4.2 Variances of random variables. A useful further characteristic to consider is the degree of...

21
4.2 Variances of random variables

Transcript of 4.2 Variances of random variables. A useful further characteristic to consider is the degree of...

4.2 Variances of random variables

A useful further characteristic to consider is the de

gree of dispersion in the distribution, i.e. the spread

of the possible values of X.

Example :There are two batch of bulbs, the average lifetime is E(X)=1000 hours.

O x

O x

1000

1000

Definition 4.2-P76

Let X be a r.v. and . The variance of X, denoted by D(X) or Var(X), is definedby

( )E X

2( ) ( ) [( ) ]D X Var X E X

1) If X is discrete with pmf pk, then

2

1

( ) ( )k kk

D X x p

2) If X is continuous with pdf f(x), then

2( ) ( ) ( )D X x f x dx

(1)we often use variance to consider the degree of d

ispersion in the distribution of r.v. X. If the value of

D(X) is large, it means the degree of dispersion of X

is large.

(2)D(X) ≥0.

(3) Standard deviation标准差 :

Notes

( ) ( ) ( )X Var X D x

Example 4.6-P76

.)]([)()( 22 XEXEXD

Proof })]({[)( 2XEXEXD

})]([)(2{ 22 XEXXEXE 22 )]([)()(2)( XEXEXEXE

22 )]([)( XEXE

Theorem 4.2

).()( 22 XEXE

Example 4.7,4.8-P78

Example Suppose the pmf of X is

P(X=k) = p(1- p)k-1, k=1, 2, …,

where 0<p<1, Find Var(X).

Solution Let q=1-p, then

1

1)(k

kkpqXE

1

)'(k

kqp

1

)'(k

kqp )'1

(q

qp

,1

p

1

122 )(k

kpqkXE

1

1

1

1)1(k

k

k

k kpqpqkk

)()(1

XEqpqk

k

pq

qpq

1)

1(

,2

2p

p

. 12

)]([][)(222

22

p

q

pp

pXEXEXVar

Find Var(X).

Example Suppose the pdf of X is

].1 ,0[ ,0

],1 ,0[ ,2)(

x

xxxf

.18

1

3

2

2

1

22

)()(

)]([)()(

2

21

0

1

0

2

22

22

xdxxxdxx

dxxxfdxxfx

XEXEXVarSolution

Theorem 4.3-P79

Y=g(X)

2( ) [ ( )] {[ ( ) ( ( ))] }D Y D g X E g X E g X

1) If X is discrete with pmf pk, then

2) If X is continuous with pdf f(x), then

2( )

1

( ) [ ( ) ]k g X kk

D Y g x p

2( )( ) [ ( ) ] ( )g XD Y g x f x dx

Example 4.9,4.10-P79

Proof 22 )]([)()( CECECD

Properties -P80

(1) If C is a constant, then .0)( CD

22 CC .0

(2) Suppose X is a r.v., C is a constant, then

).()( 2 XDCCXD

Proof )(CXD

})]({[ 22 XEXEC

).(2 XDC

})]({[ 2CXECXE

).()()( YDXDYXD

(3) Suppose X and Y are independent, D(X), D(Y) exist, then

Proof

})](){[()( 2YXEYXEYXD 2)]}([)]({[ YEYXEXE

)]}()][({[2

)]([)]([ 22

YEYXEXE

YEYEXEXE

).()( YDXD

Generally, suppose X1,X2,…,Xn mutually Independent, then

).()()()( 2121 nn XDXDXDXXXD

(4) ( ) 0 ( ) 1, ( ).D X P X C where C E X

1. 0-1 distribution

If X ~ B(1, p) , then D(X) = p(1-p) ;

2. Binomial distribution

If X ~ B(n, p) , then D(X) = n p(1-p)=npq ; 3. Poisson distribution

If X ~ P(λ) , then D(X) = λ ;

,!

)1(

!)1(

)]1([

])1([)(

0

22

0

2

ek

kk

ek

kk

XXE

XXXEXE

k

k

k

k

∵E(X) =λ, then

since

So 2 2( )E X

. )]([)()( 22 XEXEXVar

4. Uniform distribution

,3

)(

)()(

22

2

22

baba

dxab

x

dxxfxXE

b

a

Suppose X U(∼ a, b) , then

Since E(X)=(a+b)/2 , so2( )

( ) .12

b aD X

5. Exponential distribution –P81

).0( 0 ,0

,0 ,)(

x

xexf

x

2 2

220

2 22

( ) ( )

2 ,

1 ( )

1 ( ) ( ) [ ( )] .

x

E X x f x dx

x e dx

E X

Var X E X E X

So

6. Normal distribution

.

2

1/)(

2

1)(

)]([)(

2

222

2

)(2

2

2

2

2

dtetuxt

dxeux

XEXEXVar

t

x

Suppose X N(∼ , 2), then

Homework:

P89: 3,8,10