31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... ·...

30
31. The Control of Gene Expression in Prokaryotes Bacteria respond to changes in their environments. A micrograph of the light organ of a newly hatched squid (Euprymna scolopes) is shown on the le:. The light spots are due to colonies of the bacteria Vibrio fischerili that live symbioBcally within these organs. These bacteria become luminescent when they reach an appropriately high density. The density is sensed by the circuit shown on the right in which each bacterium releases a small molecule into the environment. The molecule is subsequently taken up by other bacterial cells, which start a signaling cascade that s@mulates the expression of specific genes.

Transcript of 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... ·...

Page 1: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

31.  The  Control  of  Gene  Expression  in  Prokaryotes    

Bacteria  respond  to  changes  in  their  environments.  A  micrograph  of  the  light  organ  of  a  newly  hatched  squid  (Euprymna  scolopes)  is  shown  on  the  le:.  The  light  spots  are  due  to  colonies  of  the  bacteria  Vibrio  fischerili  that  live  symbioBcally  within  these  organs.  These  bacteria  become  luminescent  when  they  reach  an  appropriately  high  density.  The  density  is  sensed  by  the  circuit  shown  on  the  right  in  which  each  bacterium  releases  a  small  molecule  into  the  environment.  The  molecule  is  subsequently  taken  up  by  other  bacterial  cells,  which  start  a  signaling  cascade  that  s@mulates  the  expression  of  specific  genes.    

Page 2: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

Even  simple  prokaryoBc  cells  must  respond  to  changes  in  their  metabolism  or  in  their  environments.  Much  of  this  response  takes  place  through  changes  in  gene  expression.    Genomes  comprise  thousands  of  genes.      Some  of  these  genes  are  expressed  all  the  Bme.  These  genes  are  subject  to  consBtuBve  expression.          Many  other  genes  are  expressed  only  under  some  circumstances—that  is,  under  a  par@cular  set  of  physiological  condi@ons.  These  genes  are  subject  to  regulated  expression.      For  example,  the  level  of  expression  of  some  genes  in  bacteria  may  vary  more  than  a  1000-­‐fold  in  response  to  the  supply  of  nutrients  or  to  environmental  challenges.    In  this  chapter,  we  will  examine  gene-­‐regula@on  mechanisms  in  prokaryotes,  par@cularly  E.  coli,  because  many  of  these  processes  were  first  discovered  in  this  organism.      In  Chapter  32,  we  will  turn  to  gene-­‐regula@on  mechanisms  in  eukaryotes.      We  shall  see  both  substanBal  similariBes  and  fundamental  differences  in  comparing  gene-­‐regulatory  mechanisms  of  the  two  types  of  organisms.  

Page 3: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

prokaryotes   eukaryotes  

wikipedia  

Page 4: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

How  is  gene  expression  controlled?      Gene  acBvity  is  controlled  first  and  foremost  at  the  level  of  transcripBon.      Whether  a  gene  is  transcribed  is  determined  largely  by  the  interplay  between  specific  DNA  sequences  and  certain  proteins  that  bind  to  these  sequences.      Most  o:en,  these  proteins  repress  the  expression  of  specific  genes  by  blocking  the  access  of  RNA  polymerase  to  their  promotors.    

Page 5: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

Some  genes  are  also  controlled  at  stages  beyond  the  level  of  transcripBon  and  we  shall  examine  several  mechanisms  at  these  stages.      Finally,  we  will  examine  several  important  examples  of  how  gene  expression  is  regulated  in  response  to  changes  in  the  concentra@ons  of  specific  molecules  in  the  environment  of  prokaryo@c  cells.      

In  some  cases,  however,  the  proteins  can  acBvate  the  expression  of  specific  genes.      We  shall  learn  about  several  different  strategies  that  allow  the  coordinated  regulaBon  of  sets  of  genes.    

Page 6: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

31.1  Many  DNA-­‐Binding  Proteins  Recognize  Specific  DNA  Sequences  

How  do  regulatory  systems  disBnguish  the  genes  that  need  to  be  acBvated  or  repressed  from  genes  that  are  consBtuBve?      A:er  all,  the  DNA  sequences  of  genes  themselves  do  not  have  any  dis@nguishing  features  that  would  allow  regulatory  systems  to  recognize  them.  Instead,  gene  regula@on  depends  on  other  sequences  in  the  genome.      Regulatory  sites  are  usually  binding  sites  for  specific  DNA-­‐binding  proteins,  which  can  s@mulate  or  repress  gene  expression.      In  the  presence  of  the  sugar  lactose,  the  bacterium  starts  to  express  a  gene  encoding  β-­‐galactosidase,  an  enzyme  that  can  process  lactose  for  use  as  a  carbon  and  energy  source.    

Page 7: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

The  nucleo@de  sequence  of  this  site  shows  a  nearly  perfect  inverted  repeat,  indica@ng  that  the  DNA  in  this  region  has  an  approximate  twofold  axis  of  symmetry.      Symmetry  in  such  regulatory  sites  usually  corresponds  to  symmetry  in  the  protein  that  binds  the  site.  Symmetry  matching  is  a  recurring  theme  in  protein–DNA  interacBons.  

Lac  regulatory  site  sequence  

Arginine  residue  forms  a  pair  of  hydrogen  bonds  with  a  guanine  residue  

Page 8: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

Helix-­‐turn-­‐helix  moBf  is  common  to  many  DNA-­‐binding  proteins  

Are  similar  strategies  uBlized  by  other  prokaryoBc  DNA-­‐binding  proteins?      

DNA-­‐  binding  surfaces  of  many,  but  not  all,  of  these  proteins  consist  of  a  pair  of  a  helices  separated  by  a  Bght  turn  (Figure  31.3).      

The  recogniBon  helix  (the  second  helix)  lies  in  the  major  groove,  where  amino  acid  side  chains  make  contact  with  the  edges  of  base  pairs.      In  contrast,  residues  of  the  first  helix  par@cipate  primarily  in  contacts  with  the  DNA  backbone.      

Helix-­‐turn-­‐helix  mo@fs  are  present  on  many  proteins  that  bind  DNA  as  dimers,  and  thus  two  of  the  units  will  be  present,  one  on  each  monomer.  

Page 9: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

9  

Page 10: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

Although  the  helix-­‐turn-­‐helix  mo@f  is  the  most  commonly  observed  DNA-­‐binding  unit  in  prokaryotes,  not  all  regulatory  proteins  bind  DNA  through  such  units.      A  striking  example  is  provided  by  the  E.  coli  methionine  repressor  (Figure  31.4).  This  protein  binds  DNA  through  the  inser@on  of  a  pair  of  β  strands  into  the  major  groove.  

Page 11: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"
Page 12: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

31.2  ProkaryoBc  DNA-­‐Binding  Proteins  Bind  Specifically  to  Regulatory  Sites  in  Operons  E.  coli  usually  rely  on  glucose  as  their  source  of  carbon  and  energy,  even  when  other  sugars  are  available.  However,  when  glucose  is  scarce,  E.  coli  can  use  lactose  as  their  carbon  source,  even  though  this  disaccharide  does  not  lie  on  any  major  metabolic  pathways.      An  essen@al  enzyme  in  the  metabolism  of  lactose  is  β-­‐galactosidase,  which  hydrolyzes  lactose  into  galactose  and  glucose.      

Page 13: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

This  reacBon  can  be  conveniently  followed  in  the  laboratory  through  the  use  of  alterna@ve  galactoside  substrates  that  form  colored  products  such  as  X-­‐Gal  (Figure  31.5).  

An  E.  coli  cell  growing  on  a  carbon  source  such  as  glucose  or  glycerol  contains  fewer  than  10  molecules  of  β-­‐galactosidase.      In  contrast,  the  same  cell  will  contain  several  thousand  molecules  of  the  enzyme  when  grown  on  lactose  (Figure  31.6).      The  presence  of  lactose  in  the  culture  medium  induces  a  large  increase  in  the  amount  of  β-­‐galactosidase  by  elici@ng  the  synthesis  of  new  enzyme  molecules  rather  than  by  ac@va@ng  a  preexis@ng  but  inac@ve  precursor.  

Page 14: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

A  crucial  clue  to  the  mechanism  of  gene  regula@on  was  the  observaBon  that  two  other  proteins  are  synthesized  in  concert  with  β-­‐galactosidase—  namely,  galactoside  permease  and  thiogalactoside  transacetylase.      The  permease  is  required  for  the  transport  of  lactose  across  the  bacterial  cell  membrane  (Sec@on  13.3).                        The  transacetylase  is  not  essenBal  for  lactose  metabolism  but  appears  to  play  a  role  in  the  detoxificaBon  of  compounds  that  also  may  be  transported  by  the  permease.      Thus,  the  expression  levels  of  a  set  of  enzymes  that  all  contribute  to  the  adaptaBon  to  a  given  change  in  the  environment  change  together.      Such  a  coordinated  unit  of  gene  expression  is  called  an  operon.  

Page 15: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

An  operon  consists  of  regulatory  elements  and  protein-­‐encoding  genes  The  parallel  regula@on  of  β-­‐galactosidase,  the  permease,  and  the  transacetylase  suggested  that  the  expression  of  genes  encoding  these  enzymes  is  controlled  by  a  common  mechanism.      François  Jacob  and  Jacques  Monod  (Nobel,  1965)    proposed  the  operon  model  to  account  for  this  parallel  regula@on  as  well  as  the  results  of  other  gene@c  experiments.      The  gene@c  elements  of  the  model  are  a  regulator  gene  that  encodes  a  regulatory  protein,  a  regulatory  DNA  sequence  called  an  operator  site,  and  a  set  of  structural  genes  (Figure  31.7).  

Page 16: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

The  regulator  gene  encodes  a  repressor  protein  that  binds  to  the  operator  site.      The  binding  of  the  repressor  to  the  operator  prevents  transcripBon  of  the  structural  genes.  The  operator  and  its  associated  structural  genes  cons@tute  the  operon.              For  the  lactose  (lac)  operon,  the  i  gene  encodes  the  repressor,  o  is  the  operator  site,  and  the  z,  y,  and  a  genes  are  the  structural  genes  for  β-­‐galactosidase,  the  permease,  and  the  transacetylase,  respec@vely.      The  operon  also  contains  a  promoter  site  (denoted  by  p),  which  directs  the  RNA  polymerase  to  the  correct  transcripBon  iniBaBon  site.      The  z,  y,  and  a  genes  are  transcribed  to  give  a  single  mRNA  molecule  that  encodes  all  three  proteins.      An  mRNA  molecule  is  known  as  a  polygenic  or  polycistronic  transcript.      

Page 17: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

The  lac  repressor  protein  in  the  absence  of  lactose  binds  to  the  operator  and  blocks  transcripBon  

The  lac  repressor  exists  as  a  tetramer  of  37-­‐kd  subunits  with  two  pairs  of  subunits  coming  together  to  form  the  DNA-­‐binding  unit  previously  discussed.      In  the  absence  of  lactose,  the  repressor  binds  very  @ghtly  and  rapidly  to  the  operator.      When  the  lac  repressor  is  bound  to  DNA,  the  repressor  prevents  RNA  polymerase  from  transcribing  the  protein-­‐coding  genes  inasmuch  as  the  operator  site  is  directly  adjacent  to  and  downstream  of  the  promoter  site  where  the  repressor  would  block  the  progress  of  RNA  polymerase.    

In  the  absence  of  lactose,  the  lactose  operon  is  repressed.      How  does  the  lac  repressor  mediate  this  repression?    

Lac  repressor  dimer  1EFA.pdb  

Page 18: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"
Page 19: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

Protein  Data  Bank  Lac  Repressor    

Page 20: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

How  does  the  lac  repressor  locate  the  operator  site  in  the  E.  coli  chromosome?      The  lac  repressor  binds  4  x  106  Bmes  as  strongly  to  operator  DNA  as  it  does  to  random  sites  in  the  genome.      This  high  degree  of  selecBvity  allows  the  repressor  to  find  the  operator  efficiently  even  with  a  large  excess  (4.6  x  106  bp)  of  other  sites  within  the  E.  coli  genome.      The  dissociaBon  constant  (Kd)  is  approximately  0.1  pM  (10-­‐13  M).      The  rate  constant  for  associa@on  (<  1010  M-­‐1  s-­‐1)  is  strikingly  high,  indica@ng  that  the  repressor  finds  the  operator  primarily  by  diffusing  along  a  DNA  molecule  (1D  search)  rather  than  encountering  it  from  the  aqueous  medium  (3D  search).      This  diffusion  has  been  confirmed  by  studies  that  monitored  the  behavior  of  fluorescently  labeled  single  molecules  of  lac  repressor  inside  living  E.  coli  cells.  

Page 21: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"
Page 22: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

a(1  –  be–kt)  

Page 23: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

How  does  the  presence  of  lactose  trigger  the  relief  of  this  repression  and,  hence,  the  expression  of  the  lac  operon?      Interes@ngly,  lactose  itself  does  not  have  this  effect;  rather,  allolactose.    Allolactose  is  thus  referred  to  as  the  inducer  of  the  lac  operon.    Allolactose  is  a  side  product  of  the  β-­‐galactosidase  reac@on  and  is  produced  at  low  levels  by  the  few  molecules  of  β-­‐galactosidase  that  are  present  before  induc@on.      Some  other  β-­‐galactosides  such  as  isopropylthiogalactoside  (IPTG)  are  potent  inducers  of  β-­‐galactosidase  expression,  although  they  are  not  substrates  of  the  enzyme.      IPTG  is  useful  in  the  laboratory  as  a  tool  for  inducing  gene  expression  in  engineered  bacterial  strains.  

Ligand  binding  can  induce  structural  changes  in  regulatory  proteins  

Page 24: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

The  inducer  triggers  gene  expression  by  preven@ng  the  lac  repressor  from  binding  the  operator.      The  inducer  binds  to  the  lac  repressor  and  thereby  greatly  reduces  the  repressor’s  affinity  for  operator  DNA.      

An  inducer  molecule  binds  in  the  center  of  the  large  domain  within  each  monomer.      This  binding  leads  to  conformaBonal  changes  that  modify  the  rela@on  between  the  two  small  DNA-­‐binding  domains  (Figure  31.9).      These  domains  can  no  longer  easily  contact  DNA  simultaneously,  leading  to  a  dramaBc  reducBon  in  DNA-­‐binding  affinity.  

Page 25: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

Let  us  recapitulate  the  processes  that  regulate  gene  expression  in  the  lactose  operon  (Figure  31.10).      In  the  absence  of  inducer,  the  lac  repressor  is  bound  to  DNA  in  a  manner  that  blocks  RNA  polymerase  from  transcribing  the  z,  y,  and  a  genes.      Thus,  very  lihle  β-­‐galactosidase,  permease,  or  transacetylase  are  produced.    

Page 26: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

The  addiBon  of  lactose  to  the  environment  leads  to  the  formaBon  of  allolactose.      This  inducer  binds  to  the  lac  repressor,  leading  to  conforma@onal  changes  and  the  release  of  DNA  by  the  lac  repressor.      With  the  operator  site  unoccupied,  RNA  polymerase  can  then  transcribe  the  other  lac  genes  and  the  bacterium  will  produce  the  proteins  necessary  for  the  efficient  use  of  lactose.  

Page 27: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

The  operon  is  a  common  regulatory  unit  in  prokaryotes  

Many  other  gene-­‐regulatory  networks  func@on  in  ways  analogous  to  the  lac  operon.      For  example,  genes  taking  part  in  purine  and,  to  a  lesser  degree,  pyrimidine  biosynthesis  are  repressed  by  the  pur  repressor.      This  dimeric  protein  is  31%  idenBcal  in  sequence  with  the  lac  repressor  and  has  a  similar  three-­‐dimensional  structure.      However,  the  behavior  of  the  pur  repressor  is  opposite  that  of  the  lac  repressor:  whereas  the  lac  repressor  is  released  from  DNA  by  binding  to  a  small  molecule,      the  pur  repressor  binds  DNA  specifically,  blocking  transcripCon,  only  when  bound  to  a  small  molecule.      Such  a  small  molecule  is  called  a  corepressor.      For  the  pur  repressor,  the  corepressor  can  be  either  guanine  or  hypoxanthine.      The  dimeric  pur  repressor  binds  to  inverted-­‐repeat  DNA  sites  of  the  form  5’-­‐ANGCAANCGNTTNCNT-­‐3’,  in  which  the  bases  shown  in  bold-­‐  face  type  are  par@cularly  important.    

Page 28: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

Examina@on  of  the  E.  coli  genome  sequence  reveals  the  presence  of  more  than  20  such  sites,  regula@ng  19  operons  and  including  more  than  25  genes  (Figure  31.11).    

Page 29: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

Because  the  DNA  binding  sites  for  these  regulatory  proteins  are  short,  it  is  likely  that  they  evolved  independently  and  are  not  related  by  divergence  from  an  ancestral  regulatory  site.      Once  a  ligand-­‐regulated  DNA-­‐binding  protein  is  present  in  a  cell,  binding  sites  for  the  protein  may  arise  by  mutaBon  adjacent  to  addiBonal  genes.      Binding  sites  for  the  pur  repressor  have  evolved  in  the  regulatory  regions  of  a  wide  range  of  genes  taking  part  in  nucleoBde  biosynthesis.      All  such  genes  can  then  be  regulated  in  a  concerted  manner.    The  organiza@on  of  prokaryo@c  genes  into  operons  is  useful  for  the  analysis  of  completed  genome  sequences.      Some@mes  a  gene  of  unknown  funcBon  is  discovered  to  be  part  of  an  operon  containing  well-­‐characterized  genes.      Such  associa@ons  can  provide  powerful  clues  to  the  biochemical  and  physiological  func@ons  of  the  uncharacterized  gene.  

Page 30: 31.$The$Control$of$Gene$Expression$in$Prokaryotes$$ocw.sogang.ac.kr/rfile/2013/course01-CHM2/Biochem31_2013... · 2013-09-24 · Even$simple$prokaryoBc$cells$must$respond$to$changes$in"their"metabolism"or"in"their"

TranscripBon  sBmulated  by  proteins  that  contact  RNA  polymerase  Glucose:  a  preferred  energy  source,    When  glucose  is  abundant,  the  synthesis  of  these  enzymes  would  be  wasteful.         Glucose  has  an  inhibitory  effect  on  the  

genes  encoding  these  enzymes,  an  effect  called  catabolite  repression.      It  is  due  to  the  fact  that  glucose  lowers  the  concentraBon  of  cyclic  AMP  in  E.  coli.