32 Ebers-Moll Model - nanoHUB

16
ECE-305: Spring 2015 BJTs: Ebers-Moll Model Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA [email protected] 4/27/15 Pierret, Semiconductor Device Fundamentals (SDF) pp. 403-407 1 last lecture Lundstrom ECE 305 S15 2 1) Emitter injection efficiency 2) Base transport factor 3) Early effect 4) Speed (base transit time) 5) Effects of saturation 6) Gummel plots 7) Transconductance 8) HBTs 9) Emitter crowding

Transcript of 32 Ebers-Moll Model - nanoHUB

Page 1: 32 Ebers-Moll Model - nanoHUB

Lundstrom ECE 305 S15

ECE-305: Spring 2015

BJTs: Ebers-Moll Model

Professor Mark Lundstrom

Electrical and Computer Engineering Purdue University, West Lafayette, IN USA

[email protected]

4/27/15

Pierret, Semiconductor Device Fundamentals (SDF) pp. 403-407

1

last lecture

Lundstrom ECE 305 S15 2

1)  Emitter injection efficiency 2)  Base transport factor 3)  Early effect 4)  Speed (base transit time) 5)  Effects of saturation 6)  Gummel plots 7)  Transconductance 8)  HBTs 9)  Emitter crowding

Page 2: 32 Ebers-Moll Model - nanoHUB

2D effects

3

n+ emitter

p base

n collector

n+

p base n-collector

n+

n+

double

diffused

BJT

emitter current crowding

4

p base

n-collector

n+

n+

IBIB

Lundstrom ECE 305 S15

Page 3: 32 Ebers-Moll Model - nanoHUB

emitter current crowding

5

p base

n-collector

n+

n+

IBIB

Vbase+

Lundstrom ECE 305 S15

emitter current crowding

6

n-collector

n+

n+

IBIB

Lundstrom ECE 305 S15

Page 4: 32 Ebers-Moll Model - nanoHUB

emitter and collector areas

7

p base n-collector

n+

n+

IBIB

AE

AC

AC >> AE

Lundstrom ECE 305 S15

Q1) Which is the base transport factor?

8

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEp

ICn

IB

a) b) c) d) e)

IEn IEn + IEp( )

ICn IEp

ICn IEn IEp

ICn IEn + IEp( )

Page 5: 32 Ebers-Moll Model - nanoHUB

Q2) Which is beta_dc?

9

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEp

ICn

IB

a) b) c) d) e)

IEn IEn + IEp( )

ICn IEp

ICn IEn IEp

ICn IEn + IEp( )

Q3) Which is alpha_dc?

10

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEp

ICn

IB

a) b) c) d) e)

IEn IEn + IEp( )

ICn IEp

ICn IEn IEp

ICn IEn + IEp( )

Page 6: 32 Ebers-Moll Model - nanoHUB

Q4) Which is the base current?

11

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEp

ICn

IB

a) b) c) d) e)

IEn IEn + IEp( )

ICn IEp

ICn IEn IEp

ICn IEn + IEp( )

Q5) Which is the emitter injection efficiency?

12

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEp

ICn

IB

a) b) c) d) e)

IEn IEn + IEp( )

ICn IEp

ICn IEn IEp

ICn IEn + IEp( )

Page 7: 32 Ebers-Moll Model - nanoHUB

forward active region

13

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEpIE = IEn + IEp

ICn ≈ IEn

IC ≈ IEn

IB = IEp

emitter current: forward active region

14

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEpIE = IEn + IEp

IEn

IC ≈ IEn

IB = IEp

IEn = qAEni2

NAB

⎛⎝⎜

⎞⎠⎟Dn

WB

eqVBE /kBT

IEp = qAEni2

NDE

⎛⎝⎜

⎞⎠⎟Dp

WE

eqVBE /kBT

IE = IEn + IEp

IE = IF0 eqVBE kBT −1( )

IF0 = qAEni2

NAB

⎛⎝⎜

⎞⎠⎟Dn

WB

+ qAEni2

NDE

⎛⎝⎜

⎞⎠⎟Dp

WE

Page 8: 32 Ebers-Moll Model - nanoHUB

collector current: forward active region

15

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEpIE = IEn + IEp

αT IEn

IC ≈ IEn

IB = IEp

IEn = qAEni2

NAB

⎛⎝⎜

⎞⎠⎟Dn

WB

eqVBE /kBT

IEp = qAEni2

NDE

⎛⎝⎜

⎞⎠⎟Dp

WE

eqVBE /kBT

IC =αT IEn

IC =αF IF0 eqVBE kBT −1( )

IC =αTγ F IE

αF =αTγ F

Lundstrom ECE 305 S15

base current: forward active region

16

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEpIE = IEn + IEp

IEn

IC ≈ IEn

IB = IEp

IB = IE − IC

IC =αF IF0 eqVBE kBT −1( )

αF =αTγ F

IE = IF0 eqVBE kBT −1( )

IB = IE − IC

IB = 1−αF( ) IF0 eqVBE kBT −1( )Lundstrom ECE 305 S15

Page 9: 32 Ebers-Moll Model - nanoHUB

summary: forward active region

17

n+ emitter

p base

n collector

n+

FB RB IE ICIEn

IEpIE = IEn + IEp

IEn

IC ≈ IEn

IB = IEp

IC =αF IF0 eqVBE kBT −1( )

IE = IF0 eqVBE kBT −1( )

IB = 1−αF( ) IF0 eqVBE kBT −1( )IF0 = qAE

ni2

NAB

⎛⎝⎜

⎞⎠⎟Dn

WB

+ qAEni2

NDE

⎛⎝⎜

⎞⎠⎟Dp

WE

αF =αTγ F

Ebers-Moll model

18 18

Lundstrom ECE 305 S15

Question: How do we describe the BJT in any region of operation?

Page 10: 32 Ebers-Moll Model - nanoHUB

emitter-base junction (the forward diode)

19 19

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp

Lundstrom ECE 305 S15

ICp

IEn = −qA Dn

WB

ni2

NAB

eqVBE kBT −1( )

IEp = −qADp

WE

ni2

NDE

eqVBE kBT −1( )

IE VBE( ) = −IEn VBE( )− IEp VBE( )

IE VBE( ) = IF0 eqVBE kBT −1( )

Base-collector junction (the reverse diode)

20 20

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp

Lundstrom ECE 305 S15

ICp

ICn VBC( ) = qA Dn

WB

ni2

NAB

eqVBC kBT −1( )

ICp VBC( ) = qA Dp

WC

ni2

NDC

eqVBC kBT −1( )

IC VBC( ) = − ICn VBC( ) + ICp VBC( )⎡⎣ ⎤⎦

IC VBC( ) = −IR0 eqVBC kBT −1( )

Page 11: 32 Ebers-Moll Model - nanoHUB

Both junctions….

21 21

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp

Lundstrom ECE 305 S15

ICp

IC VBC( ) = −IR0 eqVBC kBT −1( )

IE VBE( ) = IF0 eqVBE kBT −1( )

But…. The two junctions are coupled!

Ebers-Moll model

22 22

n+ emitter

p base

n collector

n+ IE IC

IB

IEn ICn

IEp

Lundstrom ECE 305 S15

ICp

IC VBE ,VBC( ) =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 eqVBC kBT −1( )

Page 12: 32 Ebers-Moll Model - nanoHUB

Ebers-Moll model

23 23

Lundstrom ECE 305 S15

IC VBE ,VBC( ) =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 eqVBC kBT −1( )

IB VBE ,VBC( ) = IE VBE ,VBC( )− IC VBE ,VBC( )

See Pierret SDF, Chapter 11, sec. 11.1.4

Ebers-Moll model

24 Lundstrom ECE 305 S15

IC VBE ,VBC( ) =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 eqVBC kBT −1( )

αF IF0 =α RIR0

IF0 = qAEni2

NAB

⎛⎝⎜

⎞⎠⎟Dn

WB

+ qAEni2

NDE

⎛⎝⎜

⎞⎠⎟Dp

WE

αF =αTγ F

α R =αTγ R IR0 = qAEni2

NAB

⎛⎝⎜

⎞⎠⎟Dn

WB

+ qAEni2

NDC

⎛⎝⎜

⎞⎠⎟Dp

WC

Page 13: 32 Ebers-Moll Model - nanoHUB

Ebers-Moll model

25 25

Lundstrom ECE 305 S15

IC VBE ,VBC( ) =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 eqVBC kBT −1( )

IB VBE ,VBC( ) = IE VBE ,VBC( )− IC VBE ,VBC( )

See Pierret SDF, Chapter 11, sec. 11.1.4

αF IF0 =α RIR0

Check active region

Lundstrom ECE 305 S15 26

IC VBE ,VBC( ) =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )→αF IF0e

qVBE kBT + IR0

IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 eqVBC kBT −1( )→ IF0e

qVBE kBT +α RIR0

IB VBE ,VBC( ) = IE VBE ,VBC( )− IC VBE ,VBC( )→ 1−αF( ) IF0eqVBE kBT − 1−α R( ) IR0

IC ≈αF IF0eqVBE kBT

IB ≈ 1−αF( ) IF0eqVBE kBT =1−αF( )αF

IC = 1βdc

IC✔

Page 14: 32 Ebers-Moll Model - nanoHUB

What is ID?

27 IE = ID

IB

VBC

VBE

IE = ID

VCE =VD VD

ID

What is ID?

28 IE = ID

IBIC =αF IF0 e

qVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE = IF0 eqVBE kBT −1( )−α RIR0 e

qVBC kBT −1( )

VBC = 0

VBC

VBE

IE = ID

VCE =VD

IE = IF0 eqVBE kBT −1( )

ID = IF0 eqVD kBT −1( )

IC

Page 15: 32 Ebers-Moll Model - nanoHUB

What is IC?

29 IE

IB = 0

IC =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE = IF0 eqVBE kBT −1( )−α RIR0 e

qVBC kBT −1( )VBC

VBE

IC

VCE

Ebers-Moll model

30 30

Lundstrom 12.5.14

IC VBE ,VBC( ) =αF IF0 eqVBE kBT −1( )− IR0 eqVBC kBT −1( )

IE VBE ,VBC( ) = IF0 eqVBE kBT −1( )−α RIR0 eqVBC kBT −1( )

IB VBE ,VBC( ) = IE VBE ,VBC( )− IC VBE ,VBC( )

αF IF0 =α RIR0

See Pierret SDF, Chapter 11, sec. 11.1.4

Page 16: 32 Ebers-Moll Model - nanoHUB

Ebers-Moll model (ii)

31 31 Lundstrom 12.5.14

IR0 = qADnB

WB

ni2

NAB

+DpC

WC

ni2

NDC

⎛⎝⎜

⎞⎠⎟

IF0 = qADnB

WB

ni2

NAB

+DpE

WE

ni2

NDE

⎛⎝⎜

⎞⎠⎟

αF = γ FαT

αF IF0 =α RIR0 →α R =αFIF0IR0

α R = γ RαT