30 25 20 15 10 5 0 180 Scattering angle (deg)...above Salt Lake City, Utah. Shown from top to bottom...

8
0 5 10 15 20 25 30 Size parameter (a) Prolate, a/b = 1/1.4 0 5 10 15 20 25 30 (b) Oblate, 0 5 10 15 20 25 30 Size parameter (c) Prolate, 0 5 10 15 20 25 30 (d) Oblate, 0 30 60 90 120 150 180 Scattering angle (deg) 0 5 10 15 20 25 30 Size parameter (e) Prolate, 0 30 60 90 120 150 180 Scattering angle (deg) 0 5 10 15 20 25 30 (f) Oblate, -100 - 50 0 50 100 a/b = 1.4 a/b = 1/1.7 a/b = 1.7 a/b = 1/2 a/b = 2 0 5 10 15 20 25 30 Size parameter (g) Prolate, 0 5 10 15 20 25 30 (h) Oblate, 0 5 10 15 20 25 30 Size parameter (i) Prolate, 0 5 10 15 20 25 30 (j) Oblate, 0 30 60 90 120 150 180 Scattering angle (deg) 0 5 10 15 20 25 30 Size parameter (k) Prolate, 0 30 60 90 120 150 180 Scattering angle (deg) 0 5 10 15 20 25 30 (l) Oblate, <0.25 0.4 0.5 0.7 1 1.4 2 2.5 >4 a/b = 1.7 a/b = 1/1.4 a/b = 1.4 a/b = 1/1.7 a/b = 1/2 a/b = 2 Plate 10.2. Two left-hand columns: –b 1 a 1 (in %) versus scattering angle and effective size parameter for polydisperse randomly oriented spheroids with various axis ratios and a fixed relative refractive index m = 1.53 + i0.008. The distribution of surface-equivalent-sphere radii is given by Eq. (5.246) with α = 3 and v eff = 0.1. Two right-hand columns: as in the two left-hand columns, but for the ratio of the phase function a 1 for randomly oriented polydisperse spheroids and that for surface-equivalent spheres.

Transcript of 30 25 20 15 10 5 0 180 Scattering angle (deg)...above Salt Lake City, Utah. Shown from top to bottom...

Page 1: 30 25 20 15 10 5 0 180 Scattering angle (deg)...above Salt Lake City, Utah. Shown from top to bottom are: three fish-eye photographs of all-sky cloud conditions, Shown from top to

051015202530

Size parameter

(a)

Pro

late

, a/

b =

1/1

.4

051015202530

(b

) O

blat

e,

051015202530

Size parameter

(c)

Pro

late

,

051015202530

(d

) O

blat

e,

030

6090

120

150

180

Sca

tterin

g an

gle

(deg

)

051015202530

Size parameter

(e

) P

rola

te,

030

6090

120

150

180

Sca

tterin

g an

gle

(deg

)

051015202530

(f

) O

blat

e,

−100

−50

050

100

a/b

= 1

.4

a/b

= 1

/1.7

a/b

= 1

.7

a/b

= 1

/2a/

b =

2

051015202530

Size parameter

(g)

Pro

late

,

051015202530

(h

) O

blat

e,

051015202530

Size parameter

(i) P

rola

te,

051015202530

(j)

Obl

ate,

030

6090

120

150

180

Sca

tterin

g an

gle

(deg

)

051015202530

Size parameter

(k)

Pro

late

,

030

6090

120

150

180

Sca

tterin

g an

gle

(deg

)

051015202530

(l)

Obl

ate,

<0.

250.

40.

50.

71

1.4

22.

5>

4

a/b

= 1

.7

a/b

= 1

/1.4

a/b

= 1

.4

a/b

= 1

/1.7

a/b

= 1

/2a/

b =

2

Plat

e 10

.2.

Two

left-

hand

col

umns

: –b 1

�a1 (

in %

) ver

sus s

catte

ring

angl

e an

d ef

fect

ive

size

par

amet

er fo

r pol

ydis

pers

e ra

ndom

ly o

rient

ed sp

hero

ids w

ithva

rious

axi

s rat

ios a

nd a

fixe

d re

lativ

e re

frac

tive

inde

x m

= 1

.53

+ i0

.008

. Th

e di

strib

utio

n of

surf

ace-

equi

vale

nt-s

pher

e ra

dii i

s giv

en b

y Eq

. (5.

246)

with

α =

–3 a

nd v

eff =

0.1

. Tw

o rig

ht-h

and

colu

mns

: as i

n th

e tw

o le

ft-ha

nd c

olum

ns, b

ut fo

r the

ratio

of t

he p

hase

func

tion

a 1 fo

r ran

dom

ly o

rient

ed p

olyd

ispe

rse

s phe

roid

s and

that

for s

urfa

ce-e

quiv

alen

t sph

eres

.

Page 2: 30 25 20 15 10 5 0 180 Scattering angle (deg)...above Salt Lake City, Utah. Shown from top to bottom are: three fish-eye photographs of all-sky cloud conditions, Shown from top to

051015202530

Size parameter

(a)

Pro

late

,

051015202530

(b

) O

blat

e,

051015202530

Size parameter

(c)

Pro

late

,

051015202530

(d

) O

blat

e,

030

6090

120

150

180

Sca

tterin

g an

gle

(deg

)

051015202530

Size parameter

(e

) P

rola

te,

030

6090

120

150

180

Sca

tterin

g an

gle

(deg

)

051015202530

(f

) O

blat

e,

025

5075

100

a/b

= 1

/1.4

a/b

= 1

/1.7

a/b

= 1

.4

a/b

= 1

.7

a/b

= 2

a/b

= 1

/2

051015202530

Size parameter

(g)

Pro

late

,

051015202530

(h

) O

blat

e,

051015202530

Size parameter

(i) P

rola

te,

051015202530

(j)

Obl

ate,

030

6090

120

150

180

Sca

tterin

g an

gle

(deg

)

051015202530

Size parameter

(k)

Pro

late

,

030

6090

120

150

180

Sca

tterin

g an

gle

(deg

)

051015202530

(l)

Obl

ate,

−100

−50

050

100

a/b

= 1

/1.4

a/b

= 1

.4

a/b

= 1

/1.7

a/b

= 1

.7

a/b

= 1

/2a/

b =

2

Plat

e 10

.3.

As i

n th

e tw

o le

ft-ha

nd c

olum

ns o

f Pla

te 1

0.2,

but

for a

2�a 1

(the

two

left-

hand

col

umns

) and

a3�

a 1 (t

he tw

o rig

ht-h

and

colu

mns

).

Page 3: 30 25 20 15 10 5 0 180 Scattering angle (deg)...above Salt Lake City, Utah. Shown from top to bottom are: three fish-eye photographs of all-sky cloud conditions, Shown from top to

051015202530

Size parameter

(a)

Pro

late

,

051015202530

(b

) O

blat

e,

051015202530

Size parameter

(c)

Pro

late

,

051015202530

(d

) O

blat

e,

030

6090

120

150

180

Sca

tterin

g an

gle

(deg

)

051015202530

Size parameter

(e

) P

rola

te,

030

6090

120

150

180

Sca

tterin

g an

gle

(deg

)

051015202530

(f

) O

blat

e,

−100

−50

050

100

a/b

= 1

/1.4

a/b

= 1

.4

a/b

= 1

/1.7

a/b

= 1

.7

a/b

= 1

/2a/

b =

2

051015202530

Size parameter

(g)

Pro

late

,

051015202530

(h

) O

blat

e,

051015202530

Size parameter

(i) P

rola

te,

051015202530

(j)

Obl

ate,

030

6090

120

150

180

Sca

tterin

g an

gle

(deg

)

051015202530

Size parameter

(k)

Pro

late

,

030

6090

120

150

180

Sca

tterin

g an

gle

(deg

)

051015202530

(l)

Obl

ate,

−100

−50

050

100

a/b

= 1

/1.4

a/b

= 1

.4

a/b

= 1

/1.7

a/b

= 1

.7

a/b

= 1

/2a/

b =

2

Plat

e 10

.4.

As i

n th

e tw

o le

ft co

lum

ns o

f Pla

te 1

0.2,

but

for a

4�a 1

(the

two

left-

hand

col

umns

) and

b2�

a 1 (t

he tw

o rig

ht-h

and

colu

mns

).

Page 4: 30 25 20 15 10 5 0 180 Scattering angle (deg)...above Salt Lake City, Utah. Shown from top to bottom are: three fish-eye photographs of all-sky cloud conditions, Shown from top to

0

5

10

15

20

25

Siz

e pa

ram

eter

Sphe

res

0

5

10

15

20

25

Siz

e pa

ram

eter

0

5

10

15

20

25

Siz

e pa

ram

eter

0 30 60 90 120 150 180Scattering angle (deg)

0

5

10

15

20

25

Siz

e pa

ram

eter

0 30 60 90 120 150 180Scattering angle (deg)

0 30 60 90 120 150 180Scattering angle (deg)

<−1 −0.5 0 0.5 >1

<0.25 0.5 0.7 1 1.4 2 3 >4

−100 −50 0 50 100

log10[a1(S)] a3 /a1 (%) a4 /a1 (%)

D/L

=1

D/L

=1/

2D

/L=

2

a1(C)/a1(S) a3 /a1, a4 /a1 (%)log10[a1(S)]

a1(C)/a1(S)

Plate 10.5. The top left panel shows the logarithm of the phase function versus scattering angle and effective sizeparameter for polydisperse spheres. The three lower diagrams in the left-hand column show the ratio of the phasefunction )C(1a for polydisperse randomly oriented cylinders with LD = 1, 1/2, and 2 and the phase function

)S(1a for surface-equivalent spheres. The middle and right-hand columns show 13 aa and 14 aa for spheres (toppanels) and for surface-equivalent cylinders (lower three pairs of panels). Each diagram is quantified by thecorresponding color bar at the bottom of the plate. All particles have the same relative refractive index, 1.53 +i0.008. The distribution of surface-equivalent-sphere radii is given by Eq. (5.246) with 3−=α and .1.0eff =v

Page 5: 30 25 20 15 10 5 0 180 Scattering angle (deg)...above Salt Lake City, Utah. Shown from top to bottom are: three fish-eye photographs of all-sky cloud conditions, Shown from top to

0

5

10

15

20

25

Siz

e pa

ram

eter

Sphe

res

0

5

10

15

20

25

Siz

e pa

ram

eter

D/L

=1

0

5

10

15

20

25

Siz

e pa

ram

eter

0 30 60 90 120 150 180Scattering angle (deg)

0

5

10

15

20

25

Siz

e pa

ram

eter

0 30 60 90 120 150 180Scattering angle (deg)

0 30 60 90 120 150 180Scattering angle (deg)

0 25 50 75 100

−100 −50 0 50 100

−100 −50 0 50 100

D/L

=1/

2D

/L=

2

a2 /a1 (%) −b1 /a1 (%) b2 /a1 (%)

Plate 10.6. The ratios ,12 aa ,11 ab− and 12 ab for polydisperse spheres and for surface-equivalent randomlyoriented cylinders with LD = 1, 1/2, and 2. The diagrams in each column are quantified using the color bar belowthe column. All particles have the same relative refractive index, 1.53 + i0.008. The distribution of surface-equivalent-sphere radii is given by Eq. (5.246) with 3−=α and .1.0eff =v

Page 6: 30 25 20 15 10 5 0 180 Scattering angle (deg)...above Salt Lake City, Utah. Shown from top to bottom are: three fish-eye photographs of all-sky cloud conditions, Shown from top to

0.01

0.1

1

10

100P

hase

func

tion

Monodisperse spheroids

0.01

300

Spheres= 1.2= 1.4= 1.6= 1.8= 2= 2.2= 2.4

(a)

0.1

1

10

100

Pha

se fu

nctio

n

Polydisperse spheroids

0.06

300

Spheres= 1.2= 1.4= 1.6= 1.8= 2= 2.2= 2.4

(b)

0 60 120 180 Scattering angle (deg)

0.1

1

Pha

se fu

nctio

n

0.06

5

Spheres= 1.2 − 2.4= 1.3 − 2.3= 1.4 − 2.2= 1.5 − 2.1= 1.6 − 2.0= 1.7 − 1.9= 1.8

Shape mixtures

(c)

0 60 120 180 00Scattering angle (deg)

0.1

1

10

100

Pha

se fu

nctio

n

0.06

300

Spheres

Prolate spheroids

Oblate spheroids

All spheroids

(d)

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

Plate 10.7. T-matrix computations of phase function versus scattering angle for monodisperse and polydispersespheres and randomly oriented spheroids with a relative refractive index 1.53 + i0.008 at a wavelength 443 nm.Panel (a) shows results for a monodisperse sphere with a radius 1.163 µm and for surface-equivalent prolatespheroids with aspect ratios ranging from 1.2 to 2.4. Panel (b) shows similar computations but for a log normal sizedistribution with an effective radius 1.163 µm and an effective variance 0.168. Panel (c) demonstrates the effect ofusing a spheroid aspect-ratio distribution of finite width; it shows the ensemble-averaged phase functions forequiprobable shape mixtures of polydisperse prolate spheroids with different aspect-ratio ranges, all centered on

.8.1=ε Panel (d) shows the phase functions for polydisperse spheres and ensemble-averaged phase functions forequiprobable shape mixtures of prolate spheroids (green curve), oblate spheroids (blue curve), and prolate andoblate spheroids together (red curve) with aspect ratios ranging from 1.2 to 2.4 in steps of 0.1. (After Mishchenkoet al. 1997a.)

Page 7: 30 25 20 15 10 5 0 180 Scattering angle (deg)...above Salt Lake City, Utah. Shown from top to bottom are: three fish-eye photographs of all-sky cloud conditions, Shown from top to

0

5

10

15

20

25

30

Siz

e pa

ram

eter

(a) Spheres

0

5

10

15

20

25

30

(b) Bispheres (fixed orientation)

0 30 60 90 120 150 180Scattering angle (deg)

0

5

10

15

20

25

30

Siz

e pa

ram

eter

(c) Bispheres (fixed orientation)

0 30 60 90 120 150 180Scattering angle (deg)

0

5

10

15

20

25

30

(d) Bispheres (random orientation)

−100 −50 0 50 100

Plate 10.8. Panel (a): the ratio )0,0;0,()0,0;0,( incincscasca11

incincscasca21 ======− ϕϑϕϑϕϑϕϑ ZZ in % versus

scaϑ and size parameter for monodisperse single spheres. Panels (b)–(d): the same ratio versus scaϑ andconstituent-sphere size parameter for monodisperse bispheres with equal touching components in fixed and randomorientations. In panels (b) and (c) the bisphere axis is oriented respectively along the z-axis and along the x-axis ofthe laboratory reference frame. The relative refractive index is 1.5 + i0.005.

Page 8: 30 25 20 15 10 5 0 180 Scattering angle (deg)...above Salt Lake City, Utah. Shown from top to bottom are: three fish-eye photographs of all-sky cloud conditions, Shown from top to

Plate 10.9. Compilation of data for the case study on 5 March 1999 of cirrus, contrails, and an Asian dust layerabove Salt Lake City, Utah. Shown from top to bottom are: three fish-eye photographs of all-sky cloud conditions,obtained at 1808, 1826, and 1905 UTC (from left to right); backscattered intensity and linear depolarization time-height displays measured by an upward-looking lidar at a wavelength µm,694.0 the broadband visible andinfrared hemispherical fluxes, and the mid-infrared column brightness temperatures ;bT and, at the bottom,expanded views of backscattered intensity (black and white images) and linear depolarization (colored images) atwavelengths µm 532.0 (bottom left panel) and µm06.1 (bottom right panel) for a time range near the end of themeasurement period. The depolarization displays can be quantified using the inserted color bar. (From Sassen etal. 2001.)

L