39. Transistor with Band Pass. comparison calculation, simulation … · 2014. 11. 18. ·...

6
1 39. Single Transistor Amplifier with Low- and High Pass, Comparison between calculation, Pspice simulation and Experiment UFO Doctor, March 22 th , 2012 1. Introduction Here we investigate a single transistor band pass preamplifier. The goal is a low- noise preamplifier for a 40 kHz microphone. 2. Excel calculation according Tietze-Schenk select original ECXEL sheet Nr. 38 here: http://ufo-doctor.ch/?select=A_The%20Duck%20Project For verification of the formulae we use here the example page 24 to 54 Tab.1. EXCEL Sheet 1. Check Circuit (Note the block capacitors, minimal 100nF if power supply or regulator is only a few Millimeters apart!) 2. Choose Input Data 3. Choose Standard Values 4. Insert Values in Circuit for: - Pspice Simulation - Experiments 5. Simulate with Pspice 6. Verify by experiment Comments: - The input impedance will be reduced by CE, re shows the input resistance only. - Important difference in gain between theory and practice! - The noise (Noise figure *ξBandwidth ) depends mainly on the source resistance Rg 38. Transistor with Band Pass: Calculation, pSpice Simulation and Experiment UFO Doctor, March 2012 Literature : Tietze Schenk, Halbleiter Schaltungstechnik, Ed. 1986, Description Name Value Units Supply Voltage Vcc 15 V Collector Current Ic 0.2 mA Current Amplification B (hfe) 250 Col/Emitter minimal Voltage UCEmin 1V Output Swing max +/- dVC 2V Emitter Voltage (> 1V, temp.st.) VE 2V Collector working point (<Vcc!) VCA 7V Source Resistance Rg 10 kOhm Load resistor RL 100 kOhm Lower Cutoff Frequency Flow 20 Hz Higher Cutoff Frequency Fhigh 20000 Hz Source Input Voltage ug 10 mV Circuit Fig. 4.28, Page 54 Description Name Value Units Formula Comment Choice Transistor Q1 low power NPN 2N2222 Temperatur Voltage UT 0.026 V p 24 Inital Input resistance rBE 32.5 kOhm B*UT/Ic p 41 Temp Coef Si Diode dV/E/dT -0.002 V/deg C p 25 Forward Voltage Si-Diode UBE 0.6 V p 37, Si diode Base Voltage VB 2.6 V VE+UBE Early Voltage Uy 100 V p 30, 80 to 200V Diff Output resistance rCE 500 kOhm Uy/Ic p 30 Emitter Resistance RE 10 kOhm VE/Ic p 53, ok for you? RE=10k Collector Resistor RC 40 kOhm (VCC-VCA)/Ic p 53 , ok for you? RC=39k Base Current IB 0.0008 mA Ic/B p 53 Current thru div R1/R2 Iq 0.008 mA 10*IB p 53 Base Resistor to Vcc R1 1409 kOhm (Vcc-VB)/(Iq+IB) p 53 R1=1500k Base Resistor to Gnd R2 325 kOhm VB/iq p 53 R2=330k Input Resistance re 29 kOhm rBE//R1//R2 p 54 Output Resistance ra 37 kOhm RC//rCE p 54 Amplification idle Aid -285 -Ic/UT*ra p 54 Input reduction factor Irf 0.743 re/(Rg+re) p 54 Output reduction factor Orf 0.730 RL/(RL+ra) p 54 Amplification A -155 Aid*Irf*Orf check it in practise! High Pass Filter Calculation Number of LP Filters n 3 for this circuit Calc lower cutoff freq fgL 12 Hz Flow/Sqroot(n) p 54 Input Capacity CB 3.54E-01 uF 1/(2*Pi*fgL*(Rg+re)) p 54 CB=330nF Emitter Capacity CE 1.06E+02 uF Ic/(2*Pi*fgL*UT) p 54, ok for you? CE=100uF Output Capacity Ca 1.01E-01 uF 1/(2*Pi*fgL*(ra+RL)) p 54 Ca=100nF Low Pass Filter Calculation Collector Capacity CC 0.000199 uF 1/(2*Pi*fhigh*RC) CC=180pF Comparsion of the design methods: Method A flow Hz fhigh Hz Bandwidth and S/N Noise uV/Sqr(Hz) Noise mV Calculations by Tietze_Schenk -155 20 20000 19980 no yet available pSpice simulation with Q1 -139 20 19000 18980 2 0.28 Actual experiment with Q1 -82 7 19000 18993 3.6 0.50 Signal/ Noise Ratio in practice S/N 64 dB 20*log(ug*A/noise) measured in practise! ug ua Rg CB R1 R2 RC RE CC CE Ca RL Vcc VC VE VB ue Q1 Cblock Gnd 100nF 10uF

Transcript of 39. Transistor with Band Pass. comparison calculation, simulation … · 2014. 11. 18. ·...

Page 1: 39. Transistor with Band Pass. comparison calculation, simulation … · 2014. 11. 18. · Literature : Tietze Schenk, Halbleiter Schaltungstechnik, Ed. 1986, Description Name ValueUnits

1

39. Single Transistor Amplifier with Low- and High Pass,

Comparison between calculation, Pspice simulation and Experiment

UFO Doctor, March 22th, 2012

1. Introduction

Here we investigate a single transistor band pass preamplifier. The goal is a low-

noise preamplifier for a 40 kHz microphone.

2. Excel calculation according Tietze-Schenk

select original ECXEL sheet Nr. 38 here:

http://ufo-doctor.ch/?select=A_The%20Duck%20Project

For verification of the formulae we use here the example page 24 to 54

Tab.1. EXCEL Sheet

1. Check Circuit

(Note the block capacitors,

minimal 100nF if power

supply or regulator is only

a few Millimeters apart!)

2. Choose Input Data

3. Choose Standard Values

4. Insert Values in Circuit

for:

- Pspice Simulation

- Experiments

5. Simulate with Pspice

6. Verify by experiment

Comments:

- The input impedance will be reduced by CE, re shows the input resistance only.

- Important difference in gain between theory and practice!

- The noise (Noise figure *�Bandwidth) depends mainly on the source resistance Rg

38. Transistor with Band Pass: Calculation, pSpice Simulation and Experiment UFO Doctor, March 2012

Literature : Tietze Schenk, Halbleiter Schaltungstechnik, Ed. 1986,

Description Name Value Units

Supply Voltage Vcc 15 V

Collector Current Ic 0.2 mA

Current Amplification B (hfe) 250

Col/Emitter minimal Voltage UCEmin 1 V

Output Swing max +/- dVC 2 V

Emitter Voltage (> 1V, temp.st.) VE 2 V

Collector working point (<Vcc!) VCA 7 V

Source Resistance Rg 10 kOhm

Load resistor RL 100 kOhm

Lower Cutoff Frequency Flow 20 Hz

Higher Cutoff Frequency Fhigh 20000 Hz

Source Input Voltage ug 10 mV Circuit Fig. 4.28, Page 54

Description Name Value Units Formula Comment Choice

Transistor Q1 low power NPN 2N2222

Temperatur Voltage UT 0.026 V p 24

Inital Input resistance rBE 32.5 kOhm B*UT/Ic p 41

Temp Coef Si Diode dV/E/dT -0.002 V/deg C p 25

Forward Voltage Si-Diode UBE 0.6 V p 37, Si diode

Base Voltage VB 2.6 V VE+UBE

Early Voltage Uy 100 V p 30, 80 to 200V

Diff Output resistance rCE 500 kOhm Uy/Ic p 30

Emitter Resistance RE 10 kOhm VE/Ic p 53, ok for you? RE=10k

Collector Resistor RC 40 kOhm (VCC-VCA)/Ic p 53 , ok for you? RC=39k

Base Current IB 0.0008 mA Ic/B p 53

Current thru div R1/R2 Iq 0.008 mA 10*IB p 53

Base Resistor to Vcc R1 1409 kOhm (Vcc-VB)/(Iq+IB) p 53 R1=1500k

Base Resistor to Gnd R2 325 kOhm VB/iq p 53 R2=330k

Input Resistance re 29 kOhm rBE//R1//R2 p 54

Output Resistance ra 37 kOhm RC//rCE p 54

Amplification idle Aid -285 -Ic/UT*ra p 54

Input reduction factor Irf 0.743 re/(Rg+re) p 54

Output reduction factor Orf 0.730 RL/(RL+ra) p 54

Amplification A -155 Aid*Irf*Orf check it in practise!

High Pass Filter Calculation

Number of LP Filters n 3 for this circuit

Calc lower cutoff freq fgL 12 Hz Flow/Sqroot(n) p 54

Input Capacity CB 3.54E-01 uF 1/(2*Pi*fgL*(Rg+re)) p 54 CB=330nF

Emitter Capacity CE 1.06E+02 uF Ic/(2*Pi*fgL*UT) p 54, ok for you? CE=100uF

Output Capacity Ca 1.01E-01 uF 1/(2*Pi*fgL*(ra+RL)) p 54 Ca=100nF

Low Pass Filter Calculation

Collector Capacity CC 0.000199 uF 1/(2*Pi*fhigh*RC) CC=180pF

Comparsion of the design methods:

Method A flow Hz fhigh Hz Bandwidth and S/N Noise uV/Sqr(Hz) Noise mV

Calculations by Tietze_Schenk -155 20 20000 19980 no yet available

pSpice simulation with Q1 -139 20 19000 18980 2 0.28

Actual experiment with Q1 -82 7 19000 18993 3.6 0.50

Signal/ Noise Ratio in practice S/N 64 dB 20*log(ug*A/noise) measured in practise!

ugua

Rg CB

R1

R2

RC

RE

CC

CE

Ca

RL

Vcc

VC

VE

VB

ue

Q1

Cblock

Gnd

100nF 10uF

Page 2: 39. Transistor with Band Pass. comparison calculation, simulation … · 2014. 11. 18. · Literature : Tietze Schenk, Halbleiter Schaltungstechnik, Ed. 1986, Description Name ValueUnits

2

3. Pspice Simulation of Tietze-Schenk Example

Fig.1. Pspice Simulation

Gain -139, Bandwidth 20Hz to 19kHz, Noise 2uV/���@ 100-10kHz, about 0.5mV

4. Practical Experiment

Fig.3a: Bread Board Test-setup No shielding! Thus we will see a 20mV 50Hz ripple voltage out the output

Fig.3b: Gain -82 at 10kHz, 10mV Input Bandwidth 7Hz to 19kHz Settings: 1V/Div, 50usec/Div Top: Collector Voltage 7.5V, ok Middle: Base Voltage 2.6V, ok Bottom: Emitter Voltage 2.05V, ok

Fig. 3c: Noise investigations Rg connected to Gnd Osci Settings: AC 2mV/Div, 0.1msec/Div Noise about 0.5mV Only small ripples be considered, without 50Hz ripple

Comment: Much less gain than calculated or simulated!

Page 3: 39. Transistor with Band Pass. comparison calculation, simulation … · 2014. 11. 18. · Literature : Tietze Schenk, Halbleiter Schaltungstechnik, Ed. 1986, Description Name ValueUnits

3

5. Band Pass 40 kHz, 100uV Input, 5V Supply, 2mA

5.1. EXCEL Calculations

Tab. 5. EXCEL Sheet for 40kHz Band Pass Amplifier 2mA

5. 40 kHz Band Pass 2mA: Calculation, pSpice Simulation and Experiment UFO Doctor, March 2012

Literature : Tietze Schenk, Halbleiter Schaltungstechnik, Ed. 1986,

Description Name Value Units

Supply Voltage Vcc 5 V

Collector Current Ic 2 mA

Current Amplification B (hfe) 250

Col/Emitter minimal Voltage UCEmin 1 V

Output Swing max +/- dVC 0.5 V

Emitter Voltage (> 1V, temp.st.) VE 1 V

Collector working point (<Vcc!) VCA 3 V

Source Resistance Rg 0.5 kOhm

Load resistor RL 100 kOhm

Lower Cutoff Frequency Flow 1000 Hz

Higher Cutoff Frequency Fhigh 200000 Hz

Source Input Voltage ug 0.1 mV Circuit Fig. 4.28, Page 54

Description Name Value Units Formula Comment Choice

Transistor Q1 low power NPN 2N2222

Temperatur Voltage UT 0.026 V p 24

Inital Input resistance rBE 3.25 kOhm B*UT/Ic p 41

Temp Coef Si Diode dV/E/dT -0.002 V/deg C p 25

Forward Voltage Si-Diode UBE 0.6 V p 37, Si diode

Base Voltage VB 1.6 V VE+UBE

Early Voltage Uy 100 V p 30, 80 to 200V

Diff Output resistance rCE 50 kOhm Uy/Ic p 30

Emitter Resistance RE 0.5 kOhm VE/Ic p 53, ok for you? RE=470E

Collector Resistor RC 1 kOhm (VCC-VCA)/Ic p 53 , ok for you? RC=1k

Base Current IB 0.008 mA Ic/B p 53

Current thru div R1/R2 Iq 0.08 mA 10*IB p 53

Base Resistor to Vcc R1 39 kOhm (Vcc-VB)/(Iq+IB) p 53 R1=39k

Base Resistor to Gnd R2 20 kOhm VB/iq p 53 R2=22k

Input Resistance re 3 kOhm rBE//R1//R2 p 54

Output Resistance ra 1 kOhm RC//rCE p 54

Amplification idle Aid -75 -Ic/UT*ra p 54

Input reduction factor Irf 0.839 re/(Rg+re) p 54

Output reduction factor Orf 0.990 RL/(RL+ra) p 54

Amplification A -63 Aid*Irf*Orf check it in practise!

High Pass Filter Calculation

Number of LP Filters n 3 for this circuit

Calc lower cutoff freq fgL 577 Hz Flow/Sqroot(n) p 54

Input Capacity CB 8.88E-02 uF 1/(2*Pi*fgL*(Rg+re)) p 54 CB=100nF

Emitter Capacity CE 2.12E+01 uF Ic/(2*Pi*fgL*UT) p 54, ok for you? CE=2.2uF

Output Capacity Ca 2.73E-03 uF 1/(2*Pi*fgL*(ra+RL)) p 54 Ca=3.3nF

Low Pass Filter Calculation

Collector Capacity CC 0.000796 uF 1/(2*Pi*fhigh*RC) CC=1nF

Comparsion of the design methods:

Method A flow Hz fhigh Hz Bandwidth and S/N Noise uV/Sqr(Hz) Noise mV

Calculations by Tietze_Schenk -63 1000 200000 199000 no yet available

pSpice simulation with Q1 -48 10000 120000 110000 0.124 0.04

Actual experiment with Q1 -35 3000 114000 111000 0.240 0.08

Signal/ Noise Ratio in practice S/N 33 dB 20*log(ug*A/noise) measured in practise!

ugua

Rg CB

R1

R2

RC

RE

CC

CE

Ca

RL

Vcc

VC

VE

VB

ue

Q1

Cblock

Gnd

100nF 10uF

Page 4: 39. Transistor with Band Pass. comparison calculation, simulation … · 2014. 11. 18. · Literature : Tietze Schenk, Halbleiter Schaltungstechnik, Ed. 1986, Description Name ValueUnits

4

5.2. Pspice Simulation

Fig.5a: Pspice Simulation

Gain -45, Bandwidth 11kHz to 110kHz, Noise 0.116uV/���@ 40kHz, about 0.04mV Comment: The gain presented here is much less than calculated or in reality!

5.3. Practical Experiment

Fig.5b: Gain -40 at 40kHz, 10mV Input Bandwidth 3.0kHz to 125kHz Settings: 0.5V/Div, 20usec/Div Top: Collector Voltage 2.9 V, ok Middle: Base Voltage 1.7V, ok Bottom: Emitter Voltage 1V, ok

Fig.5c: Noise investigations Rg connected to Gnd Settings: AC 0.1mV/Div, 50usec/Div Noise about 0.08mV, close to simulated value of 0.04mV!

Fig.5d: S/N Investigation 100uV Input (47k/470E divider at 10mV Generator) Settings: AC 5mV/Div, 20usec/Div Gain –35, 3 kHz to 114 kHz Very good!

Fig.5e: S/N Investigation 10uV Input (470k/470E divider at 10mV Generator) Settings: AC 0.05mV/Div, 20usec/Div Acceptable!

Page 5: 39. Transistor with Band Pass. comparison calculation, simulation … · 2014. 11. 18. · Literature : Tietze Schenk, Halbleiter Schaltungstechnik, Ed. 1986, Description Name ValueUnits

5

6. Band Pass 40 kHz, 100uV Input, 5V Supply, 1mA

6.1. EXCEL Calculations

Tab. 6. EXCEL Sheet for 40kHz Band Pass Amplifier 1mA

6. 40 kHz Band Pass 1mA: Calculation, pSpice Simulation and Experiment UFO Doctor, March 2012

Literature : Tietze Schenk, Halbleiter Schaltungstechnik, Ed. 1986,

Description Name Value Units

Supply Voltage Vcc 5 V

Collector Current Ic 1 mA

Current Amplification B (hfe) 250

Col/Emitter minimal Voltage UCEmin 1 V

Output Swing max +/- dVC 0.5 V

Emitter Voltage (> 1V, temp.st.) VE 1 V

Collector working point (<Vcc!) VCA 3 V

Source Resistance Rg 0.5 kOhm

Load resistor RL 100 kOhm

Lower Cutoff Frequency Flow 1000 Hz

Higher Cutoff Frequency Fhigh 200000 Hz

Source Input Voltage ug 0.1 mV Circuit Fig. 4.28, Page 54

Description Name Value Units Formula Comment Choice

Transistor Q1 low power NPN 2N2222

Temperatur Voltage UT 0.026 V p 24

Inital Input resistance rBE 6.5 kOhm B*UT/Ic p 41

Temp Coef Si Diode dV/E/dT -0.002 V/deg C p 25

Forward Voltage Si-Diode UBE 0.6 V p 37, Si diode

Base Voltage VB 1.6 V VE+UBE

Early Voltage Uy 100 V p 30, 80 to 200V

Diff Output resistance rCE 100 kOhm Uy/Ic p 30

Emitter Resistance RE 1 kOhm VE/Ic p 53, ok for you? RE=1k

Collector Resistor RC 2 kOhm (VCC-VCA)/Ic p 53 , ok for you? RC=2.2k

Base Current IB 0.004 mA Ic/B p 53

Current thru div R1/R2 Iq 0.04 mA 10*IB p 53

Base Resistor to Vcc R1 77 kOhm (Vcc-VB)/(Iq+IB) p 53 R1=68k

Base Resistor to Gnd R2 40 kOhm VB/iq p 53 R2=33k

Input Resistance re 5 kOhm rBE//R1//R2 p 54

Output Resistance ra 2 kOhm RC//rCE p 54

Amplification idle Aid -75 -Ic/UT*ra p 54

Input reduction factor Irf 0.912 re/(Rg+re) p 54

Output reduction factor Orf 0.981 RL/(RL+ra) p 54

Amplification A -67 Aid*Irf*Orf check it in practise!

High Pass Filter Calculation

Number of LP Filters n 3 for this circuit

Calc lower cutoff freq fgL 577 Hz Flow/Sqroot(n) p 54

Input Capacity CB 4.83E-02 uF 1/(2*Pi*fgL*(Rg+re)) p 54 CB=47nF

Emitter Capacity CE 1.06E+01 uF Ic/(2*Pi*fgL*UT) p 54, ok for you? CE=1uF

Output Capacity Ca 2.71E-03 uF 1/(2*Pi*fgL*(ra+RL)) p 54 Ca=3.3nF

Low Pass Filter Calculation

Collector Capacity CC 0.000398 uF 1/(2*Pi*fhigh*RC) CC=470pF

Comparsion of the design methods:

Method A flow Hz fhigh Hz Bandwidth and S/N Noise uV/Sqr(Hz) Noise mV

Calculations by Tietze_Schenk -67 1000 200000 199000 no yet available

pSpice simulation with Q1 -38 10000 120000 110000 0.124 0.04

Actual experiment with Q1 -25 16000 94000 78000 0.179 0.05

Signal/ Noise Ratio in practice S/N 34 dB 20*log(ug*A/noise) measured in practise!

ugua

Rg CB

R1

R2

RC

RE

CC

CE

Ca

RL

Vcc

VC

VE

VB

ue

Q1

Cblock

Gnd

100nF 10uF

Page 6: 39. Transistor with Band Pass. comparison calculation, simulation … · 2014. 11. 18. · Literature : Tietze Schenk, Halbleiter Schaltungstechnik, Ed. 1986, Description Name ValueUnits

6

6.2. Pspice Simulation

Fig.6a: Pspice Simulation

Gain -38, Bandwidth 10kHz to 120kHz, Noise 0.113uV/���@ 40kHz, about 0.04mV Comment: The gain presented here is much less than calculated or in reality!

6.3. Practical Experiment

Fig.6b: Gain -30 at 40kHz, 10mV Input Bandwidth 16kHz to 94kHz Settings: 0.5V/Div, 20usec/Div Top: Collector Voltage 2.7 V, ok Middle: Base Voltage 1.6V, ok Bottom: Emitter Voltage 0.95V, ok

Fig.6c: Noise investigations Rg connected to Gnd Settings: AC 0.05mV/Div, 50usec/Div Noise about 0.05mV, good match to simulated value of 0.04mV!

Fig.6d: S/N Investigation 100uV Input (47k/470E divider at 10mV Generator) Settings: AC 10mV/Div, 20usec/Div Gain –25, 15 kHz to 90 kHz Very good!

Fig.6e: S/N Investigation 10uV Input (470k/470E divider at 10mV Generator) Settings: AC 1mV/Div, 20usec/Div Acceptable!

7. Conclusion

2mA: Gain = -35, S/N = 33dB;

1mA: Gain = -25, S/N = 34dB, very similar!