast to WCDMA SI are not signaled on a dedicated channel, instead the

shared channel transmission principle is used and they are transmitted on PDSCH,

 – SIB Type contains at all information about shared and common channels and is

 August ‘09 | UL power control in LTE | 31

,

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 32/89

32

PUSCH power controlα(j) and PL

l Path loss (PL) is estimated by measuring the power level (Reference Signal

Receive Power, RSRP) of the cell-specific downlink reference signals

(DLRS) and subtracting the measured value from the transmit power level of 

, – SIB Type 2  RadioResourceConfigCommon PDSCH-ConfigCommon,

 August ‘09 | UL power control in LTE | 32

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 33/89

33

PUSCH power controlα(j) and PL

l Path loss (PL) is estimated by measuring the power level (Reference Signal

Receive Power, RSRP) of the cell-specific downlink reference signals

(DLRS) and subtracting the measured value from the transmit power level of 

, – SIB Type 2  RadioResourceConfigCommon PDSCH-ConfigCommon,

l α(j) is used as path-loss compensation factor as a trade-off between total

- ,

 – Full path-loss compensation maximizes fairness for cell-edge UE’s, – Partial path-loss compensation may increase total system capacity, as less

resources are spent ensuring the success of transmissions from cell-edge UEs and

- ,

 – For  α(j=0, 1) can be 0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, where 0.7 or 0.8 give a close-to-

maximum system capacity by providing an acceptable cell-edge performance,

 – For  α(j=2) = 1.0,

 August ‘09 | UL power control in LTE | 33

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 34/89

34

PUSCH power control∆TF(i)

l ∆TF(i) can be first seen as MCS-

dependent component in the power 

control as it depends in the end on

number of code blocks respectively

TF 10( ) 10 log ((2 1) )S MPR K  PUSCH 

offset i β 

⋅Δ = −

K status is signaled

by higher layers(SIB Type 2 

RadioResourceConfigCommon

UplinkPowerControl ),

bits per code blocks, which translates

to a specific MCS,

l MCS the UE uses is under control of 

the eNB

No?

Yes, than K=1.25

∆TF(i)=0Is K

enabled?

 – ,

parameter can be understood as

another way to control the power: whenthe MCS is changed, the power will

increase or decrease, control information

without UL-SCH data

only UL-SCH dataWhat is transmitted

on PUSCH? 1

1

0

=

= ∑−

=

 β PUSCH 

offset 

 RE r  N K  MPR

 

are send instead of user data (=

“Aperiodic CQI reporting”), which is

signaled by a specific bit in the UL

scheduling grant, power offset are set

When “a-periodic CQI/PMI/RI

reporting” is configured(see TS 36.213, section 7.2.1

and TS 36.212, section 5.3.3.1.1)

OCQI Number of CQI bits incl. CRC bits

 β  β CQI 

offset 

PUSCH 

offset 

 RE CQI  N O MPR

=

=

 August ‘09 | UL power control in LTE | 34

y g er ayers see nex s e , RE  

C Number of code blocks,Kr  Size of code block r,

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 35/89

35

PUSCH power control∆TF(i), when aperiodic CQI reporting is configured

l is signaled by higher layers to the UE and is

part of the system information, 0 reserved

1 reserved

CQI 

offset  I CQI 

offset  β  β CQI 

offset 

 

 PUSCH-ConfigCommon,

l can take one out of 16 values in [dB]

2 1.125

3 1.250

4 1.375

5 1.625 β CQI 

offset 

, .

7 2.0008 2.250

9 2.500

.

11 3.125

12 3.500

13 4.000

14 5.000

 August ‘09 | UL power control in LTE | 35

.

15 6.250

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 36/89

36

PUSCH power controlf(i)

l f(i) is the other component of the dynamic offset, UE-specific Transmit Power 

Control (TPC) commands, signaled with the uplink scheduling grant (PDCCH

DCI format 0); two modes are defined: accumulative and absolute,

 August ‘09 | UL power control in LTE | 36

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 37/89

37

PUSCH power controlf(i)

l f(i) is the other component of the dynamic offset, UE-specific Transmit Power 

Control (TPC) commands, signaled with the uplink scheduling grant (PDCCH

DCI format 0); two modes are defined: accumulative and absolute,

, , .

 – Power step relative to previous step, comparable with close-loop power control in

WCDMA, difference available step sizes, which are δPUSCH={±1 dB or -1, 0, +1, +3

dB} for LTE, larger power steps can be achieved by combining TPC- and MCS-

dependent power control, Activated at all by dedicated RRC signaling, disabled

when minimum (-40 dBm) or maximum power (+23 dBm) is reached,

 – , where K PUSCH = 4 for FDD and depends onthe UL-DL configuration for TD-LTE (see TS 36.213, table 5.1.1.1-1)

)()1()( PUSCH PUSCH  K ii f i f  −+−= δ 

 August ‘09 | UL power control in LTE | 37

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 38/89

38

PUSCH power controlf(i)

l f(i) is the other component of the dynamic offset, UE-specific Transmit Power 

Control (TPC) commands, signaled with the uplink scheduling grant (PDCCH

DCI format 0); two modes are defined: accumulative and absolute,

, , .

 – Power step relative to previous step, comparable with close-loop power control in

WCDMA, difference available step sizes, which are δPUSCH={±1 dB or -1, 0, +1, +3

dB} for LTE, larger power steps can be achieved by combining TPC- and MCS-

dependent power control, Activated at all by dedicated RRC signaling, disabled

when minimum (-40 dBm) or maximum power (+23 dBm) is reached,

 – , where K PUSCH = 4 for FDD and depends onthe UL-DL configuration for TD-LTE (see TS 36.213, table 5.1.1.1-1),

l Absolute TPC commands (for PUSCH only).

)()1()( PUSCH PUSCH  K ii f i f  −+−= δ 

 – Power step of {-4, -1, +1, +4 dB} relative to the basic operating point ( set by

P O_PUSCH (j)+α (j)·PL; see previous slides),

 – , where K PUSCH=4 for FDD and depends on the UL-DL

configuration for TD-LTE (see TS 36.213, table 5.1.1.1-1),)()(

PUSCHPUSCHK ii f  −= δ 

 August ‘09 | UL power control in LTE | 38

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 39/89

39

PUSCH power controlContext

Physical Uplink

Shared Channel (PUSCH)

Physical Downlink Control Channel (PDCCH)(use DCI format 0 to assign resources for data transmission)

 August ‘09 | UL power control in LTE | 39

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 40/89

40

PUSCH power controlContext

Physical Uplink

Shared Channel (PUSCH)

Physical Downlink Control Channel (PDCCH)(use DCI format 0 to assign resources for data transmission)

 August ‘09 | UL power control in LTE | 40

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 41/89

41

PUSCH power controlUL scheduling grant (= PDCCH DCI format 0)

TPC commands

(δPUSCH)

l TPC command for scheduled

PUSCH – 2 bit, – Transmit Power Control (TPC) command for 

adapting the transmit power on PUSCH,

l Flag for format 0 and 1A

differentiation – 1 bit, – Indicates DCI format to the UE,

 –l Cyclic shift for demodulation

reference signal, – Indicates the cyclic shift to use for deriving the

uplink demodulation reference signal from

, – Indicates whether uplink frequency

hopping is used or not,

l Resource block assignment and

ho in resource allocationase sequences,

l UL Index – 2 bit, – Indicates the UL subframe where the

scheduling grant has to be applied,

 – Depending on resource allocation type,

l Modulation and coding scheme,

redundancy version – 5 bit, – Indicates modulation scheme and,  – ,

 – Total # of subframes for PDSCH transmission,

l CQI request – 1 bit,

 – Requests the UE to send a CQI,

together with the number of allocated

physical resource blocks, the TBS,

l New data indicator – 1 bit, – Indicates whether a new

 August ‘09 | UL power control in LTE | 41

This bit configures

APERIODIC

CQI REPORTING

,Modulation and Coding

Scheme (MCS)

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 42/89

42

Rohde & Schwarz LTE test solutions (UE)

Interoperability 

testin 

UE Layer 1 / 

RF Testin 

Development of 

Tx/Rx Modules 

UE Protocol 

Stack Testin 

Production 

Testin 

UE Signaling 

Conformance 

R&S LTE Portfolio for chipset, component, and UE testing

 Amplifiers,

RF Components 

 Testing 

Signal Generator /

Fading Simulator /

Signal Analyzer CMW500

Protocol Tester 

including MLAPI

Test scenarios

IOT Test Case

Packages for 

CMW500

CMW500

Protocol Tester 

including 3GPP

conformance tests

CMW500

non-signaling

production

tester Signal Generator /

Fading Simulator 

Field Trials 

CMW500

UE Physical Conformance (RF Testing) 

Signal Generator 

Virtual testing

SMU200A,

AMU200A

TS8980 RF Test

Radio network

analyzers incl.ROMES Drive

Test Tools

TS8980

RF Test

System

&

RRM TestSystem

SMJ100A or 

SMBV100A

Signal Analyzer 

-

solutionSignal Analyzer 

, …

 August ‘09 | UL power control in LTE | 42

  FSV,

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 43/89

43

Rohde & Schwarz LTE test solutions (UE)

Interoperability 

testin 

UE Layer 1 / 

RF Testin 

Development of 

Tx/Rx Modules 

UE Protocol 

Stack Testin 

Production 

Testin 

UE Signaling 

Conformance 

R&S LTE Portfolio for chipset, component, and UE testing

 Amplifiers,

RF Components 

 Testing 

Signal Generator /

Fading Simulator /

Signal Analyzer CMW500

Protocol Tester 

including MLAPI

Test scenarios

IOT Test Case

Packages for 

CMW500

CMW500

Protocol Tester 

including 3GPP

conformance tests

CMW500

non-signaling

production

tester Signal Generator /

Fading Simulator 

Field Trials 

CMW500

UE Physical Conformance (RF Testing) 

Signal Generator 

Virtual testing

SMU200A,

AMU200A

TS8980 RF Test

Radio network

analyzers incl.ROMES Drive

Test Tools

TS8980

RF Test

System

&

RRM TestSystem

SMJ100A or 

SMBV100A

Signal Analyzer 

-

solutionSignal Analyzer 

, …

 August ‘09 | UL power control in LTE | 43

  FSV,

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 44/89

44

Migration to R&S® CMW500 HW platform

 August ‘09 | UL power control in LTE | 44

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 45/89

45

Migration to R&S® CMW500 HW platform

R&S® CRTU-G/WProtocol Test Platform

 August ‘09 | UL power control in LTE | 45

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 46/89

46

Migration to R&S® CMW500 HW platform 

Radio Communication Tester 

R&S® CRTU-G/WProtocol Test Platform

 August ‘09 | UL power control in LTE | 46

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 47/89

47

Migration to R&S® CMW500 HW platform 

Radio Communication Tester 

alsoalso

also

CDMA2000/

1xEV-DO2G/2.5G2G/2.5G

R&S® CRTU-G/WProtocol Test Platform

Rel-99 Rel-4 Rel-5 Rel-6

 August ‘09 | UL power control in LTE | 47

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 48/89

48

Migration to R&S® CMW500 HW platform 

Radio Communication Tester 

R&S® CMW500(picture showing configuration as LTE Protocol Test Set)

alsoalso

also

CDMA2000/

1xEV-DO2G/2.5G2G/2.5G

R&S® CRTU-G/WProtocol Test Platform

Rel-99 Rel-4 Rel-5 Rel-6

 August ‘09 | UL power control in LTE | 48

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 49/89

49

Migration to R&S® CMW500 HW platformOne HW latform confi urable as…

l Non-signaling production unit

 – All cellular standards, WiMAX, DVB, etc.

l LTE/HSPA+ Protocol Tester,

l LTE/HSPA+ RF Test Set

Radio Communication Tester 

R&S® CMW500(picture showing configuration as LTE Protocol Test Set)

alsoalso

also

CDMA2000/

1xEV-DO2G/2.5G2G/2.5G

R&S® CRTU-G/WProtocol Test Platform

Rel-99 Rel-4 Rel-5 Rel-6

 August ‘09 | UL power control in LTE | 49

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 50/89

50

Migration to R&S® CMW500 HW platformOne HW latform confi urable as…

l Non-signaling production unit

 – All cellular standards, WiMAX, DVB, etc.

l LTE/HSPA+ Protocol Tester,

l

LTE/HSPA+ RF Test Set

Radio Communication Tester 

R&S® CMW500(picture showing configuration as LTE Protocol Test Set)

alsoalso

also

CDMA2000/

1xEV-DO2G/2.5G2G/2.5G

Rel-9 Rel-10

l ...as well as future proofed

platform for the upcoming

challenges…

R&S® CRTU-G/WProtocol Test Platform

Rel-99 Rel-4 Rel-5 Rel-6 Rel-7 Rel-8

 August ‘09 | UL power control in LTE | 50

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 51/89

51

How to test PUSCH power control?,

a RRCConnectionReconfiguration would be

required to change parameters!l PUSCH power reaction on…

l TPC commands (accumulative and absolute),

l PUSCH transport format changes,

l Content to be transmitted (user data or control information),

l Path loss changes (changing DL RS power),

Dynamic offset (closed loop)Basic open-loop starting pointBandwidth factor 

 August ‘09 | UL power control in LTE | 51

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 52/89

52

How to test power control?PUSCH power control for accumulative TPC commands

2

minimum

 August ‘09 | UL power control in LTE | 52

power n

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 53/89

53

How to test power control?PUSCH power control for accumulative TPC commands

TPC Command Field

In DCI format 0/3

Accumulated

[dB]PUSCHδ 

-

1 0

2 1

3 3

2

minimum

 August ‘09 | UL power control in LTE | 53

power n

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 54/89

54

How to test power control?PUSCH power control for accumulative TPC commands

TPC Command Field

In DCI format 0/3

Accumulated

[dB]PUSCHδ 

-

1 0

2 1

3 3

2

minimum

 August ‘09 | UL power control in LTE | 54

power n

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 55/89

55

How to test power control?PUSCH power control for accumulative TPC commands

TPC Command Field

In DCI format 0/3

Accumulated

[dB]PUSCHδ 

-

1 0

2 1

3 3

2

minimum

 August ‘09 | UL power control in LTE | 55

power n

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 56/89

56

How to test power control?PUSCH power control for accumulative TPC commands

TPC Command Field

In DCI format 0/3

Accumulated

[dB]PUSCHδ 

-

1 0

2 1

3 3

2

minimum

 August ‘09 | UL power control in LTE | 56

power n

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 57/89

57

How to test power control?PUSCH power control for accumulative TPC commands

TPC Command Field

In DCI format 0/3

Accumulated

[dB]PUSCHδ 

-

1 0

2 1

3 3

2

minimum

 August ‘09 | UL power control in LTE | 57

power n

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 58/89

58

How to test power control?PUSCH power control for accumulative TPC commands

TPC Command Field

In DCI format 0/3

Accumulated

[dB]PUSCHδ 

-

1 0

2 1

3 3

2

minimum

 August ‘09 | UL power control in LTE | 58

power n

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 59/89

59

How to test power control?PUSCH power control for accumulative TPC commands

TPC Command Field

In DCI format 0/3

Accumulated

[dB]PUSCHδ 

-

1 0

2 1

3 3

2

minimum

 August ‘09 | UL power control in LTE | 59

power n

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 60/89

60

How to test power control?PUSCH power control for accumulative TPC commands

TPC Command Field

In DCI format 0/3

Accumulated

[dB]PUSCHδ 

-

1 0

2 1

3 3

2

minimum

 August ‘09 | UL power control in LTE | 60

power n

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 61/89

61

How to test power control?PUSCH power control for absolute TPC commands

TPC Command Field

In DCI format 0/3

Absolute [dB]only DCI format 0

PUSCHδ 

0 -4

1 -1

2 1

3 4

 August ‘09 | UL power control in LTE | 61

R&S® CMW 00 LTE P l T

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 62/89

62

R&S® CMW500 LTE Protocol Tester Physical Layer testing, procedure verification – UL power control

R&S ® CMW500 LTE Protocol Tester L1 testing PUSCH power control via DCI format 0

 August ‘09 | UL power control in LTE | 62

R&S® CMW500 LTE P t l T t

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 63/89

63

R&S® CMW500 LTE Protocol Tester Physical Layer testing, procedure verification – UL power control

R&S ® CMW500 LTE Protocol Tester L1 testing PUSCH power control via DCI format 0

RIV, MCS

configuration

 August ‘09 | UL power control in LTE | 63

R&S® CMW500 LTE P t l T t

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 64/89

64

R&S® CMW500 LTE Protocol Tester Physical Layer testing, procedure verification – UL power control

R&S ® CMW500 LTE Protocol Tester L1 testing PUSCH power control via DCI format 0

RIV, MCS

configuration

Uplink

assignment

table

 August ‘09 | UL power control in LTE | 64

R&S® CMW500 LTE P t l T t

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 65/89

65

R&S® CMW500 LTE Protocol Tester Physical Layer testing, procedure verification – UL power control

R&S ® CMW500 LTE Protocol Tester L1 testing PUSCH power control via DCI format 0

TPC

RIV, MCS

configuration

Uplink

configuration assignment

table

 August ‘09 | UL power control in LTE | 65

R&S® CMW500 LTE Protocol Tester

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 66/89

66

R&S® CMW500 LTE Protocol Tester Physical Layer testing, procedure verification – UL power control

R&S ® CMW500 LTE Protocol Tester L1 testing PUSCH power control via DCI format 0

Scheduler TPC

RIV, MCS

configuration

Uplink

(new entry every TTI)configuration assignment

table

 August ‘09 | UL power control in LTE | 66

R&S® CMW500 LTE Protocol Tester

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 67/89

67

R&S® CMW500 LTE Protocol Tester Physical Layer testing, procedure verification – UL power control

R&S ® CMW500 LTE Protocol Tester L1 testing PUSCH power control via DCI format 0

RS, PSS, SSS

PBCH transmission

PDCCH

transmission

Scheduler TPC

RIV, MCS

configuration

Uplink

(new entry every TTI)configuration assignment

table

 August ‘09 | UL power control in LTE | 67

R&S® CMW500 LTE Protocol Tester

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 68/89

68

R&S® CMW500 LTE Protocol Tester Physical Layer testing, procedure verification – UL power control

R&S ® CMW500 LTE Protocol Tester L1 testing PUSCH power control via DCI format 0

RS, PSS, SSS

PBCH transmission

RFPDCCH

transmission

Scheduler TPC

RIV, MCS

configuration

Uplink

(new entry every TTI)configuration assignment

table

 August ‘09 | UL power control in LTE | 68

R&S® CMW500 LTE Protocol Tester

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 69/89

69

R&S® CMW500 LTE Protocol Tester Physical Layer testing, procedure verification – UL power control

R&S ® CMW500 LTE Protocol Tester L1 testing PUSCH power control via DCI format 0

RS, PSS, SSS

PBCH transmission

Device Under Test

(DUT; LTE-capable

Terminal

RFPDCCH

transmission

Scheduler TPC

RIV, MCS

configuration

Uplink

(new entry every TTI)configuration assignment

table

 August ‘09 | UL power control in LTE | 69

R&S® CMW500 LTE Protocol Tester

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 70/89

70

R&S® CMW500 LTE Protocol Tester Physical Layer testing, procedure verification – UL power control

R&S ® CMW500 LTE Protocol Tester L1 testing PUSCH power control via DCI format 0

RS, PSS, SSS

PBCH transmission

Device Under Test

(DUT; LTE-capable

Terminal

RFPDCCH

transmission

Scheduler TPC

RIV, MCS

configuration

Uplink

(new entry every TTI)

PUSCH

reception

configuration assignment

table

 August ‘09 | UL power control in LTE | 70

R&S® CMW500 LTE Protocol Tester

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 71/89

71

R&S CMW500 LTE Protocol Tester Physical Layer testing, procedure verification – UL power control

R&S ® CMW500 LTE Protocol Tester L1 testing PUSCH power control via DCI format 0

RS, PSS, SSS

PBCH transmission

Device Under Test

(DUT; LTE-capable

Terminal

RFPDCCH

transmission

Scheduler TPC

RIV, MCS

configuration

Uplink

(new entry every TTI)

PUSCH

reception

Evaluate

PUSCH power 

configuration assignment

table

 August ‘09 | UL power control in LTE | 71

R&S® CMW500 LTE Protocol Tester

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 72/89

72

R&S CMW500 LTE Protocol Tester Physical Layer testing, procedure verification – UL power control

 August ‘09 | UL power control in LTE | 72

PUSCH power control

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 73/89

73

PUSCH power controlTransmit output power ( PUMAX)

l Influences directly inter-cell interference, magnitude of unwanted

emissions spectral efficiency,

l Maximum power is defined for power class 3 with 23 dBm ± 2dB,

l However the flexibility of the LTE air interface in terms of bandwidth andmodulation requires Maximum Power Reduction (MPR) with using higher 

order modulation schemes (higher signal peaks) and increasing transmission

bandwidth,

ModulationChannel bandwidth / Transmission bandwidth configuration (RB)

MPR (dB)1.4 MHz 3.0 MHz 5 MHz 10 MHz 15 MHz 20MHz

QPSK > 5 > 4 > 8 > 12 > 16 > 18 ≤ 1

16 QAM ≤ 5 ≤ 4 ≤ 8 ≤ 12 ≤ 16 ≤ 18 ≤ 1

16 AM > 5 > 4 > 8 > 12 > 16 > 18 ≤ 2

l Some 3GPP frequency bands network signaling informs the UE about an

additional maximum power reduction (A-MPR) to meet additional

requirements (see next slide),

 

 August ‘09 | UL power control in LTE | 73

PUSCH power control

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 74/89

74

PUSCH power controlTransmit output power ( PUMAX), cont’d.

Network

Signalling

value

Requirements

(sub-clause)

E-UTRA Band Channel

bandwidth (MHz)

Resources

Blocks

A-MPR (dB)

A-MPR is required to meet requirements specified in the named sections out of 3GPP TS 36.101 V8.6.0

NS_01 NA NA NA NA NA

NS_03

6.6.2.2.1 2, 4,10, 35, 36 3 >5 ≤ 1

6.6.2.2.1 2, 4,10, 35,36 5 >6 ≤ 1

6.6.2.2.1 2, 4,10, 35,36 10 >6 ≤ 1

. . . . , , , ,

6.6.2.2.1 2, 4,10,35, 36 20 >10 ≤ 1

NS_04 6.6.2.2.2 TBD TBD TBDNS_05 6.6.3.3.1 1 10,15,20 ≥ 50 for QPSK ≤ 1

NS_06 6.6.2.2.3 12, 13, 14, 17 1.4, 3, 5, 10 n/a n/a

NS_076.6.2.2.3

6.6.3.3.213 10 Table 6.2.4-2 Table 6.2.4-2

..

NS_32 - - - - -

 August ‘09 | UL power control in LTE | 74

PUSCH power control

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 75/89

75

PUSCH power controlTransmit output power ( PUMAX), cont’d.

Network

Signalling

value

Requirements

(sub-clause)

E-UTRA Band Channel

bandwidth (MHz)

Resources

Blocks

A-MPR (dB)

A-MPR is required to meet requirements specified in the named sections out of 3GPP TS 36.101 V8.6.0

NS_01 NA NA NA NA NA

NS_03

6.6.2.2.1 2, 4,10, 35, 36 3 >5 ≤ 1

6.6.2.2.1 2, 4,10, 35,36 5 >6 ≤ 1

6.6.2.2.1 2, 4,10, 35,36 10 >6 ≤ 1

. . . . , , , ,

6.6.2.2.1 2, 4,10,35, 36 20 >10 ≤ 1

NS_04 6.6.2.2.2 TBD TBD TBD

NS_05 6.6.3.3.1 1 10,15,20 ≥ 50 for QPSK ≤ 1

NS_06 6.6.2.2.3 12, 13, 14, 17 1.4, 3, 5, 10 n/a n/a

NS_076.6.2.2.3

6.6.3.3.213 10 Table 6.2.4-2 Table 6.2.4-2

..

NS_32 - - - - -

 August ‘09 | UL power control in LTE | 75

PUSCH power control

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 76/89

76

USC po e co t oTransmit output power ( PUMAX), cont’d.

Network

Signalling

value

Requirements

(sub-clause)

E-UTRA Band Channel

bandwidth (MHz)

Resources

Blocks

A-MPR (dB)

A-MPR is required to meet requirements specified in the named sections out of 3GPP TS 36.101 V8.6.0

NS_01 NA NA NA NA NA

NS_03

6.6.2.2.1 2, 4,10, 35, 36 3 >5 ≤ 1

6.6.2.2.1 2, 4,10, 35,36 5 >6 ≤ 1

6.6.2.2.1 2, 4,10, 35,36 10 >6 ≤ 1

. . . . , , , ,

6.6.2.2.1 2, 4,10,35, 36 20 >10 ≤ 1

NS_04 6.6.2.2.2 TBD TBD TBD

NS_05 6.6.3.3.1 1 10,15,20 ≥ 50 for QPSK ≤ 1

NS_06 6.6.2.2.3 12, 13, 14, 17 1.4, 3, 5, 10 n/a n/a

NS_076.6.2.2.3

6.6.3.3.213 10 Table 6.2.4-2 Table 6.2.4-2

..

NS_32 - - - - -

Section 6.6.2 covers ‘Out of band emission’,

 August ‘09 | UL power control in LTE | 76

where 6.6.2.2. defines ‘Spectrum Emission Mask (SEM)’

and 6.6.2.2.3. the additional SEM requirements for 3GPP Band 13

PUSCH power control

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 77/89

77

pTransmit output power ( PUMAX), cont’d.

Network

Signalling

value

Requirements

(sub-clause)

E-UTRA Band Channel

bandwidth (MHz)

Resources

Blocks

A-MPR (dB)

A-MPR is required to meet requirements specified in the named sections out of 3GPP TS 36.101 V8.6.0

NS_01 NA NA NA NA NA

NS_03

6.6.2.2.1 2, 4,10, 35, 36 3 >5 ≤ 1

6.6.2.2.1 2, 4,10, 35,36 5 >6 ≤ 1

6.6.2.2.1 2, 4,10, 35,36 10 >6 ≤ 1

. . . . , , , ,

6.6.2.2.1 2, 4,10,35, 36 20 >10 ≤ 1

NS_04 6.6.2.2.2 TBD TBD TBD

NS_05 6.6.3.3.1 1 10,15,20 ≥ 50 for QPSK ≤ 1

NS_06 6.6.2.2.3 12, 13, 14, 17 1.4, 3, 5, 10 n/a n/a

NS_076.6.2.2.3

6.6.3.3.213 10 Table 6.2.4-2 Table 6.2.4-2

..

NS_32 - - - - -

Section 6.6.3 covers ‘Spurious Emissions’,Section 6.6.2 covers ‘Out of band emission’,

 August ‘09 | UL power control in LTE | 77

where 6.6.3.3. defines additional spurious emissions

and 6.6.3.3.2. the additional spurious emissions for 3GPP Band 13

where 6.6.2.2. defines ‘Spectrum Emission Mask (SEM)’

and 6.6.2.2.3. the additional SEM requirements for 3GPP Band 13

PUSCH power control

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 78/89

78

pTransmit output power ( PUMAX), cont’d.

 August ‘09 | UL power control in LTE | 78

 contiguously allocated RB different A-MPR needs to be considered.

PUSCH power control

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 79/89

79

pTransmit output power ( PUMAX), cont’d.

DL UL

756746 787777

3GPP Band 13

 August ‘09 | UL power control in LTE | 79

 contiguously allocated RB different A-MPR needs to be considered.

PUSCH power control

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 80/89

80

Transmit output power ( PUMAX), cont’d.

DL UL

756746 787777

3GPP Band 13

Network Signalling

Value

Requirements

(sub-clause)E-UTRA Band

Channel

bandwidth (MHz)

Resources

Blocks

A-MPR

(dB)

… … … … … …

NS_076.6.2.2.3

6.6.3.3.213 10 Table 6.2.4-2 Table 6.2.4-2

… … … … … …

 August ‘09 | UL power control in LTE | 80

 contiguously allocated RB different A-MPR needs to be considered.

PUSCH power control

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 81/89

81

Transmit output power ( PUMAX), cont’d.

DL UL

756746 787777

3GPP Band 13

Network Signalling

Value

Requirements

(sub-clause)E-UTRA Band

Channel

bandwidth (MHz)

Resources

Blocks

A-MPR

(dB)

… … … … … …

NS_076.6.2.2.3

6.6.3.3.213 10 Table 6.2.4-2 Table 6.2.4-2

… … … … … …

Region A Region B Region C

Indicates the lowest RB

index of transmitted

resource blocksRBStart [0] - [12] [13] – [18] [19] – [42] [43] – [49]

LCRB [RBs] [6-8] [1 to 5 and 9-50] [≥8] [≥18] [≤2]

A-MPR [dB] [8] [12] [12] [6] [3]

 

Defines the length of a

contiguous RB allocation

 August ‘09 | UL power control in LTE | 81

 contiguously allocated RB different A-MPR needs to be considered.

R&S® CMW500 LTE RF testing

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 82/89

82

Supported power measurements for LTE

lSupported power measurements on R&S CMW500 ® LTE RF Tester,

l Peak Power (displayed in modulation measurements)

.

l Transmit Power (displayed in modulation and SEM meas.)

 August ‘09 | UL power control in LTE | 82

R&S® CMW500 LTE RF testing

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 83/89

83

Supported power measurements for LTE – Tx power aspects

 August ‘09 | UL power control in LTE | 83

R&S® CMW500 LTE RF testing

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 84/89

84

Supported power measurements for LTE – Tx power aspects

100 RB transmission bandwidth = 20 MHz channel bandwidth

 August ‘09 | UL power control in LTE | 84

R&S® CMW500 LTE RF testing

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 85/89

85

Supported power measurements for LTE – Tx power aspects

 August ‘09 | UL power control in LTE | 85

R&S® CMW500 LTE RF testing

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 86/89

86

Supported power measurements for LTE – Tx power aspects

 August ‘09 | UL power control in LTE | 86

R&S® CMW500 LTE RF testingS t d t f LTE T t

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 87/89

87

Supported power measurements for LTE – Tx power aspects,

 August ‘09 | UL power control in LTE | 87

R&S® CMW500 LTE RF testingS t d t f LTE T t

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 88/89

88

Supported power measurements for LTE – Tx power aspects,

Tx power = integrated power of all assigned RBs, e.g. 40 RB = 7.2 MHz

 August ‘09 | UL power control in LTE | 88

Thank you for your attention,Q ti & i

5/14/2018 47614118 Power Control Rohdeschwarz Sep2309 - slidepdf.com

http://slidepdf.com/reader/full/47614118-power-control-rohdeschwarz-sep2309 89/89

89

Questions & answer session

…configured as LTE Protocol Tester 

R&S® CMW500 Wideband Communication Tester 

… configured for LTE RF testing

 August ‘09 | UL power control in LTE | 89